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Using the discrete path approach, we derive an explicit topological expression for the solution of 
a system of simultaneous linear equations, This is done by establishing a homomorphism between 
the solution x,,, and the set of paths, defined on the corresponding signal flow graph, from all 
sources to vertex n . 

I. INTRODUCTION 

The discrete path formalism 1 was first developed to 
solve finite-difference equations. The method is topological 
in nature, and gives the solution in terms of a global informa
tion gathering function 2 which determines the influence of 
input (boundary conditions) on output (the solution). In this 
work we will use this formalism to derive an explicit topo
logical expression for the solution of a system of simulta
neous linear equations. 

In the discrete path approach, a homomorphism is es
tablished between the solution sought and a set of discrete 
paths. The paths originate at a number of sources which 
represent the initial conditions, and converge on a single ver
tex which represents the solution. 3 Furthermore, they are 
defined on a topological structure which is determined by 
the general nature of the problem, and are subjected to cer
tain constraints reflecting its special particularities. Hence, 
the problem is essentially reduced to one of determining the 
underlying topological structure of the solution. For a sys
tem of simultaneous linear equations, this structure is the 
corresponding signal flow graph.4 

Systems of simultaneous linear equations appear in ev
ery branch of theoretical physics, and it is certainly interest
ing to have a systematic topological method of handling 
them which is independent of Cramer's rule. When dealing 
with simple systems oflinear equations, for which the appro
priate determinants can be easily evaluated and simplified 
analytically, Cramer's rule is amply sufficient. On the other 
hand, for large systems oflinear equations, the method pre
sented here has the advantage of being transparent, oflend
ing itself easily to a perturbative treatment,5 and of being able 
to take full advantage of any symmetry that the system may 
have. 6 Cramer's rule has been given a graphic interpretation 
by Mason. 7 In a subsequent paper" we will give a completely 
topological derivation of Mason's theorem starting from the 
theorem derived in this work. For the purpose of compari
son, an example will be worked out in the Appendix, using 
Cramer's rule, Mason's theorem, and the topological theo
rem derived here. 

"'Work supported in part by the Natural Sciences and Engineering Re
search Council of Canada. 

Faced with a solution of such a general character it is 
natural to question its practical usefulness in a given specific 
calculation. There is at least one important problem for 
which the details of the topological solution have been 
worked out. This is the problem of the radial Schr6dinger 
equation with a linear central potential. All attempts to solve 
this problem in terms of special functions failed, and early 
workers turned to numerical9 and approximate WKB solu
tions.lO Using the method of Fr6benius,11 the above Schr6-
dinger equation can be transformed into an equivalent finite 
difference equation (an infinite system of simultaneous lin
ear equations) which is then solved topologically, in accor
dance with the method presented here. 12 It is very significant 
from the point of view of the usefulness of the method to note 
that the topological expressions involved in the solution can 
subsequently be transformed into ordinary analytic expres
sions, essentially as sums over products of gamma func
tions.13 This example provides tangible proof of the tractabil
ity of this type of topological solution, even when applied to a 
problem for which all other known methods14 failed to give 
an analytic solution. 

Notwithstanding the wide domain of applicability of 
the theorem derived here, from a particle physicist's point of 
view its most promising application is to the solution of the 
Schr6dinger equation for a three-quark system (the baryon 
spectrum). The next step towards this goal would be the 
derivation, based on the theorem given here, of the solution 
for multivariable finite difference equations. This, in tum, 
will permit (using the techniques of Refs. 12 and 13) an ana
lytic solution for those three-quark potentials that admit a 
multivariable power series expansion. The number of coeffi
cients appearing in the expansion can be reduced consider
ably by making full use of the symmetry of the problem. 15 

This constitutes a rather ambitions and long project, but at 
the same time each successive step in it is of inherent interest 
by itself. 

II. TOPOLOGY OF A SYSTEM OF LINEAR EQUATIONS 
A. Algebraic structure of "generalized paths" 

Consider a graph G (J,A ), where J is the set of vertices 
and A the set of arcs. We refer to a sequence p of arcs belong
ing toA as a "generalized path." The length lp ofa path is the 
number of arcs in the sequence p. Let jl = { p l be the set of 
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FIG. 1. A typical junction in a signal flow graph. 

generalized paths and define the usual concatenation oper
ation 0 between two elements PI and P2 offi by 

PI0p2 = (PI,P2)Efi , (2.1) 

i.e"PI0p2 is a sequence belonging tOfi obtained by taking 
the sequence PI followed by the sequence P2' The identity 
element with respect to the operation 0 is designated bye: 

p0e=e0p=p· ~~ 

e can be considered as a generalized path oflength zero con
necting a vertex to itself. 

From the free monoid (fi,0,e) we construct the power 
setfi* offi and introduce two operations u (union) and ® 

(concatenation) overfi*. Let P = [PI ,P2""'Pk J and 
P' = [pi ,p~, ... ,p:" J be two elements offi*, then the oper
ations u and ® are given by 

(2.3a) 

and 

P®P' = [PI0p; ,PI0p~,.··,PI0p:""",Pk0p:" JEfi* .(2.3b) 

The identity elements with respect to the u and ® operations 
are the empty set ° and the singleton [e J respectively, both 
belonging to fi * . 

B. Signal flow graph 

A system of N simultaneous linear equations can always 
be written in the form 

Xj = L W(i'])xi + w(Sj'])' j = 1,2, ... ,N (2.4) 

and represented4 by the signal flow graph G, as shown in Fig. 
1, where r - I(]) is the set of vertices incident on vertexj, 
w(i,]) is the weight of arc (i,]), and Sj is the source incident 
on vertexj. By definition, a vertexsj is called a source, ifthere 
are no vertices incident on it. 

For the signal flow graph we use the following notation, 
which is based on the algebraic structure introduced above: 

2376 

S = I S I ,S2 ," J is the set of sources, 
p(n,])Efi = a path from vertex n to vertex}, 
P(n,])Efi* = the set of paths from n to}, 
p(t)(n,])Efi* = the set of paths from n to} and 
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passing through vertex i, 
P{j) = the set of paths from all sources to vertexj. 

From the definition of P(]) we have 

P{j) = u P(s,]) . 
SES 

Furthermore, for two sources Si and Sj' 

i-=/=j, 

i=j. 

Thus, whenj is a source, Eq. (2.5) reduces to 

P(S) = [eJ. 

(2.5) 

(2.6) 

(2.7) 

On the other hand, whenj is not a source, the totality of 
paths from S to} can be decomposed as follows: 

P(S,]) = u p(l)(s,]) . (2.8) 
iET '(J) 

Furthermore, for iEF - I(]), 

P(l)(s,]) =P(S,I)® [(i,j)J . (2.9) 

Combining Eqs. (2.5), (2.8), and (2.9), we have 

P{j) = uP(s,]) = u u P(l)(s,]) 
SES SES iET - '(J) 

1= U UP(S,I)® [i,jJ 
iET '(j) SES 

or 

P(])= u P(l)®[i,jJ, r- I (])-=/=0. (2.10) 
iET '(j) 

The above interesting topological relation defined on the sig
nal flow graph G will be transformed into the set of linear 
equations (2.4) by an appropriate homomorphism defined 
below. 

III. SOLUTION OF A SYSTEM OF LINEAR EQUATIONS 
A. The homomorphism H 

We establish a homomorphism from (fi * ,u, ® ) to 
(R, + ,X) by defining the functional H, giving the value of 
an arc as being equal to its weight, 

H 

(fi*,u, ®) -+ (R, + ,X), 

H([(i,])J) = w(i,]), [(i,])JEfi*· 

(3.la) 

(3.1b) 

Since any element offi* can be constructed from the arcs of 
the graph by using the operations of concatenation ® and 
union u, Eqs. (3.1) completely define the value of any ele
ment offi*, i.e., the functional H. Naturally, we have 

H(0) = 0, H([eJ) = 1, (3.2) 

Concretely, the above definition of H gives the value of 
a path as the product ofthe weight ofits arcs, and the value of 
a set of paths as the sum of the values of its elements: 

H (p) = II wei,]) , (3.3a) 
(iJ)Ep 

H(P)= IH(p). (3.3b) 
pep 

B. Condition of convergence 

To study the convergence of the above formal expres-
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FIG. 2. (a) The signal How graph G corresponding to the system of simulta
neous equations (AI). (b) The signal How graph G (p,(s,.2» . 

sions for H (P) in the case where P has an infinite number of 
elements, we will consider a complete graph with n vertices 
(excluding sources). Let NI(i,]) be the number of paths of 
length I from i to j, PI (i,]) the set of paths oflength I from ito 
j, and w the maximum of the absolute values of the weights of 
the arcs of the graph. Then 

00 

P(i,j) = u P/(i,]) (3.4) 
I~ 1 

and 

(3.5) 

hence, 

H (P(i,]) < ! NI(i,])wl
• (3.6) 

I~ 1 

To evaluate N/(i,]) we make the following decomposi
tion of the set PI (i,]): 

n 

PI(i,]) = u P1_ 1 (i,k) ® ((k,])] . 
k~l 

Thus, 
n 

NI(i,]) = r N 1_ 1 (i,k) . 
k~l 

Furthermore, 

N1(i,]) = 1. 

(3.7) 

(3.8a) 

(3.8b) 

The solution ofEq. (3.8a) subject to the initial condition 
(3.8b) is easily seen to be 

N/(i,]) = nl- 1 • (3.9) 

Replacing Eq. (3.9) in (3.6) we obtain 

H (P(i,])<w ! (nw)/. 
I~O 

(3.10) 

The series on the right hand side converges if and only if 
nw< 1. 
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C. The topological solution 

Theorem (1): The value H (P (j)) ofthe set of all paths in 
the signal flow graph from all sources S to a vertexj is equal 
to x·, the solution of the corresponding system of linear 

1 

equations. 
Proof: starting from the topological equation, 

P(j) = u P(j) ® {(i,j)J 
iEr '(1) 

isolating the contributions of the source Si' 

P{J) ~ ( '~~,<" P«) ® ((i.j)) ju [P ('j) ® I ('1.J) II 

and making use ofEq. (2.7), we obtain 

P (j) = [ iEr ~ 1(1) P(l) ® {(i,j)J ju[{ e] ® ((Sj'])] ] . (3.11) 

l#;-Sj 

The rest of the proof consists of applying the homomor
phism H to Eq. (3.11) to reproduce the system of linear 
equations(2.1 ): 

H(P(j)) = r H(P(z)H({(i,])]) 
iEr l(j) 

its) 

+ H ({ e])H ({ (Sj,j)]) . 

Making use ofEqs. (3.1) and (3.2), the above equation re
duces to 

H(P(j)) = r H(P(z)w(i,]) + w(Sj,j). (3.12) 

i7:=S, 

Comparing Eqs. (3.5) and (2.1) shows thatH (P (j)) is a solu
tion of the system of linear equations (2.1). 

An example illustrating the application of the above 
theorem is worked out in the Appendix. 

IV. CONCLUSION 

We have shown that the solution of a system of simulta
neous linear equations is the value of a given set of paths on 
the corresponding signal flow graph. The value of this type 
of solution and its superiority to Cramer's rule is most evi-

FIG. 3. A typical path from source s, to vertex 4 on the signal How graph G 
corresponding to the system of simultaneous equations (A I). 
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TABLE I. Evaluating the detenninants of the graph G of Fig. 2 and its subgraphs G (P.(s, ,2) and G (P.(s, ,4). 

Graph L, L, 

G A, + A, A,A, 
G (P.(s, ,2» A, 0 
G(P.(s, ,4) 0 0 

dent for large systems of equations with a high degree of 
internal symmetry. Nevertheless, as can be seen from the 
example worked out in the Appendix, even for a simple sys
tem of simultaneous linear equations, the solution presented 
here is simpler and faster than that obtained by Cramer's 
rule or by Mason's theorem. Furthermore, it gives the an
swer in a form that is already simplified, factorized, and writ
ten in terms of the natural parameters of the problem. 

APPENDIX: AN ILLUSTRATIVE APPLICATION 

The signal flow graph shown in Fig. 2(a) represents the 
following system of equations: 

Let 

XI = W2X3 +a, 
X2 =WIXI , 
X3 = W3X2 + WSX4 , 
X 4 = W 4 X 3 • (AI) 

(A2) 

As an example we will compute x 2 and X 4 using successively 
theorem 1, Mason's theorem, and Cramer's rule. 

1. Theorem 1 

Consider a typical path shown in Fig. 3 from source S I 

to vertex 4. The value of this path is aA 7'wl W3 w4A ~>, where 
n l and n2 are nonnegative integers. To every pair of values 
(nl ,n2 ) corresponds a path belonging to P(4). Hence, 

x4 =H(P(4» = ! ! aA7'wlw3W4A~2 
n, =0 n2 =O 

= aWl W3W4 ! A 7' ! A ~2. 
n,=O n 2 =O 

If IAI I < 1 and IA21 < 1, we have 

X4 =awlw3 w4(_1 )(_1 ). 
1 - Al 1 - A2 

In a similar fashion we find that 

X2 =H(P(2»=awl ! A7 
n=O 

or 

aWl 
X 2 = ---. 

1 - Al 

2. Mason's theorem 
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According to Mason's theorem, 

2.SES 2.pe(S,,)H (Pe(s,/)A (G (Pe(S,/)) 

A (G) 
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(A3a) 

(A3b) 

(A4) 

L k (k>3) ..:1 

0 1- (A, +A,) +A,A, 
0 1 - A, 
0 I 

where A (G) is the "determinant" of the signal flow graph: 

A (G) = 1 - LI + L2 - L3 + ... + (- l)kLk , (AS) 

Lk being the sum of the products of the values of k disjoint 
elementary circuits in the signal flow graph. P e (s,1) is an ele
mentary path from the source s to the vertex i, and 
G (p e (s,l) is the subgraph obtained from G by eliminating 
all the vertices of P e (S,/)' 

For the flow graph under consideration, there is only 
one elementary path,Pe(sl ,2) = (s.,I,2), froms l to vertex 2, 
and only one elementary path,Pe(sl ,4) = (Sl' 1,2,3,4), from 
s I to vertex 4. The values of these paths are given by 

H(Pe(SI,2»=awl and H(pe(SI,4»=aw l w3w4 .(A6) 

Corresponding to the above two elementary paths, there are 
two subgraphs; G (Pe(St ,4» which is empty, and 
G (p e (s I ,2» shown in Fig. 2(b). The determinants for these 
two subgraphs, as well as the determinant for graph G, are 
evaluated in Table I. Thus using the above results we find 
that the application of Mason's theorem to calculate X 2 and 
X 4 gives: 

aWl W3W4 
X 4 = --------

1 - (AI + A2) + Al A2 ' 

aWj (1 - A2 ) 
X 2 = --------

1 - (AI + A2 ) + AIA2 

3. Cramer's rule 

Finally, according to Cramer's rule 

Xi =NJD, 

where 

-W2 0 

-WI 0 
D= 

0 -W3 

o 0 -W4 
= (1 - WI w2)(1 - w4Ws), 

1 - w2 0 

o 
o 0 

o 

a 

o 
o 

o 
o 

o 0 -W4 

= aWl (1 - W4WS)' 

o 
1 

o 
o 

0 

0 

-Ws 

a 

o 
o 
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(A7a) 

(A7b) 

(AS) 

(A9) 

(A lOa) 

(A lOb) 
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Hence, 

(A 11 a) 

aWl 
X 2 = -----

(1 - w1wz) 
(A11b) 

It is easy to see that Eqs. (A3a), (A 7a), and (AlIa) are all 
equivalent, and that Eqs. (A3b), (A 7b), and (A 11 b) are also 
equivalent. 
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All ladder operators and some recurrence relations of the matrix elements of certain group 
elements ofSO(3), SO(2,1), E(2), SO(4), SO(3,1), and E(3) have been explicitly determined and 
the underlying factorizations of the second- and the fourth-order linear ordinary differential 
equations in terms of first- and second-order ladder operators have been transparently 
demonstrated as an extension to the Schrodinger-Infeld-Miller factorization. These ladder 
operators are very useful in physical applications where the corresponding matrix elements 
represent certain physical transitions. 

I. INTRODUCTION AND SUMMARY 

Schrodinger proposed a simple method of factoriza
tion I of a quantum-mechanical second-order linear differen
tial equation into a product of two first-order differential 
operators (ladder operators or stair operators). Each ladder 
operator has a special property that when it acts on the origi
nal eigenfunction, a new eigenfunction is created with a 
quantum number raised or lowered by one unit. Schro
dinger's method has been further systematically extended to 
a class of second-order linear differential equations and to 
their solutions by Infeld and Inui 1 and various recurrence 
relations satisfied by the solutions have been derived. 

A systematic group theoretical treatment to Schro
dinger-Infeld's analytic factorization is given by Miller. 2 

Here, the second-order linear differential equation appears 
as the invariant Casimir product, in the Lie algebra of a Lie 
group of rank one, say SO(3), acting on the basis function 
belonging to a given unitary irreducible representation of the 
group. The factorization is obtained through the observation 
that the Casimir product can be expressed in terms of pro
ducts of two group generators which can be suitably chosen 
to be the first-order ladder operators. Recently, Miller's 
method has been further applied in determining first-order 
ladder operators admitted by certain type of Hamiltonians in 
two variables. 1 

The analytic and group theoretic factorization proce
dures mentioned above have been so far restricted only to 
second-order differential equations and hence in obtaining 
the first-order ladder operators within the group (say, G) of 
rank one. Nevertheless, by going outside G, for example to 
the direct product group G ® G, we can obtain additional 
factorizations of the same differential equation. More pre
cisely, this amounts to algebraically constructing ladder op
erators that raise and lower the Casimir labels in G. Thus for 

"Supported partially by Deutscher Akademischer Austauschdienst. 

orthogonal groups the number of additional factorizations 
we could achieve by going to G ® G is equal to the rank of the 
Group G. It is the rank minus one for the Euclidean groups, 
provided we consider their unitary irreducible representa
tions by reducing with respect to their maximal orthogonal 
subgroups. Furthermore, the factorizations of higher-order 
differential equations can be seen by the construction of 
higher-order ladder operators in larger groups. For example, 
the fourth order differential equation for SO(4) can be fac
torized in terms of second-order ladder operators. 

The motivation of this paper is therefore to expound 
and advocate the above mentioned constructions, as an ex
tension to the Schrodinger-Infeid-Miller factorization, us
ing the orthogonal and Euclidean groups of three and six 
parameters. Our approach is to some degree different from 
that of Miller. While, in the case of Miller, the ladder opera
tors act in the space of eigenfunctions, our ladder operators 
are constructed to act in a space of certain transition matrix 
elements. Although mathematically both approaches are 
equivalent as in both cases we deal with the same kind of 
special functions, physically we seem to gain certain advan
tages. Since the transition matrix elements or transition 
probabilities are related to certain physical observables, our 
ladder operators obviously acquire physical significance. 
They transform, in a trivial way, a given matrix element to 
the one in which the concerned quantum number in one of 
the eigenstates is raised or lowered by one unit. Thus they 
relate two different physical situations in a simple way (for 
example, the elastic and inelastic form factors). Further
more, once the complete set of independent ladder operators 
of a given matrix element is determined, then not only do we 
know the different factorizations of the differential equa
tions involved but also in principle we can obtain all recur
rence relations satisfied by the matrix element. The latter 
ensures practical advantages. 

The material of this paper is arranged as follows: In Sec. 
II we deal with the groups SO(3), SO(2, I), and E(2), deter
mine explicitly certain recurrence relations and all ladder 
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operators ofWigner, Bargmann, and Inonii-Wigner func
tions and demonstrate the different ways of factorizations. 
In Sec. III we give the same treatment as in Sec. II for the 
groups SO(4), SO(3,1), and E(3), define Dolginov-Bieden- I 

ham, Dolginov-Toptygin, and Vilenkin-Akim-Levin func
tions, and eventually show how a fourth-order differential 
equation can be factorized in terms of second-order ladder 
operators. 

II. THE 50(3), 50(2,1), AND E(2) MATRIX ELEMENTS 

We first consider the generators L;, let i = 1,2,3; and the complete orthogonal basis states of SO(3), tP'm' let I = 0,1, ... ,00, 
-1<m<J The Wigner rotation function, defined by the matrix element 

(tP'm"exp( - iBL2)tP'm)==d~'m(B) 

has an explicit integral form 4 (c: unit circle) 

d'. (B)= ~(/-m')!(/+m')! )'/2 idxxm'-'-I 
'" '" 21Ti (/- m)!(1 + m)! r 

( 
B B ),-m( B B ),+m 

X x cos 2 + isin 2" cos 2 + ixsin 2 ' 

(11.1) 

(11.2) 

as of a hypergeometric function. If one differentiates (11.1) with respect to the group parameter B, using the identity (Baker
Campbell-Hausdorff formula) 

exp( ± iBL2)LJ exp( + iBL,) = L3 cosB + L,sinB, 

and the actions of the generators LJ and L, on the basis states tP'm one easily obtains the following familiar recurrence relations: 

:e d~"'m(B)= -!W-m)(l+m+ 1)]'/2d~, m+I(B)+![(l+m)(I-m+ 1)]'/2d~", m_I(B), 

:e d~"'m(B)=H(/-m')(l+m'+ 1)]1/2d~'+1 m(B)-![(l+m')(I-m'+ l)]'/2d~'_1 m(B), 

( 
m' - m cosB )d' (B) I [(I )(1 l)J 1/2 , I I 1/2 I sinB m'm = -2 -m +m+ d m'm+I(B)-2[(/+m)( -m+1)] dm'm_,(B), 

( m -s:~cOSB )d ~"'m (B) = H (1- m')(/ + m' + 1)] 1/2d ~t'+ 1 m (B) + ! W + m')(l- m' + 1)] 1/2d ~ __ I ..,(B) (11.3) 

Solving (11.3), the ladder operators of d ~"'m (B) with respect to m and m' are obtained: 

+ [(l + m)(I + m + 1)]- 1/2( ~ + m' - m cosB )d', (B) = L ± d', (B) = d' , (B) 
- dB - sinB m m m m m m m ± I , 

± [(l+m')(l±m'+ 1)] -1/2(~ + m-m'COSB)d', (B)=L±.d', (B)=d', (B) 
dB - sinB m m m m m m ± 1 m 

(11.4) 

Indeed, these ladder operators for SO(3) are well known. 

In order to obtain the corresponding ladder operators which raise and lower the Casimir parameter I in d ~'m (B) we have to 
go outside SO(3) and consider, for example, the representations of the direct product group SO(3) ® SO(3). In this representa
tion space, the Wigner functions satisfy the Clebsh-Gordan series, 

12 I) , m d m,,,,(B), (11.5) 
m2 

(: ) being the 3:i symbol. Evaluating (11.5) for special values: 12 = 1, m; = m, = 0; 12 = 1, m 2 = 1, m; = 0, and 12 = 1, m; = 1, 
m, = 0, we obtain the recurrence relations: 

(21 + 1)[/(1 + 1) cosB - mm']d~'m(B) = (I + 1)[(1- m')(1 + m')(/ - m)(/ + m)] 1/2d~;:-ml(B) 

+ I [(/ - m' + 1)(/ + m' + 1)(1- m + 1)(/ + m + 1)] 1/2d ~,;,,:(B), 

(21 + 1)1 (I + l)sinBd ~"'m (B) = - (/ + 1)[ (1- m')(1 + m')(1- m)(I- m - 1)] 1/2d ~-;- ;,,+ I (B) 

- (21 + 1)[ (1- m)(I + m + 1)] I/lm'd~, m + I (B) 

+ I [(1- m' + 1)(/ + m' + 1)(/ + m + 1)(1 + m + 2)] 1/2d ~~ ~ + I (B), (11.6) 
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(21 + 1)/(1 + l)sinOd~'m(O) = (I + 1)[(/- m')(/- m' - 1)(1- m)(1 + mn1l2d~-;-ll m(O) 

+ (21 + 1)[(1- m')(1 + m' + 1)] l12md~, + I m(O) 

-I [(I + m' + 1)(1 + m' + 2)(1- m + 1)(1 + m + 1)] 112d ~-:-ll m(O). 

The last two relations are related by m'+-+m and d ~'m(O) = ( - l)m' - md ~m' (0). From (11.6) and (11.4) we obtain the ladder 
operators: 

-I [(/- m')(1 + m')(/- m)(1 + m)] - 1I2(sino ~ -I cosO + mm')d ~'m(O) = L 1- d~'m(O) = d ~-;-":(O), 
dO I 

(I + 1)[(/- m' + 1)(1 + m' + 1)(/- m + 1)(1 + m + 1)] -1I2(sinO~ +(1 + 1) cosO - mm' )d~'m(O) 
dO (I + 1) 

=L/d~'m(O)=d~-:-":(O). (11.7) 

The operators L / are related by the substitution 1+-+ - 1- 1 which keeps the eigenvalue I (I + 1) of the SO(3)-Casimir product 
unchanged. 

Thus, we have obtained all the four ladder operators L ~ (L ,;. ) and L I± and these operators satisfy the operator equation 

[L}::±ILr± -l]d~n'm(O)=O, r=(m,l), (11.8) 

which in turn is equivalent to the linear second ordinary differential equation 

-- +cotO- - -,-(m'2+m2-2m'mcosO)+/(/+ 1) d~'m(O)=O. ( 
d2 d 1 ) 

d0 2 dO sm20 
(11.9) 

The solution to this equation, finite for cosO = ± 1 is given by (11.2). Clearly, (11.8) indicates that (11.9) can be factorized in two 
different ways and the factorizations of "Type A" (r = m) and "Type E" (r = I) in the sense ofInfeld and Hull. I They differ with 
respect to the group parameter 0, by an overall multiplication by sinO. 

Next, we consider the generators L;, i = 1,2,3 ofSO(2, 1). They satisfy the Lie commutations: 

[LI>L2] = - iL J, [LI>LJ] = - iL2, [L2,LJ] = iLl' 

In a given unitary irreducible representation of SO(2, 1)5 we choose a standard orthonormal discrete basis <P Kn such that the 
Casimir product 

(L ~ - L ~ - L ;)<PKn = K (K + 1)<PKn and LJ<PKn = n<PKn . 

For the discrete principal series D: (D K)' - K = !,l,k·;n = - K, - K + 1, .. · (n = K,K - 1, .. ·). The matrix element 

(<PKn" exp( - iOL2)<PKn)=V~n(0) (11.10) 

defines the Bargmann function which can be expressed in an integral form as 

V!\ (0) = -- dx xn - K - I x cosh - - smh - cosh - - xsmh - . i"'-n(K-n')!(K+n')!) 1I2 f ' ( 0 . O)K-n( 0 . O)K+n 
n n 21Ti (K _ n)!(K + n)! c 2 2 2 2 

(11.11) 

In order to obtain the ladder operators for SO(2, 1), one may directly follow the procedure adopted for SO(3). In this case, 
exact expressions for the SO(2, I) Clebsch-Gordan coefficients6 must be used. However, it is much easier to deduce the 
expressions for SO(2, 1) from those for SO(3) by means of the analytic continuation O--+iO (Weyl's unitarian trick) with the 
formal substitutions I = K, m' = n', m = n. We give below the four ladder operators: 

+ i[(K + n)(K + n + 1)]- l/2( ~ + n' - n coshO )VK. (0) = L ± VK. (0) = VK. (0) - - dO - sinhO n n n n n n n ± I , 

+ i[(K+n')(K+n'+I)]-I/2(~ + n-n'coshO)VK. (O)=L:J:V!\ (O)=VK. (0) 
- dO - sinhO n n n n n n ± In' 

- K [(K - n')(K + n')(K - n)(K + n)] -112(sinhO~ - K coshO + ~)V~n(O) = L K V~n(O) = V~n-I(O), 
dO K 

(K + I)[(K - n' + 1)(K + n' + 1)(K - n + I)(K + n + 1)1-1/2(sinhO~ + (K + I) coshO _ n'n )V!\ (0) 
dO (K + I) nn 

= L: V~n(O) = V~n+ 1(0). (11.12) 

These ladder operators satisfy the operator equations [as in SO(3)], 
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[L}:±,Lr± -l]V~n(O)=O, r=(n,K), (11.13) 

which display the two "Type A" (r = n) and "Type E" (r = K) factorizations of the second order, 

(~ + cothO~ - _._1_ (n'Z + nZ - 2n'n coshO) - K(K + 1»)V~n(O) = O. 
dO z dO smh8 

(11.14) 

The solution of this equation, continuous at the point coshO = 1, is given by (11.11). Again, as in SO(3), the two factorizations 
differ mainly by a multiplication factor of sinhO. 

I t should be noted that since Wigner and Bargmann functions are given essentially by the zF] hypergeometric functions, all 
these ladder operators can be readily obtained by using Gauss' contiguous relations. 

Next, we consider the generators ofE(2)-the two-dimensional Euclidean group-L;, let i = 1,2,3. They satisfy the 
commutations 

[LhLz] = 0, [L],L 3] = - iLz, [L z,L3] = iLl' 

The faithful unitary irreducible representations ofE(2) may be realized over discrete basis states cf>,m' 0<;r2 < 00, m = 0, ± 1,.·· 
such that the Casimir product 

(L i + L ~)cf> ,m = rZcf> ,m and L 3cf> ,m = mcf> ,m . 

The matrix element 

(cf>nn' ,exp( - iyLz)cf>,m )~ m'm (ry), 

defines the Inonii-Wigner function 7 which has a simple integral form 

Jmm (ry) = ( - l)m' - mJ m' _ m (ry) 

(_I)m'-m 1: ' [( 1)] = 2rri ! dx xm - m - 1 exp !ry x - -; , 

(11.15) 

(11.16) 

of the generalized Bessel function of integral order. Now, as in the case for SO(3), we differentiate (11.15) with respect to the 
group parameter y (translation), use the identity 

exp( ± iyL2)L3 -..xp( + iyL2) = L3 + yLh 

and obtain the following recurrence relations: 

y ; Jm'm(ry) = - 1 ryJm , m + 1 (ry) + 1ryJm, m _ 1 (ry), 

y ; Jm'm(ry) = 1ryJm ,+ 1 m(ry) - 1ryJm'_1 m(1}'), 

(m' - m)Jm'm(ry) = - 1 ryJ", , m + 1 (ry) - 1ryJm, m -I (ry), 

(m - m')Jm'm(ry) = 1ryJm,+ 1 m(ry) + !ryJm'_1 m(ry). 

From these relations we deduce the ladder operators of J ",'m (ry) with respect to m', m: 

+ ~ (y!!.... ± (m' - m»)Jm'm(ry ) = L :/:Jm'm(ry) = Jm, m + 1 (ry), 
ry dy -

± ~(y!!.... ±(m-m'»)Jm 'm(rY)=L;!:.Jm'm(1}')=Jm,+, m(ry) 
1}' ~ -

These operators satisfy the operator equation 

[L,;±, L ,; -l]Jm",(ry)=O, 

which shows the single "Type C" factorization for the second-order differential equation 

(y2 ~ + y!!.... _ (m' - m)2 + ryz)Jm'm(ry ) = O. 
dy2 dy 

The solution to this equation, finite for y = 0 is given by (11.16). 

(11.17) 

(11.18) 

(11.19) 

(11.20) 

We now define three generators: L ; = V~ Lh L; = V £L2, L; = L 3; £ = + 1, - 1,0, of a "master group" G (3,£) such 
that L; and L ; satisfy the Lie commutations: 

[L;,Lj] =i£Uk L k, [L;,L;]=£iL;, [L;,L;]= -iL;, [L;,L;]=iL;. 

It is now transparent that G (3; + 1) = SO(3), G (3; - 1) = SO(2,1) and in the limit £-0 (Inonii-Wigner contraction) 
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G (3;0) = E(2). The Casimir product of G (3;€) is given by 

€L i + €L ~ + L ~ = a(a + 1)1, 

where for € = + 1, a = I; € = - 1, a = K and in the limit €-0 and a-+ 00 ; €a 2 = r-. Thus, one can construct four "master" 
ladder operators in terms of II t from which those for SO(3), SO(2, 1), and E(2) can be appropriately deduced as special and 
limiting cases. Such operators are trivially obtained from those of SO(3) with the substitution ()-+() II € and I = a. For E(2) we 
take ()-+y and the limit €-+O and a-+ 00 with all € = 1'. Under this limit the integral form (11.2) goes over to (11.16) in virtue of 
the Mehler-Heine asymptotic formula of Jacobi polynomials. 

Ill. THE 50(4), SO(3,1), AND E(3) MATRIX ELEMENTS 

The six generators L" M" i = 1,2,3, of SO(4) satisfy the Lie-commutations 
[L"Lj ] = i€ljkLk, [M"Mj ] = i€'jkMk' [L"Mj ] = i€'jkMk' 

In a unitary irreducible representation ofSO(4) we choose the canonical orthonormal basis states <I> 7~, 10 = 0, ± !, ± 1, ... , 
n = 1 + 1/0 1, ... ,00, 1= 1/0 1,1 + I/ol, ... ,n - 1, such that the two Casimir products 

(V + M2)<I> 7~ = (n 2 + 16 - 1)<1> 7,~, (L·M)<I> 7~ = nlo<l> 7,~, (111.1) 

and I, m are the usual eigenvalues belonging to the SO(3) subgroup. 
The Dolginov-Biedenharn functionS is defined by the matrix elements 
(<I> ;'!;n,exp( - i()MJ)<I> 7~ )=sD 1?,~I(e), 

which has a simple integral form 

DI~II"I(e) = 1[(21' + 1)(21 + 1)]I12( (n +l')!(n -I' - I)! )1/2 
Iml 2 (n+/)!(n-I-l)! 

f +l d ( e .' e)n-1d l "( )d l (XCOSe-isine) X x cos - lxsm I"m X I"m ..' 
_ 1 cose - lxsmO 

(1II.2) 

(III. 3) 

Furthermore, the local isomorphism SOC 4) - SO(3) ® SO(3) enables one to express the matrix elements in terms of 3-j symbols 

as, 

DJ~::·;)(e)= [(2/'+ 1)(2/+ 1)]1/2 L (~ 
ml,n! 1 

1')( 1+ 
m m l 

L 

l~ =!(n-l)±!/o, m=m,+m2' (I1I.4) 

We now differentiate (111.2) with respect to the group parameter, use the identity, 

exp(i()MJ)H + exp( - ieMJ) = H ± cose ± F ± sine, H ± = LI ± iL2, F ± = i(MI ± iM2)' (111.5) 

and the actions9 of the operators M], H + ' and F ± on the basis states <I> 7~ and obtain the following recurrence relations: 

( ~ i mlon )DI~I'''I(O) 
de + I (I + 1) I ml 

= ~ ((I-/o)(l + lo)(n -/)(n + 1)(1- m)(1 + m) )1/2D I~I~II_ 1 (e) 
1 (2/- 1)(21 + 1) 

_i_ ( (1-/0 + 1)(1 + 10 + 1)(n -1- 1)(n + 1+ 1)(1 + m + 1)(1- m + 1) )1I2D J?~II+ 1 (e), 
+ (I + 1) (21 + 1)(21 + 3) 

[('+m+l)('~m)11/2(cose~i Ion SinO)DII/'"I(e) 
- 1(1 + 1) IInl 

= ~ ( (1-/0)(1 + lo)(n -l)(n + 1)(1 + m + 1)(1 ± m) )1/2 
I (2/- 1)(21 + 1) 
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i (/-10 + 1)(1 + 10 + I)(n -1- I)(n + 1 + 1)(/ OFm)(1 OFm + 1) ) 112sinOD [nl,,] «(). 
- --- 1m 1+1 (111.6) 

(/ + 1) (21 + 1)(21 + 3) 

We next substitute the identity (111.5) into the two Casimir products (111.1) and obtain after some manipulations, 

V + M2 = V + M~ - ~(F+F + FF+) = M~ + 2i cotOM, + +() [V + exp( - i()M,)Vexp(iOM,) - 2L ~l 
sm 

i 
VM =LN3 - -(H.F+H_F+) 

2 

(III. 7) 

MUltiplying both expressions from the right by exp( - i()M,) and taking the matrix elements we get after simplifications, 

( 
sin2() d 2 2 . () d sin2() 1 b )D [nl,] «() ---- + sm - + --a - -- I'ml 
cosO d() 2 d() cos2() cos() 

- [(/' + m + 1)(// - m)(l + m + 1)(/- m)]I!2D j?I;!,+ 11(0) 

- [(1/ + m)(/ / - m + 1)(/ + m)(/- m + 1)] I!2D J?I;!, _ I I«()' (111.8) 

(m sinO d~ + m cosO + c sin() )D j~)«() 
- ~[(l / + m + I)(/' - m)(/ + m + 1)(/- m)] 1/2D j?l;!, + I I«() 

+ ~ [(I / + m )(/' - m + 1)(1 + m )(1 - m + 1)] 112 D j ?I;!, _ I I «() ), 

a=n2+/~-I_m2, b=/(/+l)+I'(I'+l)-2m2, c=ilon. 

The five recurrence relations given by (111.6) and (111.8) are sufficient to determine the four raising and lowering ladder 
operators with respect to 1 (/ /) and m. In order to obtain similar operators for nand 10 we have to go outside SO( 4). As a simple 
enlargement, we consider the direct-product group SO(4) ® SO(4) and correspondingly the tensor product of two unitary 

irreducible SO( 4) representations of the principal series T Ill" and Tn'l (', which are realized in the Hilbert spaces Jlt"'nl" and y'l (', 

spanned respectively by the sets of canonical basis vectors of f/> 7~ and f/> 7.~(:. Naimark lO has shown that this tensor product 
representation decomposes as 

Till, ® Tn'I(, = .f. (f ~ )TNL" df.l(N) 

[the integration over Nwith a Haar measure df.l(N) is for the noncompact extension to SO(3, 1) ® SO(3, 1)], where the summa
tion over Lo is such that Lo + 10 + I b = nonnegative integer. The representation T NL" is realized in a Hilbert space Jlt"'NL" 

= Jlt"'1l1, (B y'l (, spanned by the set of canonical basis vectors of if> 'if;;. From the orthonormality properties of if> ;'!;; ® if> 7:~', and 
if> ~,~ and using (111.2) we, after little manipulation, arrive at the relation, 

M=m+m'=m" +m'''. (111.9) 
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We then express the Fano functions (4) 7;' ® 4> r~', ,4> ~~ ) in (III.9) in terms of 3-j and 9-j symbols, II multiply both sides of 
(111.9) by en :,;, ;n + m')' sum over m and m' and compare the coefficients of the independent basis states. Eventually we 
obtain (after changing the notation 11--+1 '; 1'--+1, at the end), 

exp[i1T(/- I' + I' - I' 1 (2L + 1)( I I ~ L)D [n'I(,1 (e)D [nl"l(e) 
I 2 ,1;m'l~ If'll 

m m' m+m 

I I (N + Lo)(N - Lo)[ (2L + I)(2L ' + 1)(21 + 1)(2/' + 1)(21; + 1)(21 ~ + 1) ll12D t~'kil (e) 
NL,. L' 

X(~ 

!
~(n + 10 - 1) 

X ~(n -10 - 1) 

I' 

~(n' + l b - 1) 

Hn'-lb-l) 

l; 

~(n'+lo-I) 

~(n'-lo-l) 

l~ 

~(N + Lo - I)} 
HN -Lo - 1) . 

L' 

(IILlO) 

Fori; = I; = m' = I (J = O,n' = 2=:>L' = I ',L = landforl; = 1,1; = m' = I b = O,n' = 2=:>L' = l ',L = 1- 1,1,1 + 1, weget 
four different relations from (111.10). After using the special values of the Dolginov-Biedenharn function,6 and the 3-j and 9-j 
symbols,12 these relations become: 

a cosOD );;;8e) = anD );;,1 1 II(e) + a ,p );;,,1 ,,1(0) + aiD );;,/ + I Ice) + a ID );;,/ 11(0), 

amisinOD[~'I,I(e)= -a I D[n j 11"I(O)+a IJJ[n 11"I(O)_a nDln 1,+II(O)+a 1,.nD,I',i",I, 11(0), Iml II 0 I'ml 11 1'n11 If, I1nl 

(3isinOD);;;11 I(O)=(3;;D);;,/ 1',,1(0)_(3" ,p);;" 1/"1(O)-(37D);;J~ Il(e)_(3 ;'D);;'/ 11(0), 

yisineD );;;11 j I (e) = - y:;D I;;,; I II(e) + yl' ,p );~/I 1,I(e) - y;'D );',,/ ~ II(e) - y ;:D );;J 11(0), 

a = 2(n - lo)(n + 10 ), 

(3 = a[(21 + 1)(1 + m)(I- m)]II2, 

y = - a[(21 + 1)(1 + m + 1)(1- m + 1)]112, 

a, = [(x + 1+ I)(x -/)(x + l' + l)(x -I') ]112, 

(3~ = [(21 - 1 )(x + I )(x + I + 1 )(x + I' + 1 )(x - 1')(1 + y)(I - y) lll2, 

y~= [(2/+3)(x-l-I)(x-l)(x+l'+ I)(x-I')(I+y+ I)(l-y+ 1»)112. (III. I I) 

The relations (111.6), (111.8), and (III.lI) exactly agree with those obtained by Strom" who made use of an explicit 
realization of SOC 4) generators in terms of differential operators in the six group parameters. From these nine recurrence 
relations (I1I.6), (III.8), and (III. 1 1) we obtain the following eight ladder operators: 

L ,,; D j;',;;!(e) =,1 \J P'ID );;;;I(e) = D j~'I,,~± I ,(e), L / D j;~',I(e) =,1 [I~/+ 1)( );;;;l(e) = D j~";,I, 1:1-: I(e), L / = L II I" 

L LD[n' .. I(e) = AO Dlnl .. l(e)=D[~':±I'"I(e) L iD[n',·)(o)=,1° Dinl")(e)=DI:,I,Jlice) 
"/hJ! .u I j III nnl Iml 'In Ihd I t I,.) nul Iml ' 

(III.I2) 

. 1 sin'e d 2 • d a sin'O b . 1 e 
A'l sIl1O,1"= ----- +(x+ l)sIl10- + --- - -- +cmsII10-+ [x(x+ 1)-m2]cos, 

, .\ 2 cose de 2 de 2 cosO 2cosO x 

A ~ = (~),,( 2x + 1 (m + x)(x _ m)(lo + x)(x -lo)(n + x)(n - X»)'1/2[(l + x + 1)(1- x)(l' + x + 1)(1' - x) ](1 
X 2x - 1 

11 )/2 

These ladder operators satisfy the operator equations 

[L;. IL,' -])D j;',:/)(O) = 0, r = (m,l,n,lo), (111.13) 

which in turn are equivalent to the fourth order differential equation, 

[a (O)(sin+e~) + a,(e)(sinJO~) + a,(e)(Sin20~) + al(e)(SinO~) + ao(O)]D );;;,1(0) = 0, 
.~. ~' ~2 ~ 

a.(e) = _1_, a,(O) = _2_ + _4_, a,(O)=2tan40+(4+2a-2b)tan20+C6-2m'-2b), 
cos'O' cos 'O cosO 
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sin4e sin2e . 1 
a,ee) = 2a -- - 2b -- - 8mc sme + -- (4m2 + 60 - 2b) - cose(8m2 + 60), 

cos1e cos1e cose 

ao(e) = (2a - 2b )tan4e + (4m2 - a - 4c2)sin2e - 8mc sinecose 

+ 4mc tane + [(a - b + 1)2 - 1] _1_ + [ - (a - b + 1)2 + (b + 2m2)2 + 1 - 411'(1 + 1)(1' + 1)]. 
cos2e 

(III. 14) 

The solution of this equation, finite for cose = ± 1 is given by (111.3). Also, the four different ways offactorization of this 
equation in terms of second-order differential equations are given by the operator equations (111.13). We find that out of the four 
relations (111.12) only the ladder operators L I± corresponding to the angular momentum I differ from the others mainly by an 
extra 19 dependence, since f.l = 1 introduces an extra sine for L I± . This situation is similar to the case considered earlier in Sec. 
II. 

The ladder operators for SO(3, 1) can be obtained in the similar fashion. The six generators L;, M; of SO(3, 1) satisfy the Lie
commutation 

[L"Lj] = i€,j~k' [M;,Mj ] = - i€lj,Nk' [L;,Mj] = i€lj,Nk' 

In a unitary irreducible representation ofSO(3, 1) belonging to the principal series one constructs the orthonormal basis states 
<P ;;~, - 00 < v < + 00, such that the eigenvalues of the invariant Casimir products are 

(L' - M')<P ;;~ = ( - v2 + 16 - 1)<P J~' (L·M)<P J~ = vlo<P J~' (III. IS) 

The Dolginov-Toptygin function lJ is defined by the matrix elements (the matrix elements of a finite Lorentz boost 
transformation in the third direction) 

(<P)'~ ,exp( - iBMJ)<P J~) D i~71(e). (111.16) 

An integral form of this matrix element is obtained as 

D [;\'1,1(19) = 1 [(21' + 1)(21 + 1)] 11'( (iv + I')!(iv - I' - I)! )112 f + I dx (coshe _ xsinhe);V - I 
ifni 2 (iv + I)!(iv -1- I)! _ I 

xd I'· (x)d I (xcoshe - sinhe ) 
I"m I"m coshe _ xsinhe ' (III. 17) 

( 
(iv + I')!(iv - I' - I)! )1/2 = k ~ I (- k + iv) k' ~ I' ( - k' - iv) , 

(iv+/)!(iv-I-l)! kIJ/" (k 2+v2) kl!/" (k'2+V2) 

This integral form can be converted into a series as in (IlIA) with I ± = !(iv - 1) ± !/o. 

All recurrence relations and ladder operators of the Dolginov-Toptygin function can be trivially obtained from those for 
SO(4) by means of the analytical continuation 19- - ie and n_iv. This is also transparent if we compare (111.3) with (111.17). 
We give below all the eight operators: 

L ± D [~\'I"I(e) =.:l 0 D [;vl"l(e) = D [;vl,,1 (e) 
mimi [± ml l'ml /' m ± I I , 

L ± D [;"'''](19) =.:l 0 ,D [;l'l"l(e) = D [;l' ± I 1..1(19) " Unl [±,vl Unl l'ml , 

L ,± D i~~,I(e) =.:l [:;' + I)]D i~~'I(e) = D I~v~ I ± 1(19), 

L I~ D 1~~,I(e) = .:l ? ± I"ID )~71(e) = D I~~' ± 11(19), 

1 II( ., he)I'''' fJ. _ 1 sinh'e d' 1 ' {) d 
/l x - lSln ..:.I x - - ----- + (x + )smhu-

2 coshB de 2 d 

sinh'e, b' 1 
- -- a - -- + ic}n sinhB - + [x(x + 1) - m2]coshB, 

2coshe 2coshe x 

a' = - v2 + 16 - 1 - m2, b' = I (I + 1) + 1'(/' + 1) - 2m 2, c' = lov. 

(111.18) 

These operators, as in previous cases, satisfy the operator equations (111.13) with r = (m,l,iv,lo) which can be transformed into a 
fourth-order differential equation as in (111.14) with 19- - ie, a-a', b-b', and c-c'. The four types offactorization are also 
clear in this case. 

Finally, we deal with the Euclidean group E(3), We define the six generators L;, M; such that they satisfy the commutation 
relations 

2387 J. Math. Phys., Vol. 20, No. 12, December 1979 eKE. Schneider and Raj Wilson 2387 



                                                                                                                                    

[Li,Lj] = iEij"L k, [Mi,Mj] = 0, [Li,MJl = iEij"Mk • 

In other words, Li and Mi are respectively the generators of the SO(3) and T3-the Abelian three-translation-, subgroups of 
E(3). In a unitary irreducible representation of E(3) one can construct the discrete (spherical) orthonormal basis states 
f/> ~;" (i), 0 < i' < 00,10 = 0, ± !"'" 1= 1/01,1 + 1/01, ... ,00, -I<m< + / so that the eigenvalues of the two invariant Casimir 
products are: 

M'f/> i;,,(i) = i'f/> Ui), (L·M)f/> i;n(i) = i/of/> i;"(i), (111.19) 

and (I,m) are the eigenvalues belonging to the SO(3) subgroup. 

The Vilenkin-Akim-Levin function 14 in E(3) is defined by the matrix element (M3 is the translation operator in the Z 
direction), 

(f/> ~'In (i),exp( - izM)f/> i;n(i»_J i',nl' (1II.20) 

This function, as all other functions defined earlier, has a simple integral representation, 

J iinl (n) = ! [(21' + 1)(21 + 1) ]1121+11 dx exp [ - inx]d i::(x)d i"m(x), 

which can also be converted into a series form, 

Ji,,,1 (n) = H(2/' + 1)(21 + 1)]112 I iL(2/' + 1)(2L + 1)(/' 
L m -m 

L)(t' 
o 10 

wherejL (1'z) is the spherical Bessel functions. 

(1II.21) 

(III.22) 

In order to compute the ladder operators of J iOml (iZ) one can follow the method we have adopted for SOC 4). However, the 
same results can be trivially obtained from those for SO(4) by means ofa limiting procedure (Inonii-Wigner contraction) as in 
the case of E(2) where the results can be obtained as a limit of those for SO(3). 

We define six generatorsL; = Li' M; = Miv E belonging to a "master group" G(4;E) in such a way thatL" M, from the 
generators of SO(4). The primed generators satisfy the commutations: 

[L;,L;] =iEij"L£, [M;,M;] = EiEijkM £, [L;,Mj] =iEij"M~. 

for E = + I, - I,D we respectively restore the algebra ofSO(4), SO(3, I), and E(3). The two Casimir products ofG(4;E) are 

L' + EM' = (x' + /6 - 1)]., V~L.M = xlal, 

so that for E = + l=>x = n, E = - l=>x = iv and in the limit V E-D and Ixl--oo with XV E = 1', they go over to (111.1), 
(111.15), and (111.19), respectively. Furthermore, under this limiting procedure onel4 can easily obtain (111.21) and (111.22) from 
(111.3) and (111.4) in virtue of the Brussard-Tolhock asymptotic formula6 for the 31 symbol and the Bessel expansion formula 

exp(iycos8) = I inc2n + l)jn(y)d30(8). 
n 

The recurrence relations and the ladder operators of Ji".,nl(iZ) can be readily obtained from those of the Dolginov
Biedenharn functions by using the above limiting procedure and taking 8 = ZV E. We find, 

( 
1 d . mIG )J 1 ( ) 
-; dz +1 1(1+ 1) i'ml n 

= _1_' _ ( (I-to + 1)(1 + /0 + 1)(1 + m + 1)(/- m + 1) ) 1/2J I', (iZ) 
(I + 1) (2/ + 1 )(2t + 3) I m 1 + 1 

~ ( (1-10)(1 + 10)(1- m)(l + m) )1/2J1 .. , () + I 1 1 iZ, 
1 (2/ - 1 )(2/ + 1) m . 

[(l + m + 1)(1 =Fm)]112 (1 =Fi loiz )Ji"ml (1'z) 
- 1(1+1) 

= i1'z ( (/-/0)(1 + 10)(1 ± m + 1)(1 ± m) )112JI .. , _ (iZ) + [(I' + m)(1' + m + 1»)1I2JI", (iZ) 
/ (2/- 1)(21 + 1) I In I 1 - 1 In ± 1 1 

_ ~ ( (/-/0 + 1)(1 + 10 + 1)(/ =+= m)(1 =+= m + 1) )1/2J1 .. , (iZ) 
(1+1) (2/+1)(2/+3) Im/+I' 

2388 J, Math, Phys., Vol. 20. No. 12, December 1979 eKE. Schneider and Raj Wilson 2388 



                                                                                                                                    

( z' ~ + 2z.!!...- + r'z' + 2m' -I (I + 1) -I '(1' + 1»)J ~o'm/(rZ) 
dz' dz 

- [(I' + m + 1)(1' - m)(I + m + 1)(/- m)]II2Jio, m+ 1 I(rz) 

- [(/' + m)(/' - m + 1)(/ + m)(/- m + 1) l' 12Jio, m _ 1 I (rz), 

(mz ! + m + ilorz )J~"ml (rz) 

- H(l' + m + 1)(1' - m)(1 + m + 1)(/- m)]II'J~", m+ 1 I(rz) 

+ H(l' + m)(/' - m + 1)(1 + m)(/- m + 1)] II'J~", m _ 1 I (rz). (III.23) 

Similarly the six ladder operators are: 

L;;;J~"m/(rZ)=~?±ml;"m/(rZ)=n" m±l/(rz), LI±J;"mt<rz)=~ [~;I+l)(~"m/(rz)=J;"m l±l(rz), 

L +JI" ( )- AD Jlo ( )-JI,,±l(~Z) I;; Iml rz -"-I [±I,,] Iml rz - Iml " , 

d' d 1 
A~(rz)l'~ ~ = !z' - + (x + l)z - + !r'z' + i - mlorz - HI(I + 1) + 1'(1' + 1) - 2m'] + [x(x + 1) - m'], 

dz' dz x 
(III. 24) 

The operators L,; and L l are also obtained by Strom. I. Again, these ladder operators satisfy the operator equations, 

[L ,T+ J L / - l]J ~"'ml (rz) = 0, r = (m,l,lo), (III.25) 

which are equivalent to the fourth-order differential equation, 

[a. (2' :; ) + al (Zl :;1 ) + a,(rz) (z' :z: ) + a1(rz) (z ! ) + ao(rZ)]J ~"'m/(rz) = 0, 

a. = 1, a 1 = 6, a,(rz) = 2r'z2 + 2m' - 2/(1 + 1) - 2/'(1' + 1) + 6, (III.26) 

a1(rz) = - 8imlorz - 21 (I + 1) - 2/'(1' + 1), ao(rz) = (4/6 - l)r'z' - 4imlorz + [/ (I + 1) - 1'(1' + 1))2, 

The operator equations (111.25) indicate the three different 
ways offactorizing Eq. (111.26). As in the previous cases L I± 
differ from the others through an extra overall multiplica
tion by z, 

In conclusion, we have constructed all ladder operators 
of the transition matrix elements defined in the representa
tion spaces ofSO(3), SO(2, 1), E(2); SO(4), SO(3, 1), and E(3) 
by considering also the direct product space of 
SO(3) ® SO(3), etc. We have noticed that the ladder opera
tors corresponding to the angular momentum I (or K) of the 
(sub) group SO(3) [or SO(2,1)] differ mainly from the others 
through an overall multiplication factor that depends on the 
group parameter e. Furthermore, using these ladder opera
tors one can in principle determine all recurrence relations 
satisfied by the respective matrix elements. Also, we have 
seen how a typical second- and fourth-order differential 
equation can be factorized, as an extension to the Schro
dinger-Infeld-Miller factorization, in terms offirst- and sec
ond-order ladder operators and how additional factoriza
tions can be achieved by considering the direct product 
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groups. Finally, as pointed out earlier these ladder operators 
play crucial roles in physical calculations where these matrix 
elements describe physical transitions. 6 
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On the multiplicity-free Wigner and Racah coefficients of U(n ) 
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A necessary and sufficient condition is found for the tensor operators of U(n) to be multiplicity
free. At present all matrix elements for the multiplicity-free tensor operators ofU(n) are known 
explicitly in closed form. The phase convention given by Wong in a previous paper is modified 
slightly. Some inconsistencies in the equations found in the two previous papers of Wong regarding 
phase factors are corrected. The present phase convention for the multiplicity-free Wigner and 
Racah coefficients of U(n) is the most general extension of the Condon-Shortley phase 
convention from U(2) to U(n). 

I. INTRODUCTION 

At present it seems that a canonical solution to the mul
tiplicity problem of the Wigner coefficients ofU(n) for n > 3 
is rather difficult, especially after Derome1

,2 and subsequent 
workers3 have proved that a simple phase relation for the 
general Wigner coefficients ofU(n), n>4, under permuta
tion of any two columns is impossible. We must therefore be 
content to consider the simpler problem first, viz., the multi
plicity-free Wigner coefficients ofU(n). In this connection 
there are at least two questions which should be settled. 
First, what are the necessary and sufficient conditions for a 
tensor operator ofU(n) to be mUltiplicity free? Second, can 
the matrix elements of the multiplicity-free tensor operators 
ofU(n) be explicitly written down in closed form? Since, by 
the Wigner-Eckart theorem, the matrix elements of the ten
sor operators are closely connected with the Wigner coeffi
cients, a practical problem in connection with the second 
question is the phase convention to be adopted for the multi
plicity-free Wigner coefficients of U(n). 

In 1976, Wong4.5 (henceforth referred to as I and II) 
gave a phase convention for the multiplicity-free Wigner co
efficients ofU(n), which is an extension of the phase conven
tion from U(2) to U(n). This phase convention has the ad
vantage that one can immediately check the results for U(n) 
by first applying it to U(2) and seeing whether it agrees with 
the conventional Condon-Shortley phase in the simplest 
case. The second advantage of this phase convention is that 
under conjugation, the phases behave in the same way as 
U(2), i.e.,j * = j, m* = - m. 

Basically, this phase convention makes the following 
mapping: 

n-l 

m ----+ 1 I Z;, 
i= 1 

where En and Z; are suitably defined quantities. 
There are, however, several other conditions which the 

previous phase convention did not take into consideration. 
One of these is that the phase factor should always be an 
integer. Basically, the mapping above for j is too simple. 
Though it works for U(2) and U(3), it does not work for 
U(n), n>4. Thus in this paper we wish to modify the map
ping ofj slightly, for n>4. 

In Sec. III we shall give the revised phase convention, 
which, as we shall show, will satisfy seven requirements. 
These requirements, as far as we can ascertain at this mo
ment, encompass practically all the conditions one can im
pose on the phase factor. 

In I and II, Wong has shown that the multiplicity-free 
3-j, 6-j, and 9-j symbols ofU(n) and U(n - 1) are all related 
to each other. As a result he obtained in II an explicit evalua
tion of the multiplicity-free 6-jsymbol ofU(n). Unfortunate
ly, there have been some typographical errors with regard to 
the dimensional factors, and some inconsistencies in the 
phase factors of the equations in I and II. We take this oppor
tunity to correct these mistakes. This results in even simpler 
phase factors in the equations involved. We hope that this 
revised phase convention for U(n) will be adopted as the 
standard extension of the Condon-Shortley phase conven
tion, so that practical calculations can be made on the basis 
of this convention. 

In Sec. II we settle a question raised in II, i.e., what is 
the necessary and sufficient condition for a tensor operator 
ofU(n) to be multiplicity free. After answering the question, 
we then conclude that the matrix elements of all multiplic
ity-free tensor operators ofU(n) are now known in closed 
form. In Sec. III we give the phase factors and symmetry 
properties for the multiplicity-free Wigner coefficients of 
U(n). In Sec. IV we give the phase factors and symmetry 
properties for the multiplicity-free Racah coefficients of 
U(n). 

II. NECESSARY AND SUFFICIENT CONDITIONS FOR 
THE TENSOR OPERATORS OF U(N) TO BE 
MULTIPLICITY FREE 

We start by asking the following question: Take the di
rect product of 

[ml ] ® [m2 ]----+ji(mJ)[mJ] 

in U(n), where [m] ] is an arbitrary representation, and 
ji(m3) is the outer multiplicity of the irreducible representa
tion [m J ]. What form must [m 2 ] take so thatji(m J ) is equal 
to one? W e a~swer the question as follows: [m2 ] is either of 
the form [p,O] (or its conjugate [p,O]), or ofthe form [1...1 
0 ... 0]. In the following we shall also show that this is a neces
sary and sufficient condition for a tensor operator ofU(n) to 
be multiplicity free. 
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First we prove that this is a sufficient condition, i.e., if 
[m2] is of the form [p,O], [p,O], or [1...10 ... 0], thenji(m3) 
= 1 for [m I ] arbitrary. One simply forms the direct prod

uct of [m I ] with any of the three representations mentioned 
above and finds that the resulting [m3 ] is multiplicity free, 
i.e.,ji(m3) = 1. 

Another way to prove the sufficiency condition is to use 
the Racah-Speiser lemma: 

ji(m3) = I Iy(m)8s8s(m.+m+Ro),m,+Ro' (2.1) 
S m 

where ji(m3) is the outer multiplicity for the irreducible re
presentation [m3 ]; y(m) is the inner multiplicity of m be
longing to the irreducible representation [m2 ]; S = opera
tion of the Weyl group; 8s = + lor - 1 according to 
whether S is even or odd, respectively; Ro = half the sum of 
all the positive roots ofU (n); and the second 8 is a Kronecker 
delta. 

From (2.1) one sees that the outer multiplicity of [m3 ] 
in our problem, ji(m3)' cannot be greater than y(M), where 
y(M) is the highest inner multiplicity of a certain weight M 
belonging to [m2 ]. The proof of this statement is given in the 
Appendix. Thus the problem of finding the sufficient condi
tion is equivalent to the following problem: Find all the irre
ducible representation in U(n) where all the inner multiplic
ities of weights are equal to one. We find that for the 
irreducible representations in U(n): [p, 0], [p,O], and [1...1 
0 ... 0], all have inner multiplicity of weights equal to one. 
Moreover, these are the only irreducible representations 
having this property. To show this, one first checks that for 
U(3), the next irreducible representation to be considered is 
[2,1,0], which is the well-known octet representation, and 
has inner multiplicity 2 for the weight [0,0,0]. For U(4), one 
finds that the irreducible representations [2,1,0,0], [2,1,1,0], 
and [2,2,0,0] all have at least one weight whose inner multi
plicity is greater than 1. The other representations in U(n), 
n >4, will have at least equal or more complicated inner mul
tiplicity structure than those in U(3) and U(4). Hence we 
conclude that these three representations, [p,O], [p,O], [1...1 
0 ... 0], are the only ones whose inner multiplicity of weights 
are all equal to one. It turns out that they are not only the 
sufficient, but also the necessary conditions, for a tensor op
erator ofU(n) to be multiplicity free. 

Now by necessity, we mean the following: Given [m 2 ], 

not one of the three mentioned above, then there exists at 
least one [ml ], such that for [m l ] ® [m2 ]-ji(m3)[m3] 
there is at least one [m3 ] where ji(m3) > 1. 

For the necessary condition, here is an outline of the 
proof by a process of enumeration. For U(3), given [m2 ] 
satisfying the conditions above, we can choose [m l ] to be 
the adjoint representation [2,1,0]. Then the resulting 
[m 3 ] = [m 2 ] hasji(m3) = 2. 

For U(4), again let us choose [ml ] to be the adjoint 
representation [2,1,1,0]. Then we find that the only kind of 
[m2 ] other than the three above which will be multiplicity 
free is of the form [p,p,O,O]. Hence if [m2 ] is not of this form, 
then we choose [m I ] to be [2,1,1,0] and find for 
[md = [m2 ], ji(m3) > 1. Now for [m2 ] = [p,p,O,O], we 

2392 J. Math. Phys., Vol. 20, No. 12, December 1979 

can choose [m l ] to be, say, [3,2,1,0]. Then for [m3] 
= [p + 2,p + 1,2,1], we findji(m3) > 1. 

This is also true for U(n), i.e., for [m2 ] = [p, p,O], 
[m l ] = [3,2,1,0], and [m3] = [p + 2,p + 1,2,1,0], 
ji(m3) > 1 for U(n). 

Now for U(n) in general, we take [m I ] to be the adjoint 
representation [2,1, ... ,1,0]' Then we find that the only irre
ducible representations other than the three mentioned 
above which are multiplicity free are of the form [p, ... ,p, 
0, ... ,0]. Let us say that there are i p's in [m2 ], where, without 
loss of generality, 2i<.n, since otherwise we can always con
sider its conjugate, which has the same structure. Then we 
choose [ml ] to be [2i - 1,2i - 2, ... ,1,0]. We then find that 
for [m 3 ] = [p + 2i - 2,p + 2i - 3, ... ,p + i - l,i,] 
i - 1, ... ,1,0],ji(m3» 1. 

Thus we have proved the following statement: Given 
[m 2 ] = [p,O], [p,O], or [1...10 ... 0], thenji(m3) = 1 for all 
[ml ] and [m3 ]. Given [m2] not equal to one of the three 
representations mentioned above, then there is at least one 
[ m I ] such that in the direct product [m I ] ® [m2 ] 
-ji(m3 )[m3 ], there exists at least one [m3 ] where 
ji(m3) > 1. 

It is also clear from what we have said above that the 
necessary condition does not mean the following: Given 
ji(m3) = 1, then [m2] is one of the three forms mentioned 
above. This statement is obviously not true since for 

[mln,m2n,···,mnn] ® [min,m~n, ... ,m~n] 

-[mIn + m;n,m2n + min, .. ·,mnn + m~n]' 

ji(m3) is always equal to one. 
It is also interesting to note that there are cases where 

both [m I ] and [m2 ] are not multiplicity free as far as the 
inner multiplicities are concerned, but their direct product is 
multiplicity free. For example, in U(4), 

[2,1,1,0] ® [2,2,0,0] = [4,3,1,0] + [3,3,2,0] 

+ [2,2,0,0] + [2,1,1,0] + [3,1,0,0], 

where both [2,1,1,0] and [2,2,0,0] are not multiplicity free as 
far as the inner multiplicity of weights is concerned. 

We thus conclude that the three representations men
tioned above are the only ones that give rise to multiplicity
free Wigner coefficients all the time, and in this sense they 
merit being called the necessary and sufficient conditions for 
a tensor operator ofU(n) to be multiplicity free. 

The Wigner coefficients U(n) involving the totally sym
metric representation [p,O] or its conjugate [p,O] are well
known. (See, e.g., references quoted in I.) The irreducible 
representation [ik,On _ k] are called by Biedenharn and 
Louck- the "elementary representation." The corresponding 
tensor operators are called the elementary operators. Their 
matrix elements have been explicitly obtained in Ref. 6. We 
can therefore say that the matrix elements for all multiplic
ity-free tensor operators ofU(n) have been explicitly ob
tained in closed form. 
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for il <i2 < ... <ik andjl <j2 < ··:ik' 

where 

. {+ 1 l>i 
S(}-l)= 1" 

- }<l, 
and Pin = min + n - i. 

For example, for U(4): 

011 0 0llm l + 1 m2 + 1 m3 
m; m; m; 0 m; + 1 m; + 1 m; 

= (m; - m3 + 2)(m; + 3)(m2 - m; + 2)(ml - m; + 3)(m~ - m3 + 1)(m; + 2»)112. 

(m; - m; + 3)(ml + 3)(m2 - m3 + 1)(ml - m3 + 2)(mi - m; + 2)(m2 + 2) 

(2.2) 

(2.3) 

(2.4) 

From these results one can also obtain explicit expressions for the Racah coefficients ofU(n), involving the elementary 
representations [ik ,On _ k ] and some simple irreducible representations. For example, in U( 4), we find 

{ 
[1000] [1000] [1100]} 

[m l m2 m3 0] [ml + 1 m2 + 1 m3 0] [ml + 1 m2 m3 0] 

= - {dim[1 1 0 0]u(4)dim[m l + 1 m 2 
m

J 
0] }- 1/2{ (ml - m2 + 2) }1/2 

U(4) 2(m\ - m2 + 1) . (2.5) 

Similarly, 

{ 
[1000] [1000] [liDO]} 

[ml m2 m3 0] [ml + 1 m2 + 1 m3 0] [ml m2 + 1 m3 0] 

{ [ ] } -I12{ (ml - m2) } 112 = - dim[ 1 1 0 0]u(4)dim m 1 m2 + 1 m3 0 U(4) 2(ml _ m
2 
+ 1) . (2.6) 

At present, though the multiplicity-free Racah coefficients of U(n) involving the elementary representation [i k ,On _ k ] 

can be expressed as a sum over the product off our Wigner coefficients, they have not yet been obtained in a further simplified 
form. For example, in U(4), one would like to know whether 

{
[ 1,1,0,0] [m l ,m2,m3,0] [ml + l,m2 + l,m 3 ,0]} 

[1,1,0,0] [m\ + 2,m 2 + 2,m3 ,0] [m p m2 + l,m 3 + 1,0] 

can be expressed in a simpler form, other than the product offour Wigner coefficients summed up. We have good reason to 
believe that this can be done, using the techniques developed in I and II. However, we shall leave this topic to be discussed in 
detail in a future publication. 

The Wigner and Racah coefficients ofU(n) involving [p,O] and [p,O] have been treated in I and II and explicitly simple 
and closed expressions for these coefficients have been given there. 

III. PHASE FACTORS FOR THE MULTIPLICITY-FREE WIGNER COEFFICIENTS OF U(N) 

In I, we gave the phase convention as follows: We extend the Condon-Shortley phase convention from U(2) to U(n) by 
the following mapping: 

n-l 
m-! I Zi' 

;=1 

(3.1) 

(3.2) 

where En and Zi are suitably defined quantities. However, we find that for n;;.4, we have to modify (3.1). This becomes clear if 
we are to write down the most general requirements that the phase convention must satisfy. We list the following seven 
conditions as the most general ones that the phase convention must satisfy. 
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(1) Under conjugation"j *_ j. 
(2) Under conjugation. m*_ - m. 
(3) The phase factor occurring in all the symmetry relations must be an integer. 
(4) The mapping ofj must contain min only for U(n). 
(5) m must be mapped to diagonal operators. 
(6) It is desirable to keep the phase convention in agreement with Baird and Biedenharn.7 which essentially mapsj - m to 

Pn-I -Pn_l(max).wherep(n)=l:j=Il:/=1 mij' 

(7) The phase convention must agree with the formula for the multiplicity-free Wigner coefficients ofU(n) given by 
Chacon. Ciftan. and Biedenharn8 (denoted by CCB) or Alisauskas. Jucys. and Jucys9 (denoted by AJJ). We shall show below 
that this is equivalent to the following statement: For the state 

P. 
q. 

6 
in U(n).j + m-q. 

Finally. it is understood. of course. that the mapping ofj and m is an extension of the phase convention from U(2) to U(n). 
We shall now prove the statement given in condition (7). i.e .• the formula for the multiplicity-free Wigner coefficients of 

U(n) as given by CCB or AJJ requires thatj + m be mapped to q for the state 

p. 
q. 

6 
(I wish to take this opportunity here to thank Dr. Wayne J. Holman III for suggesting to me to look into this condition.) 

First of all. in U(2). we have the following symmetry: 

. 
c j,j,j = ( _ 1)j, + ml( (2j + 1) )112 C jj,j, . 

m,m,m (2jl + 1) -mm, -m, 

So what we are looking for is a similar relation in U(n): 

6 
where x is to be determined from the CCB or AJJ formula. We take 

h; ···h ~ ) 
I(m» = q; ... q:,_ I 

max 

and I(M» ~ q~::~:",). 
q; ... q:,- I 

max 

where. of course, 

Ih;+p=Ih j , 

11- 1 II-I 

I q'+q= I qj. 
i= I i= I i= I i= I 

We then find that 

h ;-h > .. h ;-h ~ 0) 
I(m)*) = h ;-q~ _I···h ;-q; , 

h ;-q:,_2···h ;-q; 

Now we apply the CCB formula to both sides of (3.3) and find that 

x = ( _ l)q(di~(M»)II2. 
dlm(m) 

(3.3) 

(3.4) 

This can be seen as follows. Applying the CCB formula to the left sideof(3.3), we obtain a factor times a summation over 
n - 1 variables. Let us call these summation variables Pi> i = 1 •...• n - 1. The right side also contains a factor times a summa
tion over n - 1 variables. Let us call thesep;, i = 1, ... ,n - 1. Ifwe set 

(3.5) 

we find that the two terms under the summation signs are equal. except for the phase factor ( - 1 )q. The other two factors then 
contribute to the dimensional factor (dim(M)/dim(m» 112. This proves our statement that 
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p, 

j + m.........q for the state q, 

We now assert that the following phase convention satisfies all the seven requirements listed above. 
n-l ; i+ 1 

(a) m-+ 1 I Zi' where Zi = (i + 1) I mji - i I mj,i+ I' 
i=1 j=1 j=1 

(b) For U(4k), j -+ (3/2)(mln - m2n + m3n - m4n ... + m4k - I,n - m nn )· 

For U(4k + 1),j -+m2n + m4n + m6n .. · + m4k,n' 

For U(4k + 3),j -+ min + m3n + m Sn '" + m nn · 

(3.6) 

(3.7) 

We shall omit the proof that the phase convention given above satisfies all the seven requirements, since it is an elemen
tary calculation. 

We now wish to apply this phase convention to a special case which was found to be very important in the evaluation of 
the multiplicity-free Wigner and Racah coefficients ofU(n), 

( 

[a,o] 

(a)n _ I 
max 

[b]n U]n )=(_I)y(dimU]n)l!2j U]n 
({3)n-1 (8)n_1 dim[b]n \(8)n_1 

(3.8) 

In I, we started thaty = o for U(2), U(3),,,.,U(2k + 1), but need not be zero for U(2k + 2), k = 1,2, .. ·. We wish to correct this 
statement and say thaty = 0 for all U(n). This is easy to see. Equation (3.8) is the generalization ofEq. (3.5.16) of Edmonds. 10 

Thus the phase factor y should be that corresponding tojl - m l , i.e., according to condition (6), 

P(n - I) - P(n _ I) = O. 
max 

The result is that in Eq. (1.17) ofI, the phase factor should always be zero. 
Incidentally, there is a misprint in the dimensional factor ofEq. (1.17) of I. The correct expression should therefore read: 

[ q,O],,_ I [mln_I,,·mn_ln_l] [m;n_I .. ·m~_ln_l] 

xX [p -.:..- q,O],,_ I [wj)n -- I] [W;"O] (3.9) 

[p,O]" I [mln .. ·mn_ln] [mi,,···m~ -111] 

This change will also affect the phase factors for the multiplicity-free Racah coefficients ofU(n) discussed in II. We shall 
discuss this in the next section. 

We conclude this section by stating that all the symmetry properties for the multiplicity-free Wigner coefficients ofU(n) 
can be directly taken over from the corresponding symmetry properties for U(2) or R (3), by the mapping (3.6) and (3.7). 

IV. PHASE FACTORS FOR THE MULTIPLICITY-FREE RACAH COEFFICIENTS OF U(N) 

In II we have obtained multiplicity-free Racah coefficients ofU(n) where one of the columns in the 6-j symbol consists of 
1. (p,O), (4,0), 2. (p,Q), (q,O) and 3. (p,O), (q,O). However, some of the phase factors given in II will have to be corrected. We 
first give the correct expressions, and then give the proof later on. 

2395 

Equations (2.6)-(2.12) in II are correct, except for a misprint in Eq. (2.7). It should read 

j2 jf} . 
J* .* h 
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x 

Equation (3.3) ofII should read 

[m;" I .. ·m;, I" I] [q,OL, I 

[W;"OL I [p-q,O]" I 

[p,O]" I 

[mIll I--·mll - III I] 

[W",O]" I 

[m1Ilo··m ll _ In] 

= {dim[W",O]" I dim[p,OL'_1 dim[m;" ... m~ l.n]U(" I)dim[m l" 

{
vI(ml" ... m" 1")c41(m;,, I···m;, In-I) W~!(P_q)!q!}1/2 

X ,(((m;" ... m;, 1").41(m l,,_I ... m,,_I,, I) Wn!P! 

/ ml"·"m,, I" ° liP' ?II ~;" ... m;,_, In °
1

), 
X \m l" I .. ·m" I" I q, ° min _ I .. ·mn _ I" 

lo··m ll _ In-l ]} 1/2 

(4.2) 

If one interchanges columns 1 and 2 in the 9-j symbol on the left of Eq. (4.2), one should multiply by a phase factor 
( - I)L all the 9-/,. This phase factor can be explicitly calculated according to the mapping of (3.7). In what follows, we shall 
denote the mapping ofi by i ----> E" [m]" for U(n), according to (3.7). 

Equation (3.4) of II should read 

{
[W"I,I'O] [ml" I· .. m" 1,,_1,0] 

[p,O) [ml" t I· .. m"" I I] 
[m;" ... m;/I,l} 

[mtno·.m"n] 

= (_ 1) <"dill:,] ~ I pi I [W", ,l + [1II"ll[dim(m' ... m' ) dim(m ... m )] 1/2 
In nil In nil 

x(·J(ml"II ... ml/l'II)~4f(ml" I· .. m" 1"_IO»)1/2/ml"+I":~""+1 0IIP'OII m;" .. ·m;,,, ° ) 
."!/(m;" .. ·m;,,,)c41(m l,,· .. mn,,) \ ml" mn" p, ° mill _ I .. •m" I" I ° LI(II' I)' 

(4.3) 

Finally Eq. (3.7) or II should read 

{ 
[W" I ,I ,0] [m I" 1 .. ·m II I" 10] 

[p,O) [mll+I .. ·m,,"+I] 

[m;" .. ·m;/I, ]} 

[mt,,···m llll ] 

[mlno .. m ll " ] [ml" + I .. ·mll"t I] } 
[ml" I +p, ... ,m ll 111- I +p,p] . 

(4.4) 
[m;" + p,. .. m;/I, + p] 

We now prove (4.4) by using two different methods. The first method makes use of Eqs. (2.6)-(2.12) of II exclusively. 
This proof is due to Holman, and I wish to thank him for pointing this out to me as well as for urging me to reexamine the 
whole question of phase factors for the multiplicity-free Wigner and Racah coefficients ofU(n). The second method uses Eqs. 
(1.17) of! [equivalent to Eq, (3.9) here], and Eqs. (3.3) and (3.4) of II [equivalent to Eqs. (4.2) and (4.3) here]. 

First proof Using simplified notations we wish to prove 

t: i; ~~:} = t~ ~~: ~}, 
Interchange columns 1 and 2, using (2.6) of II, 

e: i; ~:: }---->{ ;2* ~~ ~~:}. 
Then interchange columns 1 and 3, using (2.7) of II, 

----> {i"iz i I 
iT3 i3 

Now invert columns 1 and 3, using (2.9) of II, 

{iT3 i"i ~*}. 
----> i 12 ir h 

Now interchange columns 1 and 2, using (2.6) of II, 

J*}. 
i"i 

Now conjugate using (2.10) of II, 

---->{i] i23 J} 
it il2 iz' 

Q.E.D. 
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x 

Second proof Put q = pin Eq. (1.17) of! [equivalent to Eq. (3.8) here]. We have: 

[.0,0] [mL, 

[0] [ Wn + I ,0] 

[.0,0] [m]n+1 

=(-lr"([p[~ [W" 

= jmln -+- 1 ···m nl1 + 1 

\ mln···m"n 

[m'L,_1 

[Wn 11,0] 

[m'L, Urn) 

,J+[m;,]+[m,,]J{d' [0'] d' [W 0'] } __ 1/2{[Wntl '0] 
1m p, Urn) 1m ni-I' Urn) [p,O] 

O '1 "0 
II

P'O I mln· .. mnn 

p, 6 m;n_.I .. ·m~_ln_1 
X{dim[m'L, dim[mL,}- 1/2 X mJ, 

where m/ = inverse of the measure on the right of Eq. (3.8) 

= {~#'[mL. I I ~tt[m'L. I }1/2. 
~[m'L. .~[mL, 

On the other hand we have, from Eq. (3.4) of II [equivalent to Eq. (4.3) here], 

[m]" 

[m'L, 

[
[ W" +.1 ,0] [m'L, - I [m'L,] = ( _ 1)'''([ pi + [W" . ,J I [m;,] + [m,,]J{dim[m']n dim[m]n}- 1/2xm/ 

[p,O] [m],,+1 [mL, 

x(mln+~:~'=:n: I 011;: ~llm;n~I;~";'~n,n_OI 0)' 
Comparing (4.5) and (4.7) we obtain the desired result. 
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APPENDIX 

In this appendix we wish to prove the following statement. The outer multiplicity of [m3 ],y(m 3), cannot be greater than 
y(M), wherey(M) is the highest inner multiplicity of a certain weight Mbelonging to [m2 ]. The proof follows. 

(1) Write the irreducible representation as [mnl ,mn2 , ... ,mn.n _ 1,0] for U(n), with mnl >mn2 >mn3 · .. >mn,n _ I . 

(2) Arrange the weights of the irreducible representation according to dominance. For example, (3,2,0,0) > (3, 1,1,0). The 
weights are also written in such a way that the last number is O. 

(3) From Racah's recurrence relation, it can be proved thaty(wl »y(w2), if WI < Wz , where the second inequality refers to 
dominance, i.e., W2 is more dominant than WI' (For proof, see Wong and Gruber, J. Math. Phys. 11, 3187, 1970.) 

(4) From the Racah-Speiser lemma, we now calculate the outer multiplicity for a given irreducible representation [m3 ] 
as follows. First take S = 1, the identity operation. The corresponding term must be the inner multiplicity of a certain weight, 
say wo, belonging to [m2]. Then take the Weyl operation consisting ofa 2-transposition, e.g., (; l D = (24)(23). The 
resulting term from this permutation will have a + sign. However, from the formula of the Racah-Speiser lemma, Eq. (2.1), 
the resulting weight belonging to [m z ] must be at least (3,3,0), or (3,0,0) if we have the 2-transposition (~ ~ j). We claim that 
for every 2-transposition (which will involve at least three positions, e.g., 2,3,4), there is at least one I-transposition resulting 
from the same positions (i.e., transposition of two out of the three positions mentioned above) which will contribute a 
non vanishing term in Eq. (2.1). 

This I-transposition will give a - sign. Moreover,y(wl »y(wz), because WI < wz , since WI results from a I-transposi
tion while W z results from a 2-transposition arising from the same positions. Similar arguments can be applied to higher 
transpositions. In other words, for every 2k-transposition, there exists at least one (2k - I)-transposition consisting of the 
same terms in the application of the Racah-Speiser lemma. Moreover,y(wzk _ I »y(W2k ) because WZk _ I < WZk ' Thus we have 

y(m3)=y(wO)- [y(wl -y(wz)] - [y(w3)-y(W4)] - ... - [y(W2k_I)-y(WZk)]'''' 

where all terms in the brackets are nonnegative. Since the Weyl group ofU(n) consists of permutations only, and since all 
permutations can be reduced to transpositions, this completes the proof. 
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Whipple's work on the symmetries of well-poised 7F6(1) and Saalschiitzian 4Fl1) series 
with unit argument is applied to study the properties of 6-j symbols generalized to any 
arguments. For SU2, we obtain eleven different looking 4Fl1) series which can be used. 
Whipple's parameter x s provide a good description of symmetries. We obtain quite 
simple recurrence relations, valid for any arguments, in terms of these parameters. 

I. INTRODUCTION 

In a previous paper I we discussed the different formulas which can be used for 31 symbols of SU2. We generalized one of 
the formulas to obtain a generalized hypergeometric function ,F'2 with unit argument and complex parameters. Whipple2 

showed that there are twelve sets often such functions which are equivalent, with relations between any three of these sets. We 
studied the consequences of Whipple's relations when all the parameters become integer. In so doing, we determined that any 
of the 96 finite,F'2 can be used for SU2 or SU(I, 1), for which all the parameters are integer, but also, that the 56 finite,F'2 can be 
used in the hyperspherical formalism3 for which some of the parameters are half-integer. These half-integer parameters are 
replaced by any value when relations between Laguerre and Jacobi polynomials4 are studied independently of group theory. 

The 61 symbols appear in these problems as permutation coefficients. They are Saalschiitzian generalized hypergeome
tric series.F3 with unit argument. The parameters are integer for SU2 and SU(I,I); some of them are half-integer in the 
hyperspherical formalism3.s and can take any value for relations between Jacobi polynomials.6 As for 31 symbols, there are 
different formulas6

•
7 and the problem of identification between results of different authors arises. 

Relations between Saalschiitzian .F3 series with unit argument are known only for terminating series; using them, we 
cannot generalize all the parameters. However, for any parameters, there are relations between some special well-poised 7F6 
series of argument unity which can be expressed as sums of two Saalschiitzian .F3' one of which disappears when the other 
terminates. These relations have been also studied by Whipple. 8 They have been used to study symmetries and relations 
between 61 symbols ofSU(2) and SU(1,I) where all the parameters of the generalized hypergeometric series are integer, by 
D' Adda et al. 9 There are 12 sets of 16 well-poised 7F6 series which are equivalent, with relations between any three of these sets. 
To any 7F6(1) series, 120 generalized 61 symbols can be associated by permutation ofthe free parameters. There are 160 
Saalschiitzian .F3( 1) series involved, each of them related to 144 61 symbols by permutation of its parameters. These symme
tries which involve 144X 160 = 16X 12X 120 = 23040 elements include Yutsis' mirror symmetrylO; without "mirror sym
metry" there are only 144 elements, which are those of the usual and Regge's symmetry,!l as summarized by Shelepin's 
symbol. 12 

In Sec. 2 we shall summarize Whipple's work. In Sec. 3, we choose a definition for a generalized 61 symbol which reduces 
to a usual formula when the arguments fulfill the usual relations. We list the different .F3(1) series obtained for SU2, taking 
into account usual symmetries but not Regge's ones, which are not seen directly on the parameters. In Sec. 4, the existence of a 
negative integer among parameters leads to other formulas. The consequences of the existence of more than one negative 
integer are studied in Sec. 5. Then we discuss the symmetry properties and the analytical continuation in Sec. 6. This was 
exactly the plan of the work on 31 symbols. I However, in Sec. 7 we derive recurrence relations from the expression in terms of 
7F6(1) series and in an Appendix we give similar expressions for 31 symbols. 

2. RELATIONS BETWEEN SAALSCHOTZIAN E3 

For a Saalschiitzian generalized hypergeometric series .F3[A, B, C, D; E, F, G;I] (Saalschiitzian means that the conver
gency indicator s = E + F + G - A - B - C - D is unity) Whipple defines 6 parameters x such that 

(1) 

Whipple's parameters are 

Xo = !(l + E - F - G), 

X3 =!( -A -B+ C+D), 

Xl = i(1-E +F- G), 

X4 = H - A + B - C + D), 

X2 = ;\(1 - E - F + G), 
Xs = i( - A + B + C - D). 

(2) 

2398 J. Math. Phys. 20(12). December 1979 0022-2488/79/122398-18$01.00 © 1979 American Institute of Physics 2398 



                                                                                                                                    

Due to invariance under permutation of (E,F,G) and (A,B,C,D), these parameters are defined up to a permutation of 
(XO,XhXl) and (X3,X4,XS) plus an even number of changes of sign among (X3,x ... ~,). 

The set ofSaalschiitzian .£3(1) series between which Whipple studied the relations, is characterized by the permutations 
of (xo"'x s) and the change of sign for an even number among them. These operations define 2' X 6! = 23040 sets of parameters 
corresponding to 160 different .£3(1) series. To simplify notation of numerator parameters we shall use (i,j,k,l,m,n all 
different) 

(3) 

_ _ I ijklmn _ + _ I + + + + + + wijklmn - w_ - 2 - Xi - Xj - Xk - XI - xm - Xn' W - W - 2 Xi Xj Xk XI Xm X"' 
that is, upper indices for the x's with plus sign and lower indices for the x's with minus sign: one set of indices can be dropped 
and + or - means that all the x's appear with plus or minus sign. 

Instead of the .£3' Whipple considers 

S(ij,k) = 1 
r(1 - 2x i - 2x)r(1 - 2xj - 2xdr(1 - 2xk - 2x) 

(4) 

and similar expressions for S ( ± i, ±j, ± k ) with a change of sign for the correspondingx's keeping the rule of an even number 
of minus signs in the numerator parameters. The definitions (1) and (2) are related to S (0, 1,2). In the general case, there are 
relations between four S 'so However, the function 

Y (0) = 1T ( S(0,1,2) _ S(O, - 1, - 2) ) 
p sin21T(x 1 + Xl) r (Wll)r (W03)r (W04)r (WO,) r (w-)r (w 34)r (wJ5)r (w45) 

(5) 

where a = w+ - 2xo and i = 1 to 5, is invariant by permutation of (Xl ".x,) which does not change the parameters of the ,F6(1) 
series, which is a well poised generalized hypergeometric series with a special value of the second parameter. Moreover, as 
Y p (0), as defined in terms of S 's, is invariant for an even number of changes of sign among (X3,x4,X,), it is also invariant for an 
even number of changes of sign among (Xl'''X,) which generates sixteen different ,F6(1) series. Note that the arguments of r 
functions which divide theS 's functions are the numerator parameters of the other one; if one of them is a negative integer, the 
finite .£3(1) series remains alone. 

In such a way, we can define six Y p (l) for i = 0--6 and six Y n (l) which differ from Y p (I) by a change of sign for Xi' Each 
Y p or Y n can be expressed in 16 different ways by a well-poised ,F6(1) series and 20 different ways as a sum of two 
Saalschiitzian .£3(1) series. Whipple obtains 

sin21T(xl + Xo)Y p(O) sin21T(x o + X2)Y p(1) sin21T(xl - Xo)Y n(2) 

r (w02)r (WI3)r (W14)r (Wll) r (W 12)r (W03)r (w04)r (Wo,) r (w_)r (W 34)r (w3')r (w4
') 

(6) 

and deduces a relation between Y p(O),Y p(I), and Y p(3) from (6) and the relation obtained by exchange of 0 and 3 in (6). 
From there he obtains a relation between any three of these functions. 

3. GENERALIZED 6-i SYMBOLS 
A. Definitions 

For the definition of a generalized 6-j symbol, we choose 

{a b c} = exp[i1T(b + c + e +/)] A (a,b,c)A (a,e,J)A (b,d,J)A (c,d,e) 
del r( -a + b +c + l)r( -a +e +1+ 1)r(b -d +1+ l)r(c -d +e + 1) 

( 
r(b+c+e+I+2) 

X .£3 [a - e - f,a - b - c, - c + d - e, - b + d - I; 
r(a-b+d-e+ 1)r(a-c+d-l+ 1) 

- b - c - e - 1 - 1,a - c + d - 1 + l,a - b + d - e + 1; 1] 
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+ r ( - b - c - e - I - 2)r (a + b + c + 2)r (a + e + I + 2)T (b + d + I + 2) 
r(a + b + d + e + 3)T(a + c + d + I + 3)r(a - b - c)T(a - e - I)T( - b + d - f) 

r(c+d +e + 2) 
X r ( .F3 [a + b + c + 2,a + e + I + 2,b + d + I + 2,c + d + e + 2; 

-c+d -e) 

b + c + e + I + 3,a + b + d + e + 3,a + c + d + I + 3;1]), 

where 

L1 (a,b,c) = (r(a + b - c + l)r(a - b + c + 1)T( - a + b + c + 1) )112, 
r(a+b+c+2) 

(7) 

(8) 

for any complex value of a,b,c,d,e, and! However, the real part of the argument oftherfunctions in the square root (8) must 
be positive in order to define this square root as the analytical continuation to the positive values when the imaginary part of 
a,b,c,d,e/vanishes. The two .F3(1) series are convergent because they are Saalschiitzian, i.e., their convergency indicator is 
unity. But, if b + c + e + lis not an integer and one of (a - b - c, a - e - f, - b + d - f, - c + d - e) is an integer (which 
must be zero or negative with the limitations stated above) the second .F3(1) disappears; this also happens when b + c + e + I 
and two values of (a - b - c, a - e - f, - b + d - f, - c + d - e) are integers. The remaining .F3(1) reduces to Rose's 
formula13 for usual values of a,b,c,d,e, and! 

Identifying the first .F3(l) with the one of S (0, - 1, - 2) in (5), Whipple's parameters are 

Xo = -l(a + d + I), Xl = -l(b + e + 1), X2 = -l(c + I + 1), 
X3 = -l(a - d), X4 = -l(b - e), Xs = -l(c - f), 

and, with notation (3), Shelepin's symbop2 is 

-c+d+e b+d-I 
-b+d+1 c+d-e 

-a+e+1 

a+e-I 
a-b+c 
c-d+e 

a+b-c 

a-e+1 

b-d+1 

-a-b-c-l -a-e-I-l -b-d-I-1 -c-d-e-1 

_ liJO I 

_ liJ02 

_ liJl2 

(9) 

- liJ23 - liJ24 - liJ2S 
- liJ 13 - liJ l4 - liJ1S 
- liJ03 - liJoo - liJos 

(10) 

Here, we added a last line in such a way that the sum of all the diagonals obtained by circular permutation of columns is 
- 1. This property is conserved in any permutation rows or columns. In the following we shall use i,j,k for any of the indices 

0,1,2 and l,m,n for anyone of3,4,5. Limiting the notation to two indices (liJ"liJ_,liJa /3 and liJa(3) the 16 negativelike liJ'S are those 
displayed in formula (10): There are three liJ ii, nine liJi/ which are regular components of Shelepin's symbol and liJ+ and three 
liJ'm which playa different role. 

With this notation 

{: ~ ;} = exp[ - 2i1r(xl + X2)] g p(O)~ p(O), 

(11) 

where 

g (0)2 = r(a + b - c + 1)T(a - b + c + l)T(a + b + c + 2)r(a + e - I + 1) r(a - e + I + l)r(a + e + I + 2) 
p r(-a+b+c+l) r(-a+e+l+l) 

x_r.-:(b __ +d_--=I,-+---,l);....r-,(,--_b_+_d_+....::/_+---,l)_r......;(_b+_d_+......;I,-+---,-2) r(c + d - e + 1)T( - c + d + e + l)r(c + d + e + 2) 
r(b-d+l+l) r(c-d+e+l) 

r (liJ_)r (liJOI)r (liJ02)T (liJ13)r (liJ I4)r (liJIS)r (liJ23)r (liJ 24)r (liJ 2S)r (liJ34)r (liJ3S)r (liJ4S) 
(12) 

r (liJ03)r (liJ04)r (liJOS)r (liJ12) 
is the product of all the r (liJ) limited to the liJ'S in which X o appears with a minus sign, the r (liJ) of negativelike liJ'S being 
replaced by r(l -liJtl. 

B. Discussion 

The classical symmetries of usual 6-j symbols are permutation of the columns of (9) and an even number of changes of 
signs among X3, X4, Xs. This group of 24 elements is extended to 144 by Regge's symmetriesll which are equivalent to 
permutation of (X3,x4,xS) independently of the one of (XO,xI,x2)' They are the only operations which do not mix negative like 
and positive like liJ'S. 
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(
'J' ) (012) TABLE 1. The 17 patterns of parameters for the 160 ,FlI) series, taking into account classical symmetries. There stands for . Classical symmetries 
Imn 345 

are permutations of columns and an even number of changes of signs for I,m,n. Patterns 3a and 3b are identical if Regge's symmetry (permutation of I,m,n 
independently of ij,k) is taken into account. Idem for patterns 5,6,7, and 9. The last columns are respectively the multiplicity, the number of negative like 
numerator parameters, how many of them appear in Shelepin's symbol, and the label of the related formulas in the text. (* = even number of minus signs, 
** = odd number of minus signs) 

S( - i, - j, - k) I 4 0 35 6a Sci, -j, ± /) 12 2 2 16 
2 S(i,-j,-k) 3 4 4 IS 6b SCi, -j, ± m) 12 2 2 17 
3a S ( - i, - j, ± I) 12 4 2 33 6c Sci, - j, ± n) 12 2 2 18 
3b S ( - i, - j, ± n) 6 4 2 32 

7a Sci, ± I, ± m) 24 19 
4 S(I, ± m, ± n)* 4 3 3 29 7b S(i,±m,±n) 12 I 20 
Sa S(-i,±I,±m) 24 3 2 30 8 S(±I,±m,±n)** 4 0 34 
5b S( - i, ± m, ± n) 12 3 2 31 

9a S(ij,±/) 12 0 0 23 
9b S(ij, ± n) 6 0 0 24 
\0 S(ij,-k) 3 0 0 22 
II S(ij,k) 0 0 21 

Consequently we shall obtain no further symmetry. These symmetries are similar to the one of the .F3(l) series as discussed 
below (2), but cannot be obtained directly from an unique formula for the 6-j symbols because S (0, 1,2) and S ( - 0, - 1, - 2) 
cannot be used to express them, as we shall see later. Other permutations and changes of sign among (xo ... x,) are related to 
Yutsis'mirror symmetrylO: for examplexo-x3 is d--+ - d - 1. Some of these symmetries have been derived 14 or discussed I' from 
the properties of finite Saalschiitzian .F3(I) series. 

As can be seen in (11), the generalized 6-j symbol (7) is invariant for the permutation of x I and x 2, the permutations and an 
even number of changes of signs of (X 3,X4,X,). These symmetries are related to permutations of the columns and of the two first 
lines ofShelepin's symbol. Permutations with the third line define two other 6-j symbols related to f§ p (1) and f§ p (2). We shall 
extend to 12 6-j symbols using the notation 

~ /A) = g /A)f§ p(A), ~ ,,(A) = g ,,(A)f§ ,,(A), g /A)g ,,(A) = 1, (13) 

where g p (A) is defined as g p (0). Note that the numerator of g p(l) includes 12 r functions and its denominator only four of 
them; these figures are inverted ~r g ,,(1); the numerator and the denominator of g p(/) and g,,(l) include eight r functions. 
The relation between the three f§ p (l) is simpler than the one between the three f§ p (i) as follows, 

sin21T(xl - X2)~ p(o) + sin21T(x2 - xo)~ p(l) + sin21T(xo - XI)~ p(2) = O. (14) 

We shall not list the other relations. 

c. Formulas 

We are primarily interested by a list of the finite .F3(1) series which can be used to express a 6-j symbol. They are 160 
S ( ± A, ± fl, ± v) and we can already classify them with respect to the pattern of their parameters as shown on Table I. There 
are 11 patterns, taking into account Regge's symmetry, but 17 without it. Formulas of Ref. 7 are respectively of types 2, 6c, 3b, 
6a and 3a. 

Among the twenty expressions of ~ p(o) in terms of two .F3(I) we can examine in which circumstances one of them 
reduces to a single term. 

The patterns 2 and 11 of Table I appear in the expression with S (0,1,2) and S (0, - 1, - 2) which is the definition (7). 
S(0,1,2) is always convergent but can never appear alone. On the contrary, if any one of (a - b - c, a - e - f, - b + d - f, 
- c + d - e) is zero or a negative integer we obtain Rose's formula13

: 

{; : ;} = exp[i1T(b + c + e +/)] 

X ..:1 (a,b,c)..:1 (a,eJ)..:1 (b,dJ)..:1 (c,d,e)F(b + c + e + 1+2) 
r( - a + b + c + 1)F( - a + e + I + l)r(b - d +1+ l)r(c - d + e + l)r(a - b + d - e + 1)F(a - c + d - I + 1) 

x.F3[a-b-c, a-e-f, -b+d-f, -c+d-e; a-b+d-e+ 1, a-c+d-I+ 1, 

-b-c-e-I-l;I]. 

(15) 
With all the parameters integer, the sum runs from max[O, - a + b - d + e, - a + c - d + IJ to min [ - a + b + c, 
-a +e + f, b -d +f, c-d +eJ. 

2401 J. Math. Phys .• Vol. 20, No. 12. December 1979 Jacques Raynal 2401 



                                                                                                                                    

The pattern 6a is associated with the pattern 9a, usingS (0,1, - 3) andS (0, - 1,3); if a - b - cora - e - fis a negative 
integer, we obtain 

b c} [. (b + + f)] L1 (a,b,c)L1 (a,ej)L1 (b,dj)L1 (c,d,e)F (a + b + c + 2) = exp Irr c e + 
e I r(-a+b+c+ l)F(-a+e+l+ l)r(b+d-l+ l)F(b-d+l+ 1) 

x T(a+e+I+2)F(-a+b+d+e+ 1) 

T(c-d+e+ 1)F(-c+d+e+ 1)F(2a+2)F(a-b+d-e+ 1) 

X 4FJ[a-b-c,a-b+c+ l,a-e-J,a-e+l+ 1;2a+2,a-b-d-e,a-b+d-e+ 1;1]. (16) 

With all the parameter integer, the sum is from maxi 0, - a + b - d + e] to min [ - a + b + c, - a + e + Il. 
Using S (0,1, - 4) and S (0, - 1,4), if a - e - I or - c + d - e is a negative integer, we obtain the pattern 6b: 

fd
a b c} = exp[irr(b + c + e + f)] L1 (a,b,d)L1 (a,e,J)L1 (b,d,J)L1 (c,d,e) 

e I T( - a + b + c + 1)F( - a + e + I + 1)r(a + e - I + l)r(b - d + I + 1) 

x T(a+b+c+2)F(b+d+I+2)F(2e+1) 

T( - c + d + e + l)F(c - d + e + l)F(a + b + d - e + 2)F(a - b + d - e + 1) 

xJJ[a-e-J,a-e+l+ 1, -c+d-e,c+d-e+ 1;a+b+d-e+2,a-b+d-e+ 1, -2e;1], 

(17) 

with, in the usual case, sum from max [0, - a + b - d + e] to min [ - a + e + J, c - d + e]. In neither of these two cases can 
the associated pattern 9a appear alone. 

The pattern 6c is associated with the pattern 9bin the expression in terms ofS (0, 1, - 5) andS (0, - 1,5). If a - e - lor 
- b + d - lis zero or a negative integer, we obtain 

{: : ;} = exp[irr(b + c + e + f)] 

X L1 (a,ej)L1 (b,dj)T(a - b + c + l)F(c + d - e + l)F(b - c + e + I + 1) 

L1 (a,b,c)L1 (c,d,e)F( - a + e + I + l)F(b - d + f + l)F(a - b + d - e + I)T(a + c + d - I + 2) 

xJJ[a-b+c+ l,a-e-J, -b+d-J,c+d-e+ 1; -b+c-e-J,a-b+d-e+ 1, 

a+c+d-I+2;1], (18) 

with a summation from max [0, - a + b - d + e 1 to min l - a + e + J, b - d + I] when all parameters are integer. Formu
las of type 6a, 6b, 6c given by (16)-(18) are equivalent by Regge's symmetry. 

In the expression with S (0,3,4) and S (0, - 3, - 4), the coefficient of the first .FJ(I) series includes T ( - a-
- b + d + e)/r( - b + d - f) and the coefficient ofthe second one includesr (a + b - d - e)/r(a - e - I). Ifa - e - lis 

zero or a negative integer, the coefficient of the second .Fl1) series vanishes and the ratio of T functions given above for the 
first.Fl1) can be replaced by ( - ) a - e - Ir(b - d + I + 1)/r(a + b - d - e + 1). We obtain a formula with the pattern 7a: 

{: : ;} = exp[irr(a + b + c)] 

2402 

x ______________ ~L1~(~a,~b,~c)~L1~(~a,~e,~/~)L1~(b~,d~,/~)~L1~(~c,~d,~e)~r~(~a~+_b_+~c~+_2~)~~ ____ ~ __ ~ 
r ( - a + b + c + 1)F ( - a + e + I + l)r ( - b + d + I + 1)F (c - d + e + 1)F ( - c + d + e + 1) 

x _______ T~~_+~e~+~/_+~2)~T~(~b~+_d_+~/~+_2~) ____ __ 
T(2a + 2)F(a + b + d - e + 2)F(a + b - d - e + 1) 

x.FJ[a + b - c + 1, a + b + c + 2, a - e - J, a - e + I + 1; 2a + 2, a + b + d - e + 2, 

a+b-d-e+ 1;1], 
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with a summation between max [0, - a - b + d + e J and - a + e + lin the usual case. If - b + d - lis zero or a negative 
integer, instead of a - e - Iwe obtain a formula which differs from (19) by the exchange of (a,b ) with (d,e). If a - e - land 
- b + d -I are both zero or negative integers, we can let them go to their value and get anyone of these formulas. In Sec. 4 we 

shall get the same result by considering first a + b - d - e as integer; in fact, formulas derived from S (0,3,4) and 
S(O, - 3, - 4) are identical term by term. 

Similar considerations apply to the pattern 7b, obtained from S (0,4,5): 

{= : ;} = exp[i17{a + b + c)J 

X __ .::!_(,--a,-,b,-,c,--).::!_(,--a,-,e::.../-,-)r_(~a_+,-b--,-+_c_+,-2.....:.)_F~(b_+_d_--=/~+--,-I-,-)F_(~c_+_d_-_e_+-,-I) __ 
.::! (b,dl).::! (c,d,e)r( - a + e + I + I)F(b + c - e - I + I)F(a + b + d - e + 2) 

I 
X JJ [a + b + c + 2, 

F (a + c + d - I + 2) 

a - e - J, b + d - I + 1, c + d - e + 1; a + b + d - e + 2, a + c + d - I + 2, b + c - e - I + 1; IJ, 

with a summation from max [0, - b - c + e + I J to - a + e + I in the usual case. 
(20) 

The Jll) series which cannot be found alone are the one of pattern 11 which was introduced in the definition (7) and is 

S(0,1,2)-JJ[a + b + c + 2, a + e + I + 2, b + d + I + 2, c + d + e + 2; a + b + d + e + 3, a + c + d + I + 3, 

b + c + e + I + 3; IJ, (21) 

the one of pattern 10 which is associated with itself, 

S(O,I, - 2)-JJ[a + b -c + l,a + e - 1+ l,b +d -1+ 1, -c +d + e + l;a + b + d + e + 3,a -c + d -1+ 1, 

b - c + e - I + 1; IJ, (22) 

the one of pattern 9a, 

S(0,1,3)-JJ[a + b +c + 2,a +b -c + l,a + e +1+ 2,a + e -1+ 1;2a + 2,a +b +d + e + 3,a + b -d + e + 2; IJ, 
(23) 

and 9b, 

S(0,1,5)-JJ[a + b + c + 2, a + e - I + 1, b + d - I + 1, c + d + e + 2; a + b + d + e + 3, a + c + d - I + 2, 

b + c + e - f + 2; IJ. (24) 

Formulas (15)-(20) give the generalized 6-j symbol as defined by (7) when they are finite series. The generalized 6-j 
symbol is invariant under permutation of the two last columns and the exchange of two lower quantum numbers with two 
upper ones; these symmetries are also valid to derive other formulas from (15)-(20). 

4. EXISTENCE OF ONE INTEGER 

There are relations between some !1 p (A ) and !1 n (;.t) when one of the w's is zero or a negative integer, but also when some 
2(XA ± xf') is an integer, as can be seen in (6). Thew's are numerator parameters of the JJ(I) series and appear as the last five 
numerator parameters of the 7F6(1) series. The relations obtained when there are negative integers is the inversion of the finite 
series, which conserves the Saalschiitzian character of the J3( 1) series and the special form of the well-poised 7F6 series (the 7F6 

series is invariant in the inversion with respect to the first numerator parameter). 

A. A denominator parameter is an Integer 

The denominator parameters are 1 ± 2x A ± 2xf" The relations obtained when they are an integer, q, come from the 
cancel1ation of the first few terms in the series in which they appear negative. These relations are: 

!1p(t)=(-)q~p(J), !1 n(l) = (-)Q!1n(j), if 2(x; -xj)=q, (25a) 

!1 p(t) =. . rr: . !1 n(}), if 2(x; + x) = q, (25b) 
Sln1TW_Sln1TW kl Sln1TW km Sln1TW kn 
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1f- 1f-
[j p(l) = . . [j n(/), [j /1) = . . [j n(l), if 2(x; + xJ = q, (2Sd) 

Sln1TUJjm Sln1TUJkm sln1TUJjm Sln1TUJkm 

[jp(l) = [jp(m), [jn(/) = [jn(m), if2(.x/-xm )=q, (2Se) 

[j /1) = [j n(m), if 2(x[ + x m ) = q. (2St) 

The difference between (2Sc) and (2Sd) is only a change of sign for x [ and Xm or Xn . These formulas are not unique because 
sin1TUJ Alt = sin1TUJAI'; for example m can be replaced by n in (2Sd). 

In the expression (S) of f§ p (0) in terms of two ~3(1) series, sin 21T(XI + x,) appears in the denominator; 2(XI + x,) is also 
the difference between the parameters of the two ~3(1) series. Expanding them, we obtain derivatives when 2(XI + x,) goes to 
the integer value q: 

( 

ITr(a; + v) 
f§ (0)=------ qtl( _ r(q-v-l)!; +(_)q 

P ITlr(a;)r(a;+q») v=o v! r(b+v)r(c+v) 
; 

(26) 

where the a j 's are the numerator parameters of the first ~3(1) series, b,c, and 1 - q its denominator parameters, and 1jJ the 
logarithmic derivative of the rfunction. When one of the aj 's is a negative integer, - p, (26) reduces to a finite ~3(1) series: if 
p < q, the sum of v is limited by p; if P > q the sum on v disappears and the sum onJ1 reduces to an ordinary finite ~3(1) series 
limited by p - q. 

B. A numerator parameter is a negative integer 

Any (i) is a numerator parameter of twenty of the 160 ~3(1) series involved. If one of them is a negative integer, relations 
between these twenty finite Saalschiitzian ~3(1) series are known l6 and have already been used. I'. l5 The same (i) appears in ten 
expressions of six of the f§ p 's or fj n 's in terms of two ~3(1) series, and generates relations between these six functions. 

If (i)+ = - a - b - c - 1 is a negative integer, 

_ 1T'[j (i) 
,ct} n(l) = .. n . , 

sin1T(i)llsinm~u'k 
(27a) 

where 1 = 3,4,S and i = 0,1,2. If (i)/m is a negative integer «(i)3. = - c - d - e - 1), we obtain the relation from (27a) by 
changing the signs of XI and X m , 

- - - 1T'[j n(i) 
,'fj p(l) = ,ct} p(m) = ,ct} n(n) =. . 

Sln1T(i)lnSlll1T(i) kn 
(27b) 

If (i)jk is zero or a negative integer «(i)12 = a - e - f), 

_ 1T2[j (I) :1 (i) = p 

p sin1T(i)j/sin1T(i) kl sin1T(i)_sin1T(i) kISin1T(i) kmsin1T(i) kn 
(27c) 

If (i)i/ is zero or a negative integer «(i)OJ = a - b - c), we obtain relation from (27c) by changing the signs of Xm and x n' 

?}p(i)= 1T2~/l). 1T,-gn(m) rr'-gn(}) 

sin1T(i)ll sin1T(i),k sin1T(i)jnsin1T(i) kn Sin1T(i) mnsin1T(i)iisin1T(i) kmsin1T(i) kn 

(27d) 

c. Formulas deduced from Gp (3) 

Formulas (IS)-(20) give different expressions of the same 6-j symbol which hold when a - e - fis zero or a negative 
integer. But, in this case 

Pi (0) = 1T' -g /3), (28) 
p sin1T(c + d - e + l)sin1T(b + d - f + 1) 

and [j p (3) reduces to asingle~J(l) series every time a - e - fappears. The relation (28) is also the relation (2Sc) which holds 
when 2d is integer. 
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Writing !j p(3) with S(3,4,5), we obtain a pattern of type 4: 

e ! ;} = exp[hr(a + b + c)] 

x ________ ~~~(~a,~b~,~=~~(~a,~e/~~~(b~,~d/~)~~~(~c,d~,~~_r~~_+~b~+~c~+~2)~--~--~ 
r ( - a + e + I + l)r ( - b + d + I + l)r ( - c + d + e + 1)r (a + b - d - e + 1) 

X 1 
r(a+c-d-I+ 1)r(b+c-e-l+ 1) 

x~~+b+c+~a-e-lb-d-lc-d-~ 
a + b - d - e + 1, a + c - d -1+ 1, b + c - e - I + 1; 1], (29) 

with a summation from max{O, -a-b+d+e, -a-c+d+l -b-c+e+/1 tomin{ -a+e+l -b+d+l 
- c + d + el in the usual case. 

The pattern Sa is obtained with S (3, - 1,4) and gives 

fd
a b c} [. ( b )] ~(a,b,c)~(a,e,J)r(a+b+c+2)r(b-d+l+l)r(c+d-e+l) 

= exp 11T a + + c 
e I ~ (b,d,J)~ (c,d,e)r( - a + b + c + l)r( - a + e + I + 1)r(a + e - 1+1) 

x ____ r_(-'-2_e _+_I..:....)r----'-( -_a_+_b_+_d_+_e _+_1..:....) __ _ 

reb + d + I + 2)r(c + d + e + 2)r(a + b - d - e + 1) 

x.FJ[a - e -l a - e + I + 1, c - d - e, - c - d - e - 1; a - b - d - e, a + b - d - e + 1, - 2e; 1], (30) 

with a sum from max{O, - a - b + d + eJ to minI - a + e + l - c + d + eJ for SU2. 

With S ( - 2,3,4) we obtain pattern Sb which is 

{: ! ;} = exp{i1T(a + b + c)J 

x~(a,el)~(b,dl) r(a+b-c+ I)F(-a+c+d+l+ 1) F(-b+c+e+l+ 1) 
~ (a,b,c)~ (c,d,e) r( - a + e + I + l)r( - b + d + I + 1) r(c + d + e + 2)r(a + b - d - e + 1) 

x.FJ[a + b - c + 1, a - e -l b - d -l - c - d - e - 1; 

a + b - d - e + 1, a - c - d -l b - c - e -/;1], (31) 

with a sum from max {O, - a - b + d + e J to min { - a + e + l - b + d + I I when all the coefficients are integer. 

The pattern 3b is obtained from S(3, - 1, - 2), 

{: ! ;} = exp[i1T(b + c + e + I)] 

X ~ (a,b,c)~ (a,el)r( - a + b + d + e + l)r( - a + c + d + I + I) reb + c + e + I + 2) 
~ (b,dl)~ (c,d,e)r( - a + b + c + I)r( - a + e + I + I)r(b + d + 1+2) r(c + d + e + 2) 

X.FJ[a - b - c, a - e -l - b - d - I - 1, - c - d - e - 1; a - b - d - e, a - c - d-l 

- b - c - e - I - 1; 1], (32) 

with a sum from ° to min! - a + b + c, - a + e + I I when all the parameters are integer. 

D. Other formulas 

In order to obtain the pattern 3a when a - e - lis a negative integer, we must use !§ p (4) which is also related to E1 p (0) in 
this case, and express it with S (4, - 1, - 2): 

{a b c} =exp[i1T(b+c+e+f)] 1 
del r( - c + d + e + l)r(c - d + e + 1) 
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X .::3 (a,b,c).::3 (a,e,j).::3 (b,d,f).::3 (c,d,e)r( - b + c + e + I + I)r(b + c + e + I + 2)r{2e + I) 

r( - a + b + c + I)r(a - b + c + I)r( - a + e + I + I)F{a + e - I + I)r( - b + d +1+ I)r(b - d +1+ I) 
X.F3[a-e-f, -c+d-e, -a-e-I-I, -c-d-e-I;b-c-e-f, -b-c-e-I-I, -2e; I], (33) 
with a summation from 0 to min { - a + e + f, c - d + e l in the usual case. 

The pattern 8 can be obtained from f1 p (3) expressed with S (3,4, - S) and S (3, - 4,S) when - c - d - e - I is also a 
negative integer 

{a b c} 
del 

= -exp[i1r{b-d+f)] 1f2 r(a+b-c+ I)r(a-e+l+ 1)F(b-d+l+ 1) 
sin7T(c + d - e + l)sin7T(b - d + I + I) .::3 (a,b,c),J (a,e,j),J (b,d,j),J (c,d,e)r(c + d + e + 2) 

I 
X .F3[a + b - c + I, a - e +1+ I, b - d + f + I, 

r(a + b - d - e + l)r(a - c - d + I + l)r(b - c - e + 1+1) 
- c - d - e - I; a + b - d - e + I, a - c - d + I + I, b - c - e + I + I; 1]. (34) 

It cannot be used if c + d + e or b + d - lis zero or an integer, in which cases the .F3(1) series vanishes. 

To reach pattern I, we must relate [1 p(O) to one of the f1 n (I). We obtain 

{a b c} 
del 

- exp[i7T(a + b + c)] 

X 1f2sin7T(a + b + d + e + 1) r(a + b + d + e + 2)r(a + c + d +1+ 2)r(b + c + e + f + 2) 

sin7T(a + b - c + l)sin7T(a + e - I + I) sin7T(b + d - I + I),J (a,b,c),J (a,e,f),J (b,d,f).::3 (c,d,e)r(a + b + c + 2) 

1 
----------------.F3[ -a -b-c-l, -a -e-I-l, -b -d-I-I, 
r (a + e +1+ 2)r (b + d + I + 2)F (c + d + e + 2) 

- c - d - e - 1; - a - b - d - e - I, - a - c - d - I - I, - b - c - e - I - I; 1], (3S) 

valid if a - e - I and one of ( - a - e - I - I, - b - d - I - I, - c - d - e - I) is a negative integer, but not if 
- a - b - c - 1 is a negative integer, because this expression has been simplified by sin (a + b + c). It is clear that (34) and 

(3S) cannot be used for SU2. 

Formulas (29)-(33) are equivalent to (IS)-{20) when - a + e + lis an integer for any value of a,b,c,d,e.! Their 
practical interest for SU2 is not the same. Combining the lower and upper limit of the summation, one can see that the total 
number of terms is one plus the smallest number of She Ie pin's symbol in (IS) and (29), one plus the lower of two of these 
numbers for (19), (20), and (32), one plus the lowest of four of these numbers for the others. The numerator parameters of the 
.FlI) series in (IS) are on a line of She Ie pin's symbols; those of (29) are related to a column as prolongated in (10). We have 
found (29) only oncel1 in the literature. To a large extent the multiplicity of formulas is only apparent. When introduced in a 
.F3( I) series, the cancellation of the lowest few terms generates another .F3( I) series. In this sense there is only one formula (IS) 
and one formula (29) related to (IS) by the inversion of the order of terms; these terms are the ones of Racah's formula. 18 The 
cancellation of the lowest few terms does not change the pattern except for 6a and 6b, which are exchanged. 

We shall not discuss the use of 1F6(1) series. Their last five numerator and denominator parameters are parameters of 
.F3( 1) series; the first ones are different, but we can expect no systematically improved formulas from them. For example, the 
limit of 1F6[a,1 + !a,b, ... ;!a,1 + a - b, ... ; IJ is {2X~5[I,b, ... ;1 - b, ... ;I] - I} when a goes to zero. 

5. EXISTENCE OF MORE THAN ONE INTEGER 
A. General remarks 

The relations (2S) involve no contradiction if more than one of them are to be considered. Even all the 2(XA ± xI') are 
integers, whereas no liJ is an integer, if a,b, ... ,jare all half-integer; all the x's are half-integer and relations (2S) become 

(_ )2('<1- X .)[1 (I) = . 1f2 {[1 (/),[1 n(l)} = (- )2('<1-
X
.) • 1T" [1 n(l), (36) 

p {SID1TliJ_)2 p (SID1TliJ_)4 

but there is no expression by a single .F3(1) series. 
If more than one liJ is a negative integer, some of the relations (6) can break down. To study this, let us make the following 

remarks about the relations (27): 
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TABLE II. Compatibility for existence of more than one negative integer among the w's. The multiplicity of each W is given in parentheses. 

negative integer 
incompatible 
negative integer 

W'l(3) 

Win (3) 
w'(I),w,,(6) 

Wmn (1 ),wij(2),wjm (4) 

compatible 
negative integer 

W'm (3),w,,(9) 

w'( 1 ),W In (2),wij(3),w aC 6) 

W 1m (3),w ik (2),w kl (3) 

{
W'(I),W lm (2),cJk(I), 

w im (2),wjI(2) 

(a) They are relations between [1 n (A) for A of which the x,.! enters with a plus sign in the w which generates this relation, 
and the [1 p {J.t) for J..l, of which xp. enters with a minus sign. 

(b) The denominators include sinuses of all the negativelike w which differ from the one which is an integer by four signs. 
There are three of them for the relations related to w+ and w 1m , seven for the other relations. If we restrict our considerations to 
the w's which appear in the three lines of the regular Shelepin's symbol given by (10), the arguments ofthe sinus are those 
which are not in the same row or on the same column as the one which is an integer; if we add the last line, the rule is inverted 
for it. These values are given in Table II. 

(c)!-- relation ~volves at most one [1 p (I), ~ithout denominator. With respect to [1 ii), they are two sinuses in denomina
tor for ;g p (/) and ;g n(/) and four sinuses for ;g n(l). 

B. Two numerator parameters are integer 

If wand w' are zero or negative integer and differ only by the signs of x,.! and xp.' they can be numerator parameter of the 
same 7F6(1) or .Fl(l) series and they cannot be one in each .Fl(l) series in any expression of 7F6(1) series in terms of .Fl(l) series. 
!,.heir diff~rence ~(x,.! ± Xp.) ~ also integer. The relation between six [1 p or [1 n related to w is extended to eight, including 
;g p(A), ,C; ,,(A ),;g p{J.t) and ;g n{J.t), in agreement with relation (25) related to 2(x,.! ± x). 

On the contrary, if only x,.! and xp. have the same sign, positive for exampl::... in the relations deduced from wand the one 
deduced from w', there are vanishing sinuses in the denominator of [1 n(A ) and ;g n{J.t) which are the only common families of 
these two relations. With W l4 = - a + b - c = - nand W01 = a - b - c = - m, 

2407 

[1 0 _ 1T2[1p(3) _ 1T2;gn(4) 

i ) - sin1T( - b + d + 1 + l)sin1T( - c + d + e + 1) - sin1T(a + b - c + l)sin1T(a - e + 1 + 1) 

sin1T(a + b - c + l)sin1T(a + e + f)sin1T(a + e -I + l)sin1T( - c + d + e + 1) 

r (0)1T [1 n( 5) -----(W I4)( - t - b + c _______ _ 

sin1T(a + e - 1 + 1) 

-----(WI4)( _ t - b + c r (O)1Tl [1 n(2) , 
sin1T(a + e + l)sin1T(a - e + 1 + l)sin1T( - b + d + 1 + 1) 

7:? 1T2[1n(3) 1T2[1i4) 
,-:; (1) = -----~-----

p sin1T(a + b - c + l)sin1T(b - d + 1 + 1) sin1T( - a + e + 1 + l)sin1T( - c + d + e + 1) 

sin1T(a + b - c + l)sin1T(b + d + l)sin1T(b + d - 1 + l)sin1T( - c + d + e + 1) 

-----(W01)( _ ) - a +b + c r (0)1T[1 n(5) 
sin1T(b+d-l+ 1) 

-----(W01)( _ ) - a + b + c r (O)1Tl [1 nC2) 

sin1T( - a + e + 1 + l)sin1T(b + d + l)sin1T(b - d + 1 + 1) 
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But 2c + 1 = - 2(X2 + xs) = n + m and (25d) gives 

Yp(2)~(_y-b+C. r(O)1T Y n(5), 
slO1T(e-d+e+ I) 

(37c) 

(37d) 

In all these relations Y n(2) and Y n(5) present a vanishing sin1T(n + I) in the denominator, which can be replaced by 
( - ) nr(O)/1T: In formulas (15)-(20) and (29)-(33) these sines have been replaced by r functions of which the ones with 
negative argument were eliminated with the ones arising for a specific formula. This rule of sign provides the same result after 
elimination of r (0) when the negative argument is integer. 

However, Whipple's results are no longer valid for Y n (2) and Y n (5), so we must consider the sixteen 7F6(I) series and the 
twenty expressions one by one in terms of .FJ(l) series. Six 7F6(1) series of each of these families do not include lUOJ or lUI4 as 
numerator parameters, of which two are convergent series which vanish leading to an undeterminated result. For the other 
7F6(1) series, reO) can be eliminated with some other r functions; five of them, in each family, include lUOJ as numerator 
parameter and verify (37a), the five others include lUI4 and verify (37b). But, among the five 7F6(1) series with lUOJ as numerator 
parameter, four include - m - n as denominator parameter and these series can be restarted from the (m + n + I )th term to 
infinity; when these series converge [six of Y n (5) and two for Y n (2)], they verify (37c) or (37d) to a sign. A finite series limited 
by lUOJ plus its asymptotic part verifies (37b) instead of (37a). The relation (14) still holds between (37a), (37b), (37c). This 
behavior is related to whether lUOJ, lU14' or lUOJ + lUI4 tends first to an integer. In the expressions in terms of two .FJ( I) series, lUOJ 
and lUI4 do not appear in six of them. In these cases, the .FJ(l) series cancel one another and the result is undetermined. In six 
other expressions lUOl and lUI4 appear once in each .FJ(I) series: Each .FlI) series verifies relation (37a) and (37b), respectively, 
but their sums do not verify (37c) because their differences do it to a sign. In four cases lUOJ appears in a .FJ(I) series without lUI4 
in the other: The finite .FJ(l) series verifies (37a) but, - m - n being one of its denominator parameters, the sum beyond 
m + n + 1 plus the finite and the infinite .FJ(I) series verify relation (37b). In (37a) and (37b) we noted by ~(lUI4) the use of 
finite sum limited by lUI4 or the use of finite sum limited by lUOJ plus an infinite sum. 

A similar situation holds when lU I2 = a - e - f and lu+ = - a - b - c - 1 are negative integers. Y n (1) and Y n (2) are 
not uniquely defined. The description given above for Y n(2) and Y n (5) holds with the difference that all the infinite 7F6(1) 
series are divergent, and among the four series limited by lu+ with lu+ + lU I2 as denominator parameter three are convergent, but 
only one of the finite series limited by lU I2 is. 

C. More than two numerator parameters are Integer 

If three lu'S are negative integer they must be on different lines of She Ie pin's symbols and there must be at least two on the 
same column, or on different columns and at least two on the same line. In all cases, at least two ofthem are compatible; ifthere 
is incompatiblity with the third one, relations are similar to (37). 

When the three integer lu'S are on different lines and columns, the lu on the other line and other column is also an integer. 
For example, if lUOJ = a - b - e, lUI. = - a + b - e, and lU2S = - a - b + e are integer, lu+ = - a - b - e - I is also inte
ger. From lU2S we get 

Y ~Yn(5) 
p(2) = sin1T( _ b + d + f + l)sin1T( - a + e + f + 1) 

z(lUOJ)(_)-a+b+c . r(O)1TY n (4) _(lU
I
4)(_)a-b+c. r(0)1TYn(3) 

slO1T(e + d - e + 1) slO1T(e - d + e + 1) 

r(o)~Y (1) 
_( )(_)-a+b+c n 
- lUOJ sin1T(e + d + e)sin1T( - a + e + f + l)sin1T(e - d + e + 1) 

r (O)1TJ Y (0) 
_( )( _ y-b+C n 

- lUI4 sin1T(c + d + e)sin1T( - b + d + f + l)sin1T(c + d - e + 1)' 
(38) 

and similar relations for lUOJ and lUI4 which can be deduced from (37a) and (37b). No further relation can be deduced for lu+ 

because there is a vanishing denominator for all the Y n in (38). 
If three corners of a rectangle on Shelepin's symbol are integer, the fourth corner is also an integer. For example, if 

lUOJ = a - b - e, lu04 = - e + d - e, lUl3 = - e - d + e are integer, lUI4 = - a + b - e is integer and 
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W03 W 14 W 25 w'D" w1 r15 WO~::~'5 ~ (,.)1 W14 
W (,.)03 W 04 W 23 

FIG. 1. FIG. 2. FIG. 3. FIG. 4. 

_ 1f [!9 (3) !9 (4)] 
!9 (O)=(_y+d-b-c,o/ (1)= p , p 

p p sin1T( - c + d + e + 1 )sin1T( - b + d + f + 1) 

1T2[!9 n(3),!9 n(4)J = (_ y-b-c r(O)1T!9 is) 

sin1T(a - e + f + l)sin1T(a + b - c + 1) sin1T(b + d - f + 1) 

sin1T(a + e + f)sin1T( - c + d + e + l)sin1T(a + e - f + l)sin1T(a + b - c + 1) 

= ( _ t - b+ c r(O)1T
J
!9 n(2) 

sin1T(a + e + f)sin1T( - b + d + f + l)sin1T(a - e + f + 1) 
(39) 

There is no incompatibility: All the finite series lead to the result. 

The existence of incompatibility can be deduced from some diagram displaying the integer (U's in a plane with lines between 
the compatible ones. The two cases discussed above are shown on Figs. 1 and 2. If this diagram is connex and has no free end, 
there is no incompatibility. If there are free ends or nonconnex parts some !9 /..1, ) and !9 n(A ) can give different results, 
depending on which series is used. Further example with four integers are given in Figs. 3 and 4. 

When all the parameters are integer, there is a relation between all the !9 p's and !9 n's which reads 

( - )2(xj - x')!9 /0 = r (O)r (0) [ !9 p(I),!9 n(l)] = ( - )2(xj - X,) r (O)r (O)r (O)r (0)!9 n(l), (40) 

which relates all the finite sums. 

D. Application to relations between Jacobi polynomials 

In the hyperspherical formalism, let us consider the partition of Jacobi coordinates into three subsets of Vi vectors 
(i = 1,2,3). The subset i is described by an hyperspherical polynomial of total quantum number Ki and a total length Pi but 
onlya i = Ki + ~Vi - 1 will appear in formulas. For a total degree K = KI + K2 + KJ + 2.A1, we can couple the subset 1 to 2 
with the quantum number n 12 and then, (1,2) to 3 with the quantum number N - n 12, or alternatively 1 to 3 with nil and (1,3) to 
2 with N - nil' Taking out the common factor, the transformation coefficients (nlJlnI2) ff (al,a2,aJ) from one coupling to the 
other are defined by the relation 

TJa .. a'TJa, + a, + 2n" + I,a, PI P2 &,a .. a, 2 - PI &,a, + a, + 2n" + I,a, P3 - P2 - PI 
( 

2 + 2 )n" ~2 2 ) (2 2 2 ) 
"' nil ./~4' - nil 2 2 2 "Il 2 2 JV - nl2 2 2 2 

PI+P2+P3 2+PI P3+P2+PI 

where .9'~,{3(x) is a Jacobi polynomial and 

1J~,{3 = [2(2n + a + /3 + l)n!r(n + a + /3 + 1)] 112, 

r(n + a + l)r(n +/3 + I) 

a normalization constant. The transformation coefficient5
•
6 is 

2409 

x {!(.AI + al + a 2) 

!(ff + a l + aJ) 

n12 + Hal + a 2) 
nil + !(a l + aJ) 
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in the notation (7). The extended Shelepin's symbol (10) is 

nil +a l +aJ 
JY - n 12 +a, 

nll+a, 

n12 + a l + a, 
Jf/' - nil + a, 

n 12 +a, . (44) 

Relation (41) is valid between Jacobi polynomials for any values of a"a2,aJ• In this case, there are only four numerator 
parameters which are negative integer, and compatibility conditions are represented by Fig. 2. In the hyperspherical formalism, 
a"a2,a, are integer or half-integer, and one can use series limited by values other than n I2, nIJ, ff - nl2 and A/' - nil' but some 
of them do not give the result when a"a2,al are all half-integer. 

It can easily be seen that ( - ff + n 12, - cff + nIJ), ( - n 12, - nu), ( - ff + n12, - nIJ ) and ( - n 12, - A/' + nIJ) are 
common numerator parameters in four J'l(l) series for each couple and - n12, - nu, - ff + n12, - A/" + nil appear alone in 
sixteen J'll) series. Taking into account the trivial symmetry deduced from the permutation of2 and 3, there are 44 formulas 
which look different, 12 with two negative numerator parameters and 32 with only one. 

Moreover, as long as a"a2,al are positive numbers, one of the four terms in the middle of She Ie pin's symbol (44) is smaller 
than any other one. There are eight formulas (six, taking into account symmetry) of which the sum is limited by these four 
terms. For example, in (15) the sum runs from maxi 0/ - n l2 - nIJ J to mini n l2,n IJ J. Four of these formulas, S (0, - 1, - 2), 
S ( - 0, 1,2), S (3, - 4, - 5), andS ( - 3,4, - 5) involve twelve limitations for SU2; S (0, - 1, - 5), S ( - 0, 1, - 5)S ( - 2,3, 
- 4) andS ( - 2, - 3,4) present only these four limitations. None of the two formulas of Ref. 6, which areS (0, - 2, - 3) and 

S (0, - 2, - 5) have this property. 

6. SYMMETRIES 

Formulas (15)-{20) and (29)-{33) can be used to obtain the 6-j symbol (7) only when the J'l(l) series are finite; in general 
the 6-j symbols are related to some well-poised 7F6(1) series which corresponds to 120 of them by permutation of its arguments. 
There are twelve families of sixteen such 7F6( 1) series with relations between three of them. So, there are symmetry relations 
between 23040 generalized 6-j symbols which are easily studied with the six x parameters (9). 

(a) The definition (7) is invariant for a permutation of (XI"'XS) and Whipple's result is that it is invariant for an even 
number of changes of signs among (xl ... xs). But these symmetries do not respect the positivity of Shelepin's symbols or the 
usual SU2 relations between the arguments of the 6-j symbol (the argument of some r functions in the square root fZ2 p 

becomes negative). With respect to these requirements, thex's can be divided into two subsets such that (xo• x" x 2) < (Xl. X4. xs) 
and we can change only the sign of (Xl' X4, xs). The change of two signs among (.xl' X4, xs) is the permutation of two upper 
parameters with the corresponding lower ones in the 6-j symbol. Permutation (x" x 2) and (X4' xs) is the permutation of the two 
last columns. Other permutations of (Xl' X4, Xs) are Regge's symmetries. These symmetries allowed with respect to SU2 
correspond to permutations of columns and of the two first lines ofShelepin's symbol (10). They hold for any value of a .. j. 

(b) Xo can be permuted with XI if the difference is half-integer: 

exp [ - 2i1T(X I + x 2) ] !j p(O)-exp [ - 2i1T(Xo + x 2)] !j /1) 

= exp[ _ 2i1T(Xo + x
2
)] (s~n21T(XI - x 2)!§ p(O) + s~n21T(xo - XI)!§ /2»), 

sm21T(xo - x 2) sm21T(xo - X2) 

(45) 

using relation (14). So the condition for symmetry in a permutation of (xo, x" Xl), is a + d - b - e and a + d - c - /integers. 
With these two conditions all the symmetries symbolised by Shelepin's symbol are allowed. 

(c) Other permutations and changes of sign among the x's are related to Yutsis' "mirror symmetry"l0 or "analytical 
continuation." However, the changesj- - j - 1 on the 144 "usual" 6-j symbols generate only a total of9216 elements, that is, 
two out oftive for the total number. Note that the same ratio holds for 3-j symbols. The exchange of X2 and x, is/- - / - 1; 
!j p (0) being invariant, we get 

{
ad be} = exp[i1T( _ 2/ _ 1)] (sin1T(a - e + /)sin1T( - b + d + /»)l12{a 

e - / - 1 sin1T(a - e - f)sin1T( - b + d - /) d 
b c} 
e /' 

(46) 

to a sign for the square root. Considerations of Ref. 1 can be used here. The two 6-j symbols of (46) are equal to a sign for any 
integer or half integer value off For/ = - ~ they are identical, and we can follow the sign of the square root in an analytic 
continuation of/from - ~ to its actual value and get the phase for a path which is symmetric for/- - / - 1 in the complex 
plane. The result is 

b C } = (_)(f+!)ISignllm(a-e)l-signllm(-b+d)ll{a b c} 
-/-1 d e /' 

(47) 
e 
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for any value of a···e when/is integer or half-integer. The path can be deformed; then Sign[Im(a - e)] = 1 means that the zeros 
- a + e + mr are above the path and the poles a - e + mr below it. In the interchange of (x 1> xz) with (x., xs) e- - e - 1 and 
/- - / - 1; the phase is the product of the phase for/_ - / - 1 with the phase ofe- - e - 1 with/changed into - / - 1. As 
/ and e must be half integers, we can define the phase with respectto the imaginary parts of a, - b + d and c - d; roles of e and/ 
can be interchanged. In this particular case Yutsis10 gets a complex phase. The exchange of Xo and Xl is d- - d - 1; a formula 
similar to (47) is obtained when d is integer or half-integer: !1 p (0) can be expressed in terms of!1 /1) and !1 /2) by (14); after 
the change d- - d - 1 in !1 p(1) and !1 /2), (14) can be used back only for half-integer and integer values of d. 

(d) It becomes very difficult to define the phase for the mirror symmetry of many arguments of the 6-j symbol by analytic 
continuation. Conversely some "mirror symmetries" extend to any value of the arguments ifthere are integer relations between 
other arguments of the 6-j symbol. For example, when a - e and b - d are integers, (46) becomes 

{~ e 
_ ; _ I} = exp [i1T( - 2/ - 1)] e b c} 

e /' 
(48) 

b 

for any value off Discussion of analytic continuation when a - e and b - d are integers or half-integers is similar to the one 
given for 3-j symbols. 1 

7. RECURRENCE RELATIONS 

Recurrence relations are easily obtained between contiguous generalized hypergeometric series. Writing one of these 
relations for the well-poised 7F6( 1) series as the one in (5) in terms of Whipple's parameters, we get relations between 7F6( 1) series 
which are not contiguous. In fact, we go from the notion of contiguous series to the notion of contiguity in the x's parameter 
space. 

The well-poised 7F6(1) series involved are 

(49) 

and we are interested by a relation between Fand twoF i whereF i isFin which biis replaced by bi + 1. Notingx(F) and x (F;) , 
Whipple's parameters of F and Fi' 

xJ{F') = xiF) +! - !t5ij' 

that is, all x's are increased by! except for Xi' which decreases by!. The relation 

(Xi - x)wyF + (xo - Xi)wof'i + (Xj - x o)wo7 j 
= 0 

(50) 

(51) 

can be verified for each term of the series. Noting by ~~)(O) in function ~ (0) defined by (5) in which all thex's are increased 
by 1 except for Xi which is decreased by 1, P 

2(Xi - xj)w+wij ~ p(O) + WOj ~~)(O) - WOj ~~)(O) = O. (52) 

In this last relation, permutations of (x1,ooXS) and an even number of changes of signs are allowed. A relation between 
~~O)(O) and ~~)(O) can be obtained, expressing the ~ p(O)'s in terms of ~ p(l) and ~ p(2) and going back to ~ p(O), 

2(xj - xo)w+WOi ~ p(O) + WOj ~~)(O) - tU\wOj} ~~O)(O) = O. (53) 

Combining (52) and (53) with those obtained with an even number of change of signs, we obtain a relation between ~ (0) 
:md any of its 32 neighbors in the x's space; these neighbors are defined by the decrease of an odd number of x's by 1 and the 
mcrease of the other by 1. In all of these relations, the coefficient of ~ p (0) separates in two parts such that 

K(iJ''')~ /0) + M(iJ"·)~~J .. ·)(O) = C(x), (54) 

where 

and 

K(iJ ... ) = 2yw+(w+ - 2y) + f<yl - y), Y = 2>,,' 
" 

M (iJ ... ) = ITw 
0,,1'''' 

Y = Ixl, AEi,j,oo., (55) 

" 

(56) 

is the product of all WOAI' such that (O';'"u,oo.) differs from (i,j, 00') by only one element; there is only one such W if 0 is not in (i,j,-oo) 
and five such if 0 is. This relation has been obtained by looking at a tedious list of all possible cases. It is easier to show that it 
always holds: Since (52) and (53) agree with (54) and 

(57) 

depends only on the x's of which the sign has been changed, all relations deduced from (52) and (53) by an even number of 
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TABLE III. Relations between variations of XO,X1 and variations of a and d. 

Xo x, a d x" Xl a d 

X o + ! XJ +! a-! d Xo -! Xl +! a 
X o + ! Xl -! a d-! Xo - k XJ -! a+! 

changes of sign among the x's and all relations deduced by their combinations agree with (54). C (x) is a function of the x's which 
is not invariant when the sign of some of them is changed. 

Introducing the square roots, the relation becomes for !jj p (0), 

K(iJ .... )!jj p(O) + N(iJ .... )!jj p(iJ"')(O) = C(x) (58) 

where K(iJ· .. ·) is given by (55) and 

N(iJ ... ·) = ( _ )'7(iJ· .. ·){~lulll· .. 1 }112, (59) 

where [A,/-L," J differs from (i,j,.··) by only one term; there are always six w's in the square root. There is a change of sign for 
negativelike w's noted by Iw AI'·"I. Here 1](i,j,··) is the number of negativelike w's in (56). Between generalized 6-j symbols the 
sign is different, due to the phase exp[ - 2i1r(x l + X2) J: For them the sign is plus if there are zero or one (0,1,2) among (i,j ... ) 
and minus if there are two or three of them. 

Another criterium for the choice of the w's in the square root (59) which involves no change of sign is to consider the 
positive w's related to !jj p (0) and !jj p (iJ,"')(O); for six of them, the real part varies by 1: the one with the smallest real part are in 
the square root. 

Variations of the arguments of the same column of a generalized 6-j symbol are related only to variations of the two 
related x's as shown on Table III. All recurrence relations obtained can be written 

- (b + c - d)(a + d + 1)(a + b + c + 1) f: ! ;} + {(a + b + c + 1)( - a + b + c)(b - d + 1)( - b + d + 1 + 1) 

e X(c - d + e)( - c + d + e + 1)}112 L +a1/2 
b-1/2 

_ (b + c + d + 1)(a - d)(a + b + c + 1)f: ! ;} + {(a + b + c + 1)( - a + b + c)(b + d + 1 + 1)(b + d - f) 

b -1/2 

e 

= [(a + b + c + d + e + 1 + 3)(d + e + 1 + 2)(a + b + c + 1) - (a + b + d + e + 2)(a + c + d + 1 + 2)(b + c + e 

{
a b c} +1+2)J del - [(a+e+I+2)(-a+e+l+ 1)(b+d+I+2)(-b+d+l+ 1)(c+d+e+2) 

x ( - c + d + e + 1) J 112 L +a 1/2 be} 
e + 1/2 1 + 1/2 . 

= [(2a+b+e+2)(a-c+e+ 1)(a+b+c+ 1)-(2a+ 1)(a+b+d+e+2)(a+b-d+e+ 1)J f: ! ;}. 

2412 

- [(a + b - c + 1)( - a + b + c)(a + e + 1 + 2)(a + e - 1 + 1)( - c + d + e + 1)(c + d - e) 1'12 

{
a + 1/2 

X d 
b 

e + 1/2 
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= [(a + b + c + d + e - f + 2)(d + e - f + l)(a + b + c + 1) - (a + b + d + e + 2)(a + c + d - f + l)(b + c + e - f 

+ 1») e ~ ;} -[(a+e-f+ l)(a-e+f)(b+d-f+ 1)(b-d+f)(c+d+e+2)(-c+d+e+ 1»)112 

{
a be} 

X d + 1/2 e + 1/2 f - 1/2 

= [(2a + b - e + l)(a - c - e)(a + b + c + 1) - (2a + l)(a + b + d - e + l)(a + b - d - e») {: ~ ;} + [(a + b 

{
a + 1/2 

-c+ l)(-a+b+c)(a-e+f+ l)(-a+e+f)(c+d+e+ l)(c-d+e»)112 d 
b c -f1/2} 

e - 1/2 

= [(a+b+c+d-e-f+ l)(d-e-f)(a+b+c+ l)-(a+b+d-e+ l)(a+c+d-f+ 1)(b+c-e-f)J 

x{a b c} + [(a+e+f+ l)(-a+e+f)(b+d-f+ l)(b-d+f)(c+d-e+ l)(c-d+e»)112 
d e f 

be} 
e - 1/2 f -1/2 

= [( - a - b - c + d + e + f)(d + e + f + 1 )(a + b + c + 1) - (a + b - d - e )(a + c - d - f)(b + c - e - f) J 

X {a b c} + [(a + e + f + 1)( - a + e + f)(b + d + f + 1)( - b + d + f)(c + d + e + 1)( - c + d + e) )112 
d e f 

be} 
e - 1/2 f - 1/2 

= (2a + b + c - d + 1 )(a + 2b + 2c + d + 3)(a + b + c + 2) - T J e ~ ;} -[(a + b + c + 2)( - a + b + c 

e + 1)(b+d+f+2)(b+d-f+ 1)(c+d+e+2)(c+d-e+ 1»)112 {d:1/2 
b + 1/2 

= [(2a + b + c - d + 2)(a + 2b + 2c + d + 3)(a + b + c + 2) - T) {; : ;} - {(a + b + c + 2)( - a + b + c 

e 
+ l)(b - d + f + 1)( - b + d + f)(c - d + e + 1)( - c + d + e) )112 L _a 1/2 

b + 1/2 c + 1/2} 
f ' 

with 

T= 8(a + b + l)(a + c + l)(b + c + 1) + (2a + l)(a + d + l)(a - d) + (2b + 1)(b + e + l)(b - e) 

+ (2c + l)(c + f + l)(c - f)· (60) 

The relations (60) involve ~(O) ~(3) ~(O,l,2) ~(O,l,3) ~(O,l,5) ~(O,3,4) ~(O,4,5) ~(3,4,5) ~(O,l,2.4,5) and ~(l,2,3,4,5) They are 
p' p' p 'p 'p 'p 'P , p , p , p • 

completed by permutations of couples (ad), (be) and (cf). They hold for any complex value of a,b, ... ,jwith the convention of 
positive square root at the real limit. The coefficient of the centra16-j symbol is simple when only one ofthex's decreases, more 
complicated when three of them decrease, and involves Twhen only one increases. With a change of sign for an even number 
of the x's, the coefficient of the central 6-j symbols changes according to (57). However, for a relation written between any 
three 6-j symbols, the coefficient of the central term is invariant and can be factorized in some cases. 

Three 6-j symbols with the same arguments, except for one which is respectively a-I, a and a + 1, are not contiguous. 
The recurrence relation between them is not one of those studied here, but can be obtained by combining them. 
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8. SUMMARY AND CONCLUSION 

A generalized 6-j symbol is defined by two sets of three parameters (xO,Xl,X2) and (X3,X4,X,) wherexo plays a special role. To 
compute each of them, there are 16 7F6(I) series related to an even number of change of signs among (xl···x,) and there are 12 
independent definitions with respect to what is selected to be Xo and its sign. There are three term relations between any three 
of these independent definitions. However, if there are some integer relations between thex's, the 12 definitions become 
identical and the 6-j symbol can be expressed as the Saalschiitzian J3( 1) series, among which there are 11 different patterns for 
the usual conditions of angular momenta. 

Among the permutation of (x 1" x,) and even number of change of signs, only permutation of (x "x2) and permutations and 
changes of two signs among (X 3,X4,X,) preserve the usual triangular relations among the arguments of the generalized 6-j 
symbol. When Xo - Xl or Xo - X 2 are half-integer the symmetry is extended to the permutations of (xO,Xl ,X2) and involves the 
144 elements of usual and Regge's symmetry. 

Keeping Xo fixed, permutation of the other x's give relation to other generalized 6-j symbols which are usually considered 
as analytic continuations of the usual ones. When the permutedx's differ by half an integer, these relations reduce to a plus or a 
minus sign according to the path of analytic continuation. 

For many problems in which a coefficient is obtained as a finite Saalschiitzian J3(I) series, this study can be used to relate 
different formulas. However, we had to deal with a square root of which the structure is related to the existence ofa Shelepin's 
symbol including positive values. For a given set of x's there is not necessarily a generalized 6-j symbol. 

APPENDIX: RECURRENCE RELATIONS FOR GENERALIZED 3-jSYMBOLS 

The special form of recurrence relations obtained here for generalized 6-j symbol incites us to look for a similar form for 
the recurrence relations of generalized 3-j symbols given in Appendix B of Ref. 1. The generalized 3-j symbols were written 

(
a b c) -
a /3 y = exp[i1T(f, - (4)]Fp(0), (AI) 

with 

fl = i(3 + 6a + 2y - 2{3), f2 = !(3 + 6b + 2a - 2y), f3 = !(3 + 6c + 2{3 - 2a), 
(A2) 

f4 =!( - 3 - 6a + 2y - 2{3), f, =!( - 3 - 6b + 2a - 2y), fo =!( - 3 - 6c + 2{3 - 2a). 

A contiguous 3-j symbol is obtained for four shifts of! and two of - jon f'S parameters, or four shifts of - j and two shifts ofj. 
They were denoted by F~J)(O) when r i and rj increase by i and by Fp- (iJ)(O) when r i and rj decrease by j. The recurrence 

obtained in Ref. 1 can be written 

with 
5 

K 'J(r) = !(r, + rj + !)2 + !(r; + 1) -! L~' 
Jc~O 

M'J(r) = [ II (!+f,+rj +r))II2, 
Jlc/-iJ 

€(i,)) = - 1 if (i,j)E(l,2,3), €(i,j) = 1 otherwise. 

Here K ( - r), M ( - r) means that there must by a change of sign for all r's in (A4) or (AS). 

(A4) 

(AS) 

(A6) 

When written for generalized 3-j symbols, the phase (A6) is €(i,}) = - 1 if (iJ)E(0,4,S) and E(iJ) = 1, otherwise (there is 
an error on this point in Ref. 1). The 30 recurrence relations can be obtained by circular permutation of (a,h,c) in the ten 
following ones: 

[!Ca + b - c + I)(a - b - c) + (a + .!:)y + (c + ~)a) 
3 3 

X (a a b c) _ [(a + b _ c + 1)( _ a + b + c)(a _ a + I)(c _ y) )112 (a + I~2 
/3 y a- 2 

b 

/3 

2 1 (a 
= [!(a + b - c + 1)( - a + b - c) - (b + "3)Y - (c + "3)/3 J a 

b 

/3 
;) - [(a + h - c + I)(a - b + c)(b + /3 + 1) 

X(c+ y)JII2 (a a h+! C-!l) 
/3+! y-2 
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= [-l[a(a+ l)+b(b+ l)-c(c+ 1)] -ap-j(a-p)J (: 

X(a~l P:l ;) 

= [l(a + b + c + l)(a - b + c) - (a + j)r + (c + !)a J (: ~ 
X(a- 1 b C- 1) 

a-1 P r+1 

= [l(a + b + c + 2)(a + b - c + 1) - (a + j)P + (b + ~)a J (: 

b 

P 
;)- [(a+a)(a-a+ l)(b-P)(b+P+ l)JII2 

;) + [(a + b + c + l)(a - b + c)(a + a)(c - r) J 112 

b 

P 

- [(a+b+c+2)(a+b-c+ l)(a+a+ l)(b-P+ I)JII2(::t b+1 
P-1 

= [1( - a + b + c + l)(a + b - c) - (a + !)r - (c + ~)a J (: ~ ;) 

+ 1 ( - a + b + c + 1)(a + b - c)(a - a)(c - r + 1) J 112 

(
a -1 b c + 1) 

X a + 1 P r-1 

= 11(a - b + c + 1)(a + b - c) + (b + !)r + (c + np J (: 

+ [(a-b+c+ 1)(a+b-c)(b+P)(c+r+ I)JII2(: 

b 

P 
b -1 c + 1) 
P-1 r+1 

= [l[a(a+ 1)+b(b+ 1)-c(c+ 1)] +ap-!(a-p)J (: ~ ;) + !(a - a)(a + a + 1)(b +P)(b -P + I)JII2 
(

a b c

r
) 

X a+l P-l 

= Il(a + b + c + 2)( - a + b - c - 1) + (a + ~)r - (c + i)a J (: ~ 

-1(a+b+c+2)(a-b+c+ 1)(a+a+ 1)(c-r+ I)JII2(::t b 

P 
c+ 1) 
r-1 

(
a pb C

r
) = [l(a + b + c + 1)( - a - b + c) + (a +!)p - (b + !)a J a 

+ I(a+b+c+ 1)(a+b-c)(a+a)(b-p)J1I2 

X 2 (
a _1 

a-1 
b-! 

P+1 
(A7) 

These relations are related to (ij) = (01), (02), (03), (04), (12) and their negative equivalents. The other ones are obtained by 
circular permutation of (a,b,c) in the coefficients, but restoring the right order in the generalized 3-j symbols; they hold for any 
values of a,b,c,a,/3 as long as the square roots can be defined by analytic continuation to real values. 
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Meromorphic solutions of nonlinear partial differential 
equations and many-particle completely integrable systems a) 

D. V. Chudnovsky 
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Complete description of meromorphic solutions of several two-dimensional equations 
with algebraic laws of conservation is obtained. Among them are Zakharov-Shabat 
systems and, e.g., the Kadomtsev-Petiashvili equation. 

INTRODUCTION 

We shall consider two-dimensional equations and their 
meromorphic solutions, especially elliptic solutions (i.e., so
lutions expressed in terms of elliptic functions). We shall 
investigate the behavior of these solutions using the picture 
of poles in the complex plane, so transferring our problem to 
the many-particles one, in the spirit of Refs. 1 and 2. We will 
describe completely merom orphic (in particular, rational) 
solutions to some two-dimensional systems. 

Two-dimensional Lax (or Zakharov-Shabat) equations 
for the vector function ii(x,y,t) have the form3 

[L 1 - ~,L2 - ~] = 0. 
at ay 

This is the condition of commutation for two operators act
ing on functions of x: 

aL 2 aLl 
- - - = [L 1,L2 ]. (2 dim) 

at ay 
This equation is the system of equations on coefficients of 
operators L I ,L2 .3 For such kind of equations, Zakharov and 
Shabat have constructed the "algebraic inverse scattering 
method." 

The first nontrivial example of a two-dimensional "in
verse scattering integrable" equation is the two-dimensional 
KdV or Kadomtsev-Petiashvili equation3 •4 : 

a a2 

-(UI + 6uux + uxxx ) = - 3a-u (2 KdV) 
ax al 

for u = u(x,y,t) and a = ± 1. 
What is the method of solving (2 dim) algebraically? We 

consider some auxiliary stationary problem 
[L1,Q]=0 (S) 

or (blbu)Ip = ° for some functional Ip = Sp dx, such that 
the stationary (aiilat = aiilay = 0) manifold (S) is invariant 
for the system (2 dim). All the solutions of (S) can be found 
algebraical1y, when the orders of Ll and Q are relatively 
prime. 

Then for any solution ii(x) = ii(x,O,O) of (S) we find an 
evolution iny and t according to (2 dim), because for invar
iant (S), u(x,Yo ,to) is a solution of (S) for any Yo' to' The 
formulas of Ref. 5 then allow us to write explicit expressions 

., 'Publication of this article was delayed 3 months through no fault of the 
author. 

for ii(x,t,y) using B-functions of an algebraic curves. 
This method can give only merom orphic solutions. 

Thus it is much more natural to examine all meromorphic 
solutions ii(x,t,y), considering, as in Refs. 1 and 2, the motion 
of the poles ai = ai(t,y) of ii(x,t,y) in all of the complex x 
plane. 

I. MANY-PARTICLE SYSTEMS CONNECTED WITH 
MEROMORPHIC SOLUTIONS 

Many-particle problems which arise from the evolution 
of poles of the meromorphic solutions of completely integra
ble systems are connected with systems of finitely (or infi
nitely) many particles interacting via the potential ~[x] 
[where ~(x) is a Weierstrass elliptic function 6

]. In the degen
erate case we obtain a system of particles Xi = Xi (t) which 
interact via the Jacobi potential x - 2.7.8 Thus a Hamiltonian 
of the form 

H'J,.\ = 1IxT + GI~(Xi - Xj } occurs. 
iEI i*i 

For a finite I, Moser7 for the case ~(x) = x - 2 and Ca
logero8 for an arbitrary ~(x), have proved that the corre
sponding Hamiltonian system H possesses Lax 
representation 

dL = [A,L ]. 
dt 

The matrix L = (L ij)' i, jEJ has the form 

Lij = (1 - Oij}V - G a(xi - Xj) + oij::<' 

where a 2(X) = ~(x). 
Then the quantities I n = (l/n)tr(L n), n> 1 are the first 

integrals of H'J,.\' Moreover it is proved that theJn are involu
tive and that they are sums of polynomials inxi' ~(Xi - x j ), 

G with rational coefficients. The form of the first terms of I n 

is the following, 

I n =2.IX7 + GI(x7- 2 +x7- 3X
j +'" +X;-2) 

n iEI i*i 
x\l5(x i - x) + .... 

For the f1amiltonian H'J,.\ with \l5(x) = x - 2, the exact 
formulas for solutions can be given for finite II I = n. 

For the matrix 

M (t) = diag(x I (to), .. ·,xnCto» + L (to)(t - to) 
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the eigenvalues Xj (t) are solutions with given initial values 
x,{to), x;(to), corresponding to the Hamiltonian H = !trL 2. 

For the HamiltonianJn = (l/n)trL n, L must be replaced by 
L n - I in M (t ). 

There is a close relationship between many-particle sys
tems H, J n , and the solutions of known completely integra
ble systems. 

This connection lies in the method of the so-called pole 
interpretation first proposed by M. Kruskal. 

The ideas of this method are the following: to consider 
solutions u(x,t ) of nonlinear partial differential equations as 
meromorphic functions in the complex x plane, and to inves
tigate the motion of the polesxj = Xj (t) as particles with self
consistent potential. 

The application of the pole interpretation and the estab
lishment of a connection with the Hamiltonian H'jJ can be 
described along the lines of the following general scheme.6 

We consider the following special class of merom orphic 
functions, residues and poles of which are expressed in terms 
of the variables (x j ,x j ) of H 'l.~ , 

A aJk + I 
Uk (Z,t) = I --. - ~(z - Xj), k = o,1,2,.... (0) 

j"i aXj 

A special sequence of differential equations connected 
with (0) exists. 

Theorem: Let 

U k,x, ... ,x 

(mfactors) 

have the weight k + m + 2. Then there exist polynomials 
ilk (UO'''''U k _ I) in uo,uo,x'''''u I,U Ix,,,,,Uk _ 1,,,,,U k _ I.xx ... "·· of 
degree two and having all the monomials of weight k + 3 
such that the system of equations 

d 
Uk., + Uk + I.x + ~k (UO"",Uk _ I) = 0, k = 0,1,. .. 

(C)k 

satisfies the following properties: 
(I) the functions Uk satisfy (C) ifand only ifxj = Xj(t) 

move according to H'l.l; 
(2) if Uk (x,t) satisfy (C) and aremeromorphic functions 

with poles of order 2, then Uk = Uk' 

Here are the first few ilk: 

il()=O, ill = - G U2o + £u 2 12 Oxx' 

G 
il2 = - GUOu l + 6ulxx, 

G 2 G 2 
2 

il3 = - lUI - GUOU2 - gUOX 

G2 G 
+ 120 uOxxxx + 4 U2XX' 

The first such nontrivial system coincides with the 
Boussinesq equation u" + (u 2

)xx + uxxxx = O. In general, 
the system (C) describes one of the scheme ofapproxima
tions of the two-dimensional shallow water equation. 

The system (C) also describes many two-dimensional, 
completely integrable systems, whose poles move according 
to Hamiltonians I n • For this we present the system (C)o-
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(C)n in the following form: 

(C)k: k = O, ... ,n - 1 

d 
un" - Uo.y + j;iln(Uo,,,,,u n _ I) = 0. (C) 

Here we replace Un + I,x by - UO,y in (C). Then it follows 
from the theorem that the functions Uk: k = O, ... ,n from (0) 
satisfy (C) if and only if x j move in the t direction according 
to H'l.~ = J2 and in the y direction according to I n • 

II. MEROMORPHIC SOLUTIONS OF TWO
DIMENSIONAL EQUATIONS AND THEIR POLES 

We already know by Refs. 1, 2, and 9 that the evolution 
of poles of several one-dimensional equations (e.g., KdV, 
Boussinesq,. .. ) is connected with the Hamiltonians H'll and 
I n = (lIn)tr(L n), n = 2,3,. .. of Refs. 1,2, and Sec. I. 

These one-dimensional systems have Lax' form 

dL I 
-- = [L I ,L2 ], 

dt 

and so are included in the more general two-dimensional Eq. 
(2 dim). In this paper we shall consider some natural conjec
tures about meromorphic solutions of (2 dim) and obtain 
new solutions of (2 KdV) and similar equations in terms of 
elliptic functions. 

The chain (C) of nonlinear equations with constraints 
unO gives some particular system of nonlinear equations 
of evolution possessing infinitely many algebraic laws of 
conservation. As we had already mentioned in Sec. I the first 
system in this chain is the Boussinesq equation, i.e., corre
sponding to the Lax pair dA Idt = [L,A ], where Lis Schro
dinger and A is of degree 3. For this equation, the motion of 
the poles Xj = Xj (t) corresponds to the motion according to 
the Hamiltonian H = J2 with the restrictions gradJ) 0. 3 

On the other hand, the KdV equation has the Lax represen
tationdL Idt = [A,L] and thepolesxj = Xj(t )moveaccord
ing to the Hamiltonian J) with the restrictions gradH-
= gradJ2 = ° (see Refs. 1 and 2). 

So it is natural to put out the following conjecture. 
Conjecture: The pole evolution of the system having the 

Lax form dL Idt = [A,L] for L of order n and A of order m, 
n> 1, m> 1, is connected with the system with the Hamil
tonian J m with the restriction gradJ n = O. By analogy, if we 
have the system dL Idt - dA Idy = [A,L], then the poles 
Xj = Xj (y,t) move iny according to I n and in t according to 

This conjecture was proved in Ref. 1 for the case m = 2, 
n = 3 ofm = 3, n = 2 (see Ref. 1, §1O, p. 350). In Ref. 10 it is 
mentioned that these results were obtained "very recently" 
(after Ref. 1). We also prove here the conjecture for n = 2, 
m = 4 and show its close relation with system (C). 

A. Meromorphic, rational, and elliptic solutions of the 
two-dimensional Korteweg-de Vries equation 

In this part, general merom orphic solutions of (2 KdV) 
are considered and new elliptic solutions are constructed. 

1. Meromorphic solutions 

For the two-dimensional Korteweg-de Vries equation 
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(2 KdV) 

we shall consider the meromorphic solutions, written in the 
general form 

u(X,y,t)=I(-2)(x-ai)-2, ai=ai(y,t) (I) 
iEI 

or 

u(X,y,t) = I( - 2)~(x - aJ, ai = ai(y,t). (2) 
iEI 

It is easy to show that, if u(x,y,t ) is a meromorphic solu
tion inx of(2 KdV) for(y,t )E[O,yo] X [O,to ], then the poles in 
a i (y,t ) are of second order with residues - 2. Thus the form 
(I) or (2) is the general form of the meromorphic solutions of 
(2 KdV). 

In Ref. I (§ 10, p. 350) it was shown that the motion of 
the poles ai(y,t) is iny according to J2 =H and in t accord
ing toJ3 • This is possible becauseJ2 andJ3 commutes. More 
precisely we have 

Proposition I: The function 

u(X,y,t) = - 2I~(X - aJ, ai = ai(y,t) 
iEI 

is a merom orphic solution of (2 KdV) if and only if 

aaiyy = 4 I~' (a i - a), 
jejei 

ail = 3aa;y - 12I~(ai - a): iE!. 
j4 i 

Proof By the law of addition for ~(x) in the form 
13.13(10), Ref. II, we have 

6uux = 12I(~2)'(X - a,) + 24I~(X - a i) 
iEJ iEI 

(3) 

X I~(ai - a) + 24I~(x - a i) I~(ai - a j ). 
jifi iEI jejei 

Because~" = 6~ 2 - g2 /2 we obtain from (2KdV) the sys
tem (3) looking at coefficients at ~(X - a i ), ~'(X - a i ), 

where ~(x)-x - 2, ~'(x)- _ 2x - '. 
If we consider the commuting flows 

- b; 4 
J2 =I- - -I~(ai-aJ)' 

iEI 2 a iejeJ 

J 1 =aIb f- I(bi+bJ)~(ai-a), 
iEI i-FJ 

i.e., G = 4/a,J2 = H = J 2 , and~ = 3aJ, , then the system 
(3) is obviously equivalent to 

a12 a12 

a iy = ab' biy = - -, aa,' 
(4) 

iE!. 

Because 12 and 13 are commuting we obtain solutions 
ai (y,t), b, (y,t) of system (4), or of system (3). 

Thus starting from any initial data at y = Yo , t = to, 

a7 = ai(Yo,to) , b ~ = aiy = bi(Yo,tO ) ' iE!, 
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we can explicitly find (at least for finite I) a solution of (3), 
aJ y,t) such that 

ai(yo,tO ) = a7, aiy(yo,to) = b 7· 

For example, for rational solutions u(x,y,t) of (2 KdV) of 
degree 2n, this gives solutions depending on 2n arbitrary 
parameters. 

2 Raffona/so/uffons 

How do we obtain, e.g., rational solutions of (2 KdV), 
e.g., those when I = n, ~(x) = x - 2? According to the the
ory of Hamiltonians commuting with Hx - 2 described in 

Refs. I and 2, we have the following. 
Rule 2: If we have initial conditions at y = Yo, t = to' 

a7(Yo,to) = a7, b 7(Yo,to) = b 7, 

then for two flows having Hamiltonians 

H1=tr/(L), H 2 =trg(L), 

for which 

aH2 
a· =-

t/ ab
i 

' 

ai(yo,to) = a~), bJYo,to) = b 7, i = l, ... ,n. 

The solutions are defined as eigenvalues of the following 
matrix, 

UII"lI, = diag(a~, ... ,a~) + (y - yo)!'(L ) (Yo,to) 

+ (t - to)g' (L ) (yo,to)' 

Now it is clear how to obtain u(x,y,t), 
Rule 3: If 

(5) 

u(X,y,t) = - 2 i (x - ai) - 2, ai = ai(y,t), i = 1" .. ,n 
i= I 

is such that a i moves in y according to HI = tr / (L ) and in t 
according to Hz = tr g(L), then 

d Z 

u(x,y,t) = 2 dX2 Inx(x,UlI"II,), 

where X(x,UII"JlJ is a characteristic polynomial of the ma

trix UII"H. defined before. 
Thus for two-dimensional KdV (2 KdV), 

d 2 

u(x,y,t) = 2 -lnx(x,H) (6) 
dX2 

for U = UJ"JaJ" 

U = diag[a71 + (y - yo)L (to,yo) + (t - to)3aL 2(tO'YO)' 
(7) 

So all rational solutions of (2 KdV) are easily described. 

There exists a paper by Manakov, Zakharov, Bordag, 
Its, and Matveev '2 where they have written similar formulas 
for rational solutions with a = - L They deduced these so
lutions from solutions of the Zakharov-Shabat type with a 
degenerate kernel taking in exp(xiy + 7] it) the limit x i ~O, 
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'T/;-AJ, i.e., considering the degenerate case of exponential 
functions. 

For example, let us write down the simplest nonsingu
lar rational solution. We also must mention that in Ref. 10 
this solution was written incorrectly. It is 

4/v + 2vy2 - 2(x - 3vt - xo) 
u(x,y,t) = 2 . (8) 

[(x - 3vt - xo)2 + vy2 + 2/vf 

Here a = - 1 and v x = 3v 2, velocity in the x direction, 
Vy = - 6v in the y direction of "soliton." 

Now we shall proceed to exhibit very interesting elliptic 
solutions of (2 KdV). The simplest elliptic solution is of the 
following form, 

u(x,y,t) = - 2~(x + By + (3V - 3aB)t + xo) + V. 
(9) 

We shall now consider the elliptic solution of (2 KdV) with 
two poles in each part of the lattice. So we take 

u2(x,y,t) = -2~(x-al)-2~(x-a2)' (10) 

withal = aj(x,t), i = 1,2. Then according to the equation of 
evolution, after some changes, we obtain the following 
formulas: 

a l = RoY + Cit + C2 + 'T/(y + 6aRot )12, 

a2 = RoY + Cit + Cz -'T/(Y + 6aRot )12, 

where the function 'T/( y + GaRo t ) satisfies 

3a'T/;/4 = CI - 3aR ~ + 12~('T/). 

3. Elliptic solutions 

We have already reduced the problem of finding elliptic 
solutions of two-dimensional equations, especially of (2 
KdV) to the solution of ordinary differential equations in
volving ~(z), such that 

aa; aH ab j aH 
ay a;;' a , Y 

for H = H~\.1.2 
We know that this system for finite II I is completely 

integrable. But we do not know what is the exact form of 
these solutions when II I > 2. Here we have the following 
questions: 

(1) Whether the general trajectory a;(y), bj(y) can be 
expressed using only elliptic functions, namely using II I - 1 
additional ones; what are the relations between invariants of 
these functions and ~(x), if elliptic representation is 
possible? 

(2) What is topologically the variety of solutions of H~ ? 
In the case of degenerate ~(x), e.g., ~(x) = x - z, 

sin - 2X , sinh - lX, we have simple formulas for exact solu
tions (cf. Ref. 2). We also have the result for II I = 2. 

Let 

a lyy = - ~'(al - az), aZyy = - ~'(az - al)' 

Then a l + a2 =AoY +Al and fora = a l - az, 

a~ = (- 4G)~(a) - 4GC, 

C is a constant. If we put 

aCyl = a (y/2v-:=-G ) 
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and set 

v = ~(a), 

then for 

s= _(7C3_g2C/4-g3/4)[~(a)+CJ-I 
+ 3C 2 - g2/12, 

we have the elliptic representation for S, S satisfying 

s;, = 4s 2 
- Gzt - G3, 

where 

G2 = - 3g3C + ~/12 + gzC 2
, 

G3 = g3C3 - ~C2/6 + gzg3C /4 - rl/4 + g~/63. 
If ~ I (z) is an elliptic function, satisfying 

~iz = 4~~ - GZ~1 - G3, 

then 

S=~l(2V -Gy+yo)' 

It is very important to mention that for a modular invariant 
j =j(~), 

j = gi/(gi - 27rl), if .1*0, 

the modular invariant J = J (~l) can be chosen (with vari
ation of C) arbitrarily. Thus the complete solution of H~\ 
involves two functions, the ~(z) and a new ~ I (z) with arbi
trary invariant. 

4. An elliptic 2-soliton 

We turn back to the solution (10) of (2 KdV). Now we 
use the solution of H~\ for II I = 2. We put 

S (y + 6aRot ) = - (7C 3 - ~ C - ~ ) 

X 1/[~('T/(Y + 6aRot» + C] 

+3C z _ ~ 
12 ' where 

C l R6a 
C= 12 - -4-' 

Then we have 

S (y + 6aRot) = ~l (4(y + 6aRot )/V-; + CJ. (11) 

Here the function ~l satisfy ~'i = 4~~ - GZ~l - G3, and 
G2 , G3 were defined before. This gives exact formulas for 
Uz (x,y,t) in (10), depending on g2' g3' C p Cz, R o, C3. As we 
already mentioned before this leads to nonsimpie Abelian 
variety 

(~(X),~'(X),~l (x),~;(x» 

of dimension two and any nonsimple Abelian variety of di
mension two can appear as a manifold for solutions of (2 
KdV). 

The solutions uz (x,y,t ) are nonsingular and especially 

interesting if~(z) is with complex multiplication on V - 1, 
i.e., Ref. 11, gJ = 0. In this case the a· can be chosen such 

thata l = V - la,a 2 = - V - la,~nduz<x,y,t)iSbOund
ed in the (x,y) plane. 
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B. Meromorphic solutions of other two-dimensional 
equations 

The very general idea of pole expansion can be used in 
order to obtain information even about algebraic properties 
of equation. We shall use the pole expansion in this part for 
different two-dimensional systems of the form (2 dim) with 
L, ,L2 of order two and four. 

1. Elliptic solutions for (2 dim) in the case n = 2, m = 4 

The (2 KdV) corresponds to the case 
dL2/dt - dL3/dy = [L2,L3] and we get a good description 
in terms of Hamiltonians J2 , J3 • The next case (a very non
trivial one) is the system 

dL 2 dL4 
-- - -- = [L 2,L4 ], 

dy dt 

giving equations for the coefficients of the operators of de
gree two, L2 and four, L4 . If we consider them as usual, 

d 2 d 4 d 2 d 
L 2= - +u, L4= - +u2- +u,- +uo, 

dX2 dx4 dx2 dx 

then we have the following system for uO ' u, ' U 2 : 

U = u2/2 

u2t = 2u 2xx - 2u 'x' 

Ult = - u'xx + 2u2xxx + U2U2x - 2uox, (L) 

u 2y 1 1 
UOt - 4 Ulxxxx + "2 U2U1xx - UOxx + "2 U2xU" 

We can transform this system into a more convenient 
form. 

Ifwe put 

u, = u2x + u/2, Uo = ~U2XX + u'x/4 + uol4, 
3 

then the system (L) takes the form 

A 2 ' A A UOt - u2y = 3U,xXX + u,u2x' 

Now we consider the general purely Weierstrass elliptic 
solution of (I) If the functions uo, u, ,u2 are purely Weier
strass elliptic solutions of (L), they can have the form 

Uz = - 4I~(X - ai); (12) 
iEI 

U, = - 4Iait~(X - ai); (13) 
lEI 

Uo = ~ [ - 4a~t + 32j~i~(ai - a) ]~(x - ai)· (14) 

We must mention that (12)-(14) is not the most general 
form of merom orphic and even elliptic solutions of(L), but it 
is the general form for purely Weierstrass elliptic solutions. 

In order for (12)-(14) to satisfy (L), the following con
dition must be satisfied, 

aitl = 8I~' (a i - aj ), iE!. (15) 
jcl- i 

However, it can easily be shown from (L) that (12)-(14) 

2420 J. Math. Phys., Vol. 20, No. 12, December 1979 

satisfy CL), 
if ail = ajt for all i,jE!. 

Thus, for all the elliptic solutions of (L) the velocity of 
poles in the t direction is the same for all the poles. 

The conditions for satisfaction of(L) for (12)-(14) are 
the following: 

I~'(ai - aj) = 0, iE!, ail = V, iE!. 
i#i 

This is the condition grad(J2 - VJ,) = O. In they di
rection, a i moves according to J4 but linearly in t. 

Even for y independent (L) this gives N-soliton solu
tions which have the same velocity not connected with initial 
conditions. The solution thus remains always connected so
litons with a strange interaction of the I-solitons inside the 
N-soliton. The simplest I-soliton of(L),y independent, is the 
following, obtained first by Manin 13: 

2 
2 cosh2ax - cos2ax - 2sin4a2t 

~,= a , 
cosh2ax + cos2ax + 2cos4aZt 

2 
sinh2ax - sin2ax 

~2 = - a , 
cosh2ax + cos2ax + 2cos4a2t 

u2 = - 4~2x' U, = - 6~2xx - 4~ 'x + 4~2 ~2x' 
~o = - 4~2xxx - 6~,xx + 8(~2x)2 + 4(~If12)x 

+ 6f.12 f.12xx - 4f.12x f.1~, 
or we change x by x + c. These solutions have the period 
1T/2a 2, but when cos4a 2t = - 1, we have "explosion" at 
x=O. 

2. New systems of equations connected with integrals J2 

andJ4 

It is clear that because of the strange behavior of the 
elliptic Weierstrass solutions of (L), even for the y-indepen
dent case, it is necessary to correct (L). 

We correct (L) using the system of equations (C)o -( Ch 
from Sec. I in such a way that it has good elliptic (as well as 
meromorphic) solutions with poles moving according to J4 

in the y direction and according to J 2 in t. 
Here is the system (C): 

(16) 

UOt - u2y = - (G /6)u,xxx - (G /4)u 2xu, - (G /4)u zu,x' 

The meromorphic solutions of this system are of the same 
type: 

u2 = - 4I~(X - ai); 
iEI 

u, = - 4Iait~(X - ai); 
lEI 

Uo = - 4I[a~t + GI~(ai - aj)]~(x - a;), 
lEI j"::::f:::-l 

buttheai moves iny according toJ4 and in taccording toJ2 ' 
for any G. 

Now we will show that the systems (L) and its correct 
form (16) are in fact equivalent. So it is possible to obtain an 
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analog of the elliptic solutions even for (1,). 
To do this, we will first investigate the general form of 

meromorphic solutions for (L), not necessarily pure Weier
strass elliptic. 

3. General meromorphic solutions of (L) are connected with 
J2 andJ4 

The general meromorphic solutions of (L) are really 
connected with the Hamiltonians J2 and J4 , but not with 
G = - 8 (as for pure Weierstrass elliptic solutions) and with 
G = - 4. However, in this case, Uo contains the poles of first 
order. 

Now let us find all meromorphic solutions of (L); they 
have rather a simple nature, connected with J2 and J4 • We 
must have, for an arbitrary meromorphic solution uo , u I ' U 2 

of (L), the following representation: 

U2 = -4I(x-a;)-2, 
lEI 

U I = -4Iait (x-a;)-2, 
lEI 

uo = -4I[a7t -8I(a;-aj )-2](x-a;)-2 
;E/ h '=; 

(17) 

(18) 

-4I(aitt + 16I(a;-a)-3](x-a;)-I. (19) 
;E/ h '=; 

The general functions U 2 , U I , Uo (17)-( 19), as functions 
from x, t satisfy (L) if 

a;rt = - S I (a; - aj ) - 3, iEl, (20) 
jet-I 

i.e., a; as functions of t satisfy Hx _ 2 for G = - 4. Similarly 
a; (y,t) as a function ofy is the solution corresponding toJ4, 
also for ~(x) = x - 2 and G = - 4. 

Thus, rational solutions of (L) really satisfy our 
conjecture. 

Now we will write (L) in a more traditional form [cf. (C) 
in Sec. I and the expressions for Uk (x;t ) in Sec. q. To do this, 
we remember that (17)-(19) is the solution of(L) if (20) is 
satisfied, 

a;rt= -8I(a;-aj )-3. 
fie; 

Thus 

Uo = - 4I[a7t - SI(a; - aj ) - 2] (x - a;) - 2 
;E/ j=t=; 

- 4I[sI(a; - a) - 3] (x - a;) -I. 
;E/ j=t=; 

We put 

Uo = -4I[a;, -4I(a; -aj )-2](x-ai )-z. (21) 
fEO./ } II 

From (21) and (17)-(19) it follows that 

120 = u - 4I[ - 42)ai - aj ) -2](X - ai)-2 
iE/ }oki 

2421 

- 4I[8I(a i - aj ) - 3] (x _ a i ) - I. 
iE/ }=;£i 

Now for ~(x) = x - 2 we have 
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(ao-uo)x= -4I[-4I~(ai-aj)]~'(X-ai) 
iE/ j=t=i 

+4~[ -4j~~'(ai-aj)]~(X-ai)' 
By the law of addition for ~(x) we have 

(Uo - Uo)x = U2U2x - 16I~(X - ai)~' (x - ai) 
iEI 

I 
= U2U2x + "3U2xxx' 

Thus, 

~ '" I 
UOx = UOx + U2U2x + "3U2xxx' 

Now we can rewrite (L) in the following form: 

U2t = - ulx, 

~ I '" 
u lt = "3U2xxx + U2U2x - UOX' 

'" 2 I ~ ~ ~ uoxt - ulxy = 3"Ulxxxx + U lxU2x + UIU2xx - U2tU2x 
I 

- U 2U2xt - 3"U2txxx 

2~ 2~ ~ ~ 
= 3"Ulxxxx + UlxU2x + UIU2xx + UlxxU2 

= (~alxxx + (U IU2 )X)x· 

Now we define iio (x,t ) by 

-_~ 12 I 
Uo - Uo - "lU 2 - "3U2xx' 

Then from (L) we obtain 

U 2t = - ulx, 

- I 
all = - uOx + "3U2xxx + U2Ulx' 

- 2 l~ ~ ~ 
UOt - u 2y = 3"u lxxx + UlxU I + UIU lx' 

Then, in view of the given supra, this system is equiv
alent to (1,). 

General meromorphic solutions of (L) have the form 
(17), (18), (21), with Uo = iio' where (20) is satisfied and 
a i (y,t) moves according tOJI on t and according toJ4 ony. 

But the system (L) is equivalent also to (16) by B2, if we 
change y by 2y. 

Thus, after some transformations, we find that (L) has 
elliptic solutions and in this case also, the conjecture is true. 

CONCLUSION 

System (C) gives us the possibility to verify the conjec
ture for min [n,m I = 2. For min [n,m 1 > 2 besides motion 
corresponding to I n and J m there can appear new many
particle systems. 
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A special class of N -soliton solutions of the Korteweg-deVries equation is examined. It is 
shown that the nonscattering wave equation based on the corresponding special reflectionless 
potentials can be obtained by a coordinate transformation of the ordinary wave equation and that 
these reflectionless potentials and others occur in the scalar wave equation on black hole 
geometries of general relativity. 

1. INTRODUCTION 

It is well known that the N-soliton solutions1
•
2 of the 

Korteweg-deVries (KdV) equation may be obtained from 
reflectionless potentials of the Schrodinger equation.' 
Among these potentials there is one class which is simpler 
than the rest. In this paper, we show that this class of poten
tials is connected in an unexpected manner to the wave equa
tion in Minkowski space and that, in addition, it is related to 
the wave equation in important geometries of general 
relativity. 

2. A SPECIAL N-SOLITON SOLUTION 

A remarkable technique for finding solutions of the 
KdV equation is the inverse scattering method,' in which a 
solution u( x,t ) is generated from its initial data u( x,O) in a 
series of steps, the first of which is the solving of the time
independent Schrodinger equation with potential u( x,O), 
and energy A 

1//' + [A - u( x,O)] tf; = 0. (1) 

The N-soliton solutions are precisely those u( x,t) generated 
by those u( x,O) which are nonsingular rejiectionless poten
tials. It was shown by Kay and Moses' that the set of all 
nonsingular reflectionless potentials for (1) is given by 

d 2 

u(x,O) = -2-lndet[f +C(x,O)] , (2) 
dx2 

where f is the N xN identity matrix and 

C(x,O)= [rnc", e-[(I(,,+Km)X]/(Kn +Km)], (3) 

with the Cn positive constants and the Kn distinct positive 
constants. The resulting (N-soliton) solutions of the KdV 
equation are given by 

a2 

u(x,t)= -2-lndet[f +C(x,t)] , (4) ax2 

where 

C )_[ exp[-(KnX-K~t)-(KmX-K~t)]] 
(x,t - CnCm • 

Kn +Km 

In a study oflinear hyperbolic partial differential equations 
whose solutions have "the characteristic propagation prop-

"'Work supported in part by the Natural Sciences and Engineering Re
search Council of Canada. 

erty," i.e., are nonscattering, Kundt and Newman5 achieved 
both less and more than did Kay and Moses in presenting 
reflectionless potentials for (1). On the one hand, they did 
not obtain the full set of u( x,O) associated with (2) and (3); 
on the other hand, they did obtain a discrete infinity of such 
potentials of the simple form 

u( x,O) = - 1 (I + 1)/ cosh 2X , 1 an integer. (5) 

Since these are nonsingular functions, they must be among 
the potentials of Kay and Moses, i.e., there must be a choice 
of N and of Cn , Kn , n = 1,. .. , N, such that 

-2~lndet[f +C(x,O)] = -/(/+ 1) (6) 
dx2 cosh2x 

We shall find that choice. 
It is known6 that the K n , n = 1, .. ·,N, are related to the 

eigenvalues of (I) by A = - K~ , and thaC the eigenvalues of 
(1) for the potential given by (5) areA = - n 2, n = 1, .. ·,1. It 
follows that N = 1 and Kn = n, n = 1,2, ... ,1. We shall now 
show that the cn are given by 

C~ = _--....:(,-1 +_n..,;...)_! __ 
(I - n)!n!(n - I)! 

Eigenfunctions of (1), with (5) as potential, are 

(7) 

rp" = e IIX Fn , where F" is the hypergeometric function 

F = n! .± (- l)m(l + m)!r'n 
n m=O m!(/- m)!(1 + n)!' 

(8) 

with r defined by 

r = (1 + e2X
) - 1 • 

The Cn are normalization constants6 and are determined by 

c~ f: 00 rp ~ dx = c~ f: 00 e - 2nx F~ dx = 1. (9) 

This integral is most easily evaluated in terms of the variable 
r, for which we have 

Cn-
2 = ~ L ",-1(1- r)-II-- 1 F~ dr. 

By using the product rule of differentiation, 

D I -n[r'(1- r)'] = l!l!(/- n)!( - Il- n 

l-n (-IYr'-i(1-ry+n XI ' 
i = 0 (I - n - 0!i1(l- O!(n + O! 

(10) 

(11) 

where D - d /dr, it is easily seen that the following identity 
holds: 
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Fn = (n!!/!) r n D 1- n G, (12) 

where G _ rl(1 - r) I. It follows from (12) that the inte
grand in (10) is a polynomial in r and hence the integral is 
explicitly seen to be well defined. 

Upon substitution of (12) into (10) we obtain 

The cases n = I and n = I - 1 may be obtained directly from 
(13) and the formula 

,-a (l - r'l dr = a. . 11 !/3' 
o (a +fJ + I)! 

(14) 

Consider the remaining cases 1 <;n<) - 2 and expand one of 
the factors of D 1- nG in (13) in the form given by (11). This 
gives 

r - n - 1(1 _ r) - n - I D 1- nG 

= !..!.. ( _ 1)1 - n r - n - I 
n! 1- r 

+!..!.. (l-ry-n-1 +lll!(/-n)I(-l)l-n 
nl r 

I-n-I (-IYrl-n-i-I(1-ry-1 
X L (15) 

i~ I (l- n -1)!z1(/ - t)l(n + t)! . 

The integrand in (13) is (15) multiplied by D 1- nG, but the 
series indicated in (15) gives a zero contribution to (13) be
cause of the fact that 

f,-aDYGdr=o (16) 

whenever a is a nonnegative integer, a<;y - 1, y is a positive 
integer, and y < I. Equation (16) is applicable to the series in 
(15) when the factor (1 - rY - I occurring there is expanded 
as a polynomial in r according to the binomial theorem. The 
remaining two terms on the right side of (15) give equal con
tributions to (13) as may be seen by a change of integration 
variable r-l - r in one of them. Hence we obtain 

C
n
- 2 = !!.: - r D 1- nG dr. , 11 (1 )1- n - I 

l! 0 r 
(17) 

Expansion of the factor (l - r)l- n - I in (17) via the binomi
al theorem and use of (16) reduces (17) to 

c- 2 = ~ (J... D l-nGdr. (18) 
n I I Jo r 

The integral in (18) is easily evaluated and (7) obtained by 
applying in turn (11) and (14), and then an elementary iden
tity on the resulting series of binomial coefficients. This com
pletes the proof of (7). 

We now give an explicit expression for the N-soliton 
solution, u( x,t), of the KdV equation in the case of initial 
data given by (5). We accomplish this by evaluating the de
terminant, M = det [f + C ( x,t )] , occurring in (4). 

We introduce the notation an - cn exp( - nx + n3t) 
p~- 1/2, with Cn given by (7), and factor an out of row n 

and column n of M; this yields 

M = (a l a2···aY det[PnDnm + lI(n + m)]. 
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Expansion of this determinant gives 

(19) 

where the sum is over all possible sets (including the empty 
set 0) of indices f = !il ,i2 , ... ,ik I whose elements ij are dis
tinct positive integers with ~ <;1 for eachj = 1,2, ... ,k, k<;l. 
The symbolpf denotes the productpi,P;, ·"P;., andpf _1 
when f = 0. The symbol N J denotes the k th-order minor 
obtained by deleting the rows and columns labelled by 
i l ,i2 , ... ik from the numerical determinant I(n + m) - II. In 
the case k = I, N f 1, and N0 = det[ lI(n + m)] 
= c I- 2C2-- 2 ... CI- 2. Each NY' is a so-called double alternant 

determinant (a type studied by Cauchy8 in 1841) and its val
ue is given by a simple formula9 for alII and f: 

(
D )2 f, 

Sf, 
N _ 1 

f - 21 - k p 
f, 

(20) 

wherefe denotes the complement of fin {1,2,3, ... ,/}, ff, 
is the product of all elements in fe' D'y, is the product of all 
positive differences of elements in fe, and S J, is the prod
uct of all sums of elements in f e • 

Hence the explicit form for u( x,t) is 

u(x,t)= -2(lnM)xx = -2(MMxx -M;)lM2, (21) 

where M is given by (19) with the coefficients N of of the sum 
in (19) given by (20). 

In Appendix A we present the cases I = 3 and 4 in detail 
and illustrate the use of Eqs. (19) and (20). 

The form of M expressed by (19) and (20) also applies to 
the general N-soliton case if N.f is understood to be obtained 
from the determinant IlI(Kn + Km)1 and the sums, differ
ences, and products in (20) are formed from the indicated 
sets of K'S. In that case the Cn 's are no longer given by (7) and 
the Pn 's, Pn- 1/2 = Cn exp( - Kn X + K~ t), are also 
unspecified. 

There are other simple reflectionless potentials de
scribed by Kundt and Newman and related to (2); they are 
all singular and for this reason were not considered by Kay 
and Moses. We describe them here for completeness and 
because they occur in some situations described in Sec. 4. 

Ifwe replace x by x( - 1)112 in (3), we get u( x,O) 
= / (/ + 1)/cosh 2X and if we put, instead of Cn ,cn ( - 1)1/2in 

(3), we obtain 

u( x 0) = I (l + 1) . (22) 
, sinh2x ' 

if we do both things the result is u( x,O) = I (l + 1 )/sin 2X. 

These are certainly reflectionless potentials and lead to sin
gular N-soliton solutions. The inverse scattering method is 
not directly applicable to these cases because the potentials 
do not permit the usual scattering theory formalism to be 
introduced. 

There is another simple reflectionless potential, 
u( x,O) = I (l + 1 )/x 2. In the next section it will be related to 
those discussed here. 

3. THE WAVE EQUATION IN MINKOWSKI SPACE 

"Reflectionless" potentials for the time-independent 
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Schrodinger equation are, of course, "nonscattering" poten
tials for the wave equation. The radial wave equation in char
acteristic coordinates, 

~tP = / (/ + 1) tP 
au av (u + V)2 ' 

(23) 

is certainly nonscattering. The coordinate transformation 
u/ = tanhu, v/ = tanhv transforms (23) to 

~ /(/+ 1) tP 
auf av/ sinh2(u' + v') 

(24) 

while u/ = tanhu, v/ = cothv transforms (23) to 

~ /(/+ 1) tP. 
auf av/ cosh2(u' + v') 

(25) 

Thus the reflectionless nature of u( x,O) = - / (l + 1)/ 
cosh 2X and u( x,O) = 1 (/ + 1)/sinh 2X is a simple conse
quence of that of u( x,O) = 1 (/ + I)/x 2. If transformations 
involving the complex domain are permitted, then 
/ (I + l)/cos 2X and 1 (I + l)/sin 2X are similarly related to 
1 (I + I)/x 2. Kundt and Newman treated coordinate trans
formations among their nonscattering equations carefully, 
but seem to have overlooked these interconnections. Unfor
tunately we have been unable to find other such transforma
tion which, if they existed, might significantly simplify the 
class of refiectionless potentials. 

4. THE WAVE EQUATION IN SOME CURVED SPACES 

The potential which produces the simplest N-soliton 
solution and its singular potential counterparts actually oc
cur in a mathematically natural way in certain problems of 
interest in general relativity. These potentials occur when 
one considers the scalar wave equation on the background 
geometry due to a nonrotating black hole, in both the 
charged and uncharged cases. They also occur in the case of 
a rotating black hole; when axial symmetry is imposed on the 
scalar field this case is most like the others. 

Consider the covariant scalar wave equation 
g'''' tP ;,,,, = 0 where gin' is the Reissner-Nordstrom metric 

ds2 = ~ dt 2 _ t... d72 _ 72 d{) 2 

r Ll ' 
(26) 

Ll 72 - 2mr + e2
, (t,r,8,ljJ ) are the usual coordinates, and 

m and e are the mass and charge, respectively, of the black 
hole with m > e;;;'O. We make the usual separation of varia
bles tP-tP(t,r) P ,!"(cos8) eim ,,!> and obtain the familiar radial 
wave equation 

Ll Ll 
4" [LltPr1r -tPtI - 4"1(1+ l)tP=O. 
r r 

(27) 

Introduction of the variable 

_ I I r - m - (m 2 
- e2)l/21 x = -In -----'------.!.~ 

2 r - m + (m 2 _ e2)1/2 
(28) 

eliminates the first derivative term from (27) and, in the re
gion exterior to the horizon, r> m + (m 2 

- e2
)112, the result

ing equation is 

- 00 <x<O, (29) 

with r(x) = m - (m 2 
- e2

)112 cothx. Inside the horizon, 
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m - (m 2 - e2
)112 <r<m + (m 2 

- e1
)112, the equation is 

tPxx - / 2 tPtI + 1(/+
2
1) tP=O, 

m -e cosh x 
- 00 <x< 00, 

(30) 

withr(x) = m - (m 2 
- e2)l/2 tanhx. The form of these equa

tions in the Schwarzschild case is obtained by putting e = 0. 
From the point of view of differential equations, (29) 

and (30) express an interesting property of scalar radiation 
which propagates in a black hole geometry, namely, that the 
radiation scattering caused by the curvature of spacetime is 
all contained in the one coefficient r 4(X), known explicitly in 
terms of x, while the centrifugal term is one of the simple 
nonscattering potentials. Equation (29) has been used to cal
culate the transmission coefficient as a function of frequency 
for scalar radiation in a black hole geometry. 10,11 

Similar results and remarks apply to the case m = e and 
the case when the background metric is Kerr with axial sym
metry imposed on the field. When m = e the radial wave 
equation in the exterior region, r> m, takes the form 

r4 1 (/ + 1) 
tPxx - -2 tPtI - 2 tP=O, - 00 <x<O, (31) 

m x 
with r(x) = m(1 - l/x). In the interior, 0 < r < m, the same 
equations apply with the range of x being 1 < x < 00, 

In the case of a Kerr background with spin angular 
momentum parameter a, the appropriate separated equation 
for a radial variable R (r) is the Teukolsky12 equation which, 
in the axially symmetric case, is 

(32) 

where now Ll 72 - 2mr + a2
, and tP (72 + a2f - a2Ll. 

The separation leading to (32) is tP = e - ;wt eim,,,,S (8) R (r), 
but m/ = ° because of axial symmetry, The coordinates 
(t,r,8,ljJ) are Boyer-Lindquist coordinates, 

For m > a, the variable x appropriate to (32) is that giv
en by (28) with e replaced by a, and the resulting equation, in 
the exterior region r> m + (m1 

- a2)112, is 

Rxx + w11P R _ 1(/+ I) R =0, _ 00 <x<O. (33) 
ml _ a2 sinh2x 

In the interior region, a similar equation holds with the cen
trifugal term being 1 (I + I)/cosh 2X. When m = a we have 
x = (m - r) - 1 and the centrifugal term is -/ (l + 1)/x 2, 

APPENDIX A 

,We first calculate the KdV solution u( x,t) from (19)
(21) m the case 1 = 3. The sum in (19) is, in this case, 

L N.r PI = PIP2P3 + N I2PIP2 + N I3PIP3 + N23 P2P3 
I 

+ NIPI + N 2P2 + N 3 P} + Ny; , (AI) 
where, for example, 

2 4 
I 

4 6 
which according to (20) has the value 
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1 (2)2 1 
N2 = 22.1.3"4 = 48' 

Evaluating all ooefficients we obtain from (19) 

M = 1 + 6e2'71 + 15e2
'72 + 10(/'7, + /'71 + 2'72) 

+ 15e2'71 + 2'7, + 6/'72 + 2'7, + e2'71 + 2'72 + 2'7', (A2) 

where lIn - nx + n 3t. 
We remove a factor of /'" + 2'1' + 2'1, from the numerator 

and denominator of (21) and then obtain from (21) and (A2) 
the solution 

u(x,t)= -(T3/24) [cosh(1I1 +112 +1I3)+6cosh(1I2 +113 -111)+ 15cosh(1I1 +113 -112) 

+ 1Ocosh(1I1 +112 -113)]-2, (A3) 

where 

T3 = 252 + cosh2(112 + 113) + 10 cosh2(111 + 113) + 15 cosh2(111 + 112) + 30 cosh2113 + 80 cosh2112 

+ 50 cosh2111 + 40 cosh2(113 -111) + 25 cosh2(113 - 112) + 135 cosh2(112 - 111) . 

When 1 = 4 we find from (19) 

M = 1 + Wei + 45e2 + (70e3 + 50e12 ) + (175e 13 + 35e4) + 126(e14 + e23 ) + (175e24 + 35e123 ) + (70e 124 + 50e34 ) 

+ 45e l34 + 10e234 + el234 , (A4) 

where, for example, the notation is el3 = e2
'71 + 2'73. Note that in (A4) the sum of coefficients of terms having the same x 

dependence of e - px is a binomial coefficient (},~. This corresponds to the fact that for generall we have at t = 0 

M(x,O) = (1 + e- 2x)l1I2]/(/+ I). (A5) 

Equation (A5) is easily obtained by integration of (5). 
By direct calculation in (21), using (A4), an expression similar to (A3) for the solution u( x,t) in the 1 = 4 case may be 

straightforwardly obtained. Because of its length, we omit giving this expression. 
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Inverse operation to a functional differentiation is considered. 

INTRODUCTION 

In this paper we dwell on the problem of finding a func
tional, knowing its functional derivatives. It resembles the 
problem of finding a primitive function from its derivative, 
i.e., an integral. Obviously, it is not a unique procedure since 
corresponding "constants of integration," enter the solution. 
Problems of this sort arise in various branches of physics 
using functional methods, and in the quantum field theory as 
well. 

The paper consists of two parts. The first part deals with 
a general case of a functional being just a differentiable. The 
second part deals with the so called analytic functionals or 
element of the Bargmann space. 

1. RESTORATION OF A FUNCTIONAL FROM ITS 
FUNCTIONAL DERIVATIVES-A GENERAL 
APPROACH 

Let F[q] be a complex-valued functional on space of 
functions q(X)EY, xER 4, 

F: Y ----..C (1.1) 

One may define an associate functionf(z) of a complex vari
able z as follows: 

fez) = F[zq], q fixed. (1.2) 

Definition 1: A functional F is called an analytic in a 
region D if the functionf(z) is analytic in D for any qEY. 

Definition 2: A functional F is called regular in D if this 
region is a simply connected set andf(z) is regular there for 
any qE.'T. 

In the last case we may write for z,zoED the Cauchy 
formula 

fez) = _1_. ~ ~(z') dz' = f a"(z - ZoY, (1.3) 
21Tl Ja'/' z - z n = 0 

0.4) 

Putting z = lone gets the representation for F[q] 

F[q] =f(I)= f a,,[q,zo](1-zoY, (1.5) 
,,=0 

where the coefficients are given in terms offunctional deriva
tives of F. 

ao = [q,zo] = f(zo) = F[zoq] 

f' ' l(ZO) f of [p] I a,[q,zo] = -- = d 4x q(x) -- , (1.6) 
1! op(x) p = z,q 

f (")(z) 
an[q,zo] = __ ,_0_ 

n. 

X o"F[q] I 
0p(x,)",op(x,,) p = z,q 

= J.. (q. '§"")"F[P] I . 
n! op p=Zoq 

We used here the obvious notation 

fg = f d 4xf(x)g(x). (1.7) 

In particular, when Zo = ° we get the Volterra expansion 

F[q] = f a"[q,O] 
"=0 

00 I ( 0)" I I - q.- F[p] . 
"=0 n! op p=O 

(1.8) 

The nth coefficient a,,[q,O] is the nth order monomial func
tional in variable q. 

Now, let the functionf(z) be regular in a ring formed by 
two concentric circles C R,' C R, of radiuses R" R 2, respective
ly (R, < R 2), with common center at zo0 Thenf(z) may be 
expanded into the Laurent series 

(1.9) 
n = - 00 

where 

(1.10) 

a __ " = _1_. ~ f(z')(z' - zo)" - 'dz' = a _ n [q,zo]. 
21Tl reI< 

(1.11) 

Puttingz = 1 we obtain for the functional F [q] the expansion 

(1.12) 
n = - 00 
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It attains a simpler form when Zo = O. Obviously, one as
sumes tacitly that the point z = I lies in the analyticity do
main ofJ(z). Terms with negative n give those parts of the 
functional which may be pictured as inverses of monomial 
functionals represented by an with positive index. 

Let us consider now a more general case when a func
tional F[q] might be a less regular one. 

Definition 3: A functional F [q] is a smooth one of degree 
n when the function 

(1.13) 

is the n-times differentiable function in the vicinity of the 
point g = O. 

In such a case one may use the Taylor expansion 

J(k) 

J(1) = kto k !(O) + Rn(I), (1.14) 

where the remaining term Rn(1) is given by the formula! 

Rn(1) = ~ r1 

dJe (1 - Je )"f(n + O(Je). (1.15) 
n! Jo 

Here, in fact, one needs also to assume the existence of the 
J(n + 1) derivative. 

On account of the equalities 

J(1) = F[q], 

l' ! '(0) = (q. !. )F [p J I ' 
8p p=o 

/(11)(0) = (q. !. )nF [p] I 
8p p=o 

we obtain the following formula: 

n I ( 8)k I F[q]= I ,q.- F[p] 
k ~ 0 k. 8p p = 0 

(1.16) 

I 11 ( 8)n + 1 I + I" dJe (I - Je)" q. - F [p ] ~ . 
n. 0 8p p~Aq 

(1.17) 

This formula permits us to restore a functional F [q] when the 
derivatives 

(q.!.)kF[p] I ' k=O,I, ... ,n, 
8p p=o 

( 8)n + 1 I q.- F[p] 
8p pill 

(1.18) 

are known. In particular, if F [0] and the first derivative 
8F[q]l8q(x) = F '[q;x] are given wemay restore the function
al F[q] as follows: 

F[qj =F[O] + f dJe(q·F'[Jeq]), 

F'[ 'x] = 8F [q] . (1.19) 
q, 8q(x) 

A consistency condition must be fulfilled, of course, 
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F"[q;x,y] = F"[q;,y,x]. (1.20) 

For instance, a generating functional r[p] of 1'-func
tions, of a real scalar field, satisfies the Schwinger equation' 

1"[p;x] = if d 4y DC(x - y) 

(1.21) 

as the result of the formula] 

r[p] = N-! eXP(iLint( - i ~ Dexp( ~ P·DCp). (1.22) 

The normalization factor N is determined by the condition 

1'[0] = 1. (1.23) 

The interaction functional Lint[p] is connected with the in
teraction Lagrangian Lint [p(x)] as follows, 

Lint [p] = f d 4X Lint [p(X)] (1.24) 

while the causal function D C(x) is given by the formula 

D C(x) = (21Tt4 f d 4p(m2 - p' - itt! exp( - ipx). (1.25) 

Finally, the symbol L (nt[ - i(8/8p);,y] means 

L' [- .!.. ] _ 8L mt [q] I 
lilt I ;,y - . 

8p 8q(y) q- ~ i(b/bp) 
( 1.26) 

The consistency condition (1.20) reads in this case 

{L:~t[ -i ~;X,y] -L:~t( -i ~;,y,x]}r[p] 
=0. (1.27) 

It is always fulfilled if an interaction functional is a regular 
one 

(1.28) 

Taking into account the formula (1.23) we get from 
(1.19) an integral form of the Schwinger equation 

1'[p] = I + ip·Dc-p r1 

dJe Je1'[JepJ Jo 

(1.29) 

This equation may be a starting point for developping an ap
proximate method for the evaluation of the generating func
tional 1'[p)! 

2. RESTORATION OF A FUNCTIONAL FROM ITS 
FUNCTIONAL DERIVATIVES CONSIDERED AS 
OPERATORS IN THE BARGMANN SPACE 

A functional derivative may be consider as an operator 
in the Bargmann space offunctional power series.' Namely, 
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any element V[a] of this space is a regular functional of the 
form 

V [a] = n~o ~! f d4x,···d4xnvn(x" ... ,xn)a(x,)..·a(xn) 

(2.1) 

a(x) is some function from Y. (We use the Rzewuski nota
tion adopted in Ref. 3.) Its norm is defined by the scalar 
product in the following way: 

V*V= IIVII'= V[~]V[p]1 
op p~o 

(2.2) 

Any operator A in this space has the form of a functional 
matrix 

A~A [a,p] (2.3) 

X e[ a;xm]e[p:Yn]. (2.4) 

The action of A on vector Vyields another vector V' accord
ing to the rule 

V'[a]=(A*V)[a]=A[a,~]v[p]l. (2.5) 
op p~o 

A unit matrix for this multiplication law is given by the 
formula 

(2.6) 

A matrix representing functional differentiation is given by 

D [x;a,p] = p (x)ea '/3, (2.7) 

since we have 

(D [x]* V)[a] 

[ 0] I oV[a] =D x;a,- V[p] = -....:.....-~ 
op p~o oa(x) 

(2.8) 

Therefore, finding V[a] from this equality is equivalent to 
finding an inverse operation (inverse matrix) to D [x]. More 
precisely, we are looking for a matrix D -'[x;a,p] satisfying 
the relation 

J d 4x D~'(x]*D (x] = 1 - Po, (2.9) 

where Po is a projection onto subspace of scalar, which coin
cides with a kernel of the matrix D [x] 

Po[a,p] = 1, Po*Po=Po. (2.10) 

Going over to the matrix elements we obtain from (2.9) the 
equation 
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f d4XD-'[x;a,~]D[X;P/3]1 =eu./3_l. (2.11) 
op p~o 

One easily finds that the following matrix solves it: 

ea ./3 - 1 
D-'[x;a,p]=a(x) a(x)E,(a.p), (2.12) 

a·p 

where we denoted the standard function 

(2.13) 

This result and its generalization to higher order derivatives 
follows from the formulas 

V[a] = (I*V)[a] = ea
(M5

p)V[p] Ip~o 

1 ( o)n - I] I a·- V[p] 
(n - I)! op p = 0 

+ [1 + ~(a. ~) + ... 
l! op 

+ 1 (a.~)n-I]V[p]1 
(n - I)! op p~o 

= En(a ~)(a. ~)nV[p]1 
op op p=o 

n - I 1 ( O)k I + I, a· - V[p] , 
k =0 k. op p~O 

where again we denoted the standard function 

E = eX - 1 - xiI! - '" - xn - '/(n - I)! . 
n 

xn 

(2.14) 

(2.15) 

Thus, knowing V[O], V(I)[O,x,], ... ,v(n-I)[O,x" ... ,xn] and 

v(n)[a,x" ... ,xn] we may restore the whole functional V[a]. 

A functional derivative of nth order is represented by 
the matrix 

D [x" ... ,xn;a,p ] = P (x,) ... p (xn)eu./3, 

* onV[a] 
(D [x" ... ,xn ] V)[a] = , 

oa(x,) .. ·oa(xn) 

and an inverse operation is represented by 

D-'[x" ... ,xn;a,p] = a(x,) ... a(xn)En(a·p). 

The following equality holds, 

J d 4x, ... d 4x nD-'[x" ... ,xn]*D [x" ... ,xn] 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where Pk is a projection onto a subspace of k th order mono
mial functionals 
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Pk [a,/3] = (11k !)(a./3)\ k = O,l, ... ,n - 1. (2.20) 

one easily checks that 

Pk *~ = OkjPk , (2.21) 

Pk [a, ~ ]P(Xl)"'P(X) I = OkP(x1)···a(xk ) (2.22) 
tJp p = 0 

and the completeness condition holds 

(2.23) 

The above considerations may be somewhat generalized for, 
so called, projected derivatives: Namely, if 1T is a projection 
operator in the function space Y 

(1Ta)(x) = J d 4y 1T(x,y)a(y) = (1T2a)(x), 

where the kernel1T(x,y) satisfies the composition rule 

J d 4Z 1T(X,Z)1T(Z,y) = 1T(x,y) 

then, we define the projected derivative as follows 

( 1T' ~ )(X) = J d 4y 1T(X,y) _tJ_, 
tJa tJa(y) 

The corresponding functional matrix is 

Dr. [x;a,/3] = (1T/3)(x)eu
.
f3 . 

Its null space is now richer than before since the 
equation 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(1T' :a )(X)N[a] = J d 4Y1T(X,y)N'[a;y] =0 (2.28) 

is satisfied not only by scalars. 

To describe this space we introduce a complementing 
projection operator u such as 

u = I - 1T, 

u(X,y) = tJ(x - y) - 1T(X,y). 

One verifies easily that 

u 2 = u = u T
, U1T = 0 = 1T'U, 

J dz u(X,Z)1T(Z,y) = O. 

Therefore, any vector of the form 

N [a] = e,w(Ij!8p)M [p]lp=o = (P" *M)[a] 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

satisfies Eq. (2.28) for arbitrary M fp]. When the operator u 
vanishes, i.e., when 1T = 1, we get for the solutions of (2.28) 
the scalars, M = M fp] Ip ~ 0 as it should be. 
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Here Pa stands for a projection operator onto the null 
space of the projected derivative 

(2.33) 

The inverse of a projected derivative is represented by the 
matrix 

_ , eu .f3 _ euaf3 

D 1T [x;a,/3] = a(x) --
a1T/3 

eU1T{3 - 1 = a(x) eua{3 

a1T/3 

It satisfies the condition 

Jd 4X D; '[x;a, ~ ]Drr [X;P,/3] I 
tJp p = 0 

= eu {3 _ eu .a .{3 

or in a matrix form 

(2.34) 

(2.35) 

(2.36) 

Therefore, if we have to find a functional V[a] knowing its 
first projected derivative 

Jd 4y 1T(X,y) tJV [a] = Drr[x] * V [a] 
tJa(y) 

(2.37) 

we apply to both sides the operation D ; , [x] and use the 
relation (2.35). We get as a result 

V[a] - V[ua] 

= Jd 4x d'y D; '[x;a, ~ ]1T(X,y)V' [p,y] I ' 
tJp p= 0 

(2.38) 

D;' x;a, - = a(x) eu <7(8/8p). (2.39) [ 
tJ ] eu rr(8/8p) _ eu <7(8!8p) 

tJp a1T(8!tJp) 

In a subsequent publication we will describe some ap
plications of techniques presented here. 
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Key words of the present paper are visualization and concrete geometry. We develop ordinary 
two-component spinor algebra from a concrete geometrical model of spinor space. The null flag 
picture may be said to constitute such a model as far as topological and differential properties of 
spinors go. In our model it is also possible to visualize the algebraic properties of spinors by 
straightforward geometrical constructions. Notably, an interpretation of spinor addition is given 
in terms of a geometrical procedure, analogous to the addition of real 3-vectors via the 
parallelogram rule. By this procedure the relation between the projection of spinors on the 2-
sphere and the projection of their sum can directly be read off. The connection between null flags 
and our presentation of spinors is touched upon. It is planned to discuss the connection to 
Minkowski space more closely in a forthcoming paper. 

1. INTRODUCTION 

The present paper has arisen from a critical attitude 
towards the "formalistic method" in the foundations of 
physics. In opposition to such a method we hold that the 
primitive terms of a physical theory should be of a material 
or visual nature. I The necessity of invoking spinor algebra in 
the physical description of nature could perhaps be regarded 
as an argument favoring the purely formalistic view, since 
spinors are normally not believed to bear very directly on 
material objects. As we shall make evident, such an abstract 
inclination towards spinors is quite unnecessary, and it is 
possible to develop spinor algebra in an entirely visual way, 
analogous to the material interpretation of the algebra of 
Euclidean 3-vectors. 

The search for alternative ways of describing spinors 
. seems to have a history as old as spinor algebra itself(cf. the 

works of Cart an, 2 Veblen, 3 Penrose, 4 and others). Notably, 
in the view adopted by Penrose, spinors are represented as 
null flags, the flag pole being a null vector and the flag itself 
tangent to the null cone. However, even though this is an 
extremely useful way of interpreting spinors, we do not re
gard it to be the final word concerning their visual content. 
Firstly, this interpretation has the fault of leaving spinors 
visually undetermined within a sign. A well-known remedy 
is to interpret spinors as elements in the universal covering of 
the space of null flags. In this way we obtain a topologically 
faithful interpretation of spinors. Still we lack visual insight 
in their algebraic properties. For example, it would be very 
awkward to try to form the sum of two spinors, or to resolve 
a spinor into base components, resting the argument on null 
flags. 5 The actual structure of spinor space as a linear, com
plex 2-space C 2, is not at all evident from this interpretation. 
In contrast, the visualization of Euclidean 3-vectors as di
rected arrows truly reflects all the algebraic properties of 
Euclidean 3-space (addition is visualized by the parallelo
gram rule, etc.). To obtain an equally faithful interpretation 
of spinors we shall radically divert from the null flag inter
pretation. In the approach to spinor algebra presented in this 
paper, spinors are identified with certain constructions car-

ried out in Euclidean 3-space. The notable feature about 
these constructions is that they are defined in such a way that 
the computational rules for Euclidean 3-space will induce all 
the computational rules for spinors. In carrying out this pro
gram, Euclidean 3-space will be regarded as a formal struc
ture. Thus the spinor picture to be presented is very much a 
logical reformulation of spinor algebra into the formal lan
guage of Euclidean 3-geometry. However, since we already 
know how to visualize the formal properties of Euclidean 3-
space, the visual meaning of spinor algebra will become clear 
when given this reformulation. 

2. THE SPINOR SPACE MODEL 

Regard a 2-plane Cp possessing a preferred vector 
IpECp of unit length. To us C p will serve as a model ofa 
linear, complex I-space. Thus the complex numbers C will 
act as scalars, an elementpeiaEC causing in Cp a rotation 
through the angle a and a rescaling by the real factor p. 
Denote an arbitrary element in C p by zp and scalar action 
upon this element by z'zp (wherez'EC). We also adopt expo
nential notation in Cp , defininge; eia Ip. Our spinor mod
el will be based upon a fixed 2-sphere S2 of unit diameter, 
imbedded in Euclidean 3-space E 3 (cf. Fig. 1). An arbitrary 
but fixed point P is selected on the 2-sphere, and the follow
ing three definitions made with respect to this point: 

The plane Cp : We now restrict this symbol to stand for 
the tangent plane of S2 at P, containing the preferred unit 
vector IpECp and given the structure ofa linear, complex 1-
space in the way indicated. 

The half-space Wp : This symbol will denote the topo
logically closed half-space, which contains Cp as its bound
ary and includes S 2. Note that this half-space is algebraically 
closed under vector addition and scalar multiplication by 
elements of R + (the real numbers ;;;.0). 

The bilinear product W p ® Cp It may be checked that 
the following three axioms, defining a rather special form of 
tensor product, are mutually consistent: 

(A) PI (xp ®zp) + P2(YP ®zp) = (PIXp + P2 Yp) ®Zp, 
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FIG 1. Basic definitions of WI' ® c/,. 

(B) z,(Xp ®zp) + zz(Xp ®z;,) =Xp ®(z,zp +zz z;'), 

(C) zp ®(zz~) = (zzp)®z~, 

Here Xp, ypEWp; zp, Z~ECp;p, ,PzER + ,and z, z,' Z2 eC. 
Bar denotes complex conjugation. 

From axioms A and B it follows that Xp ® pZp 
= (px p) ®zp for pER + . Thus the expression Xp ®zp 
may be geometrically interpreted as a vector pair pXp, zp/ p 
in Euclidean 3-space, determined up to an arbitrary choice 
of the positive scale factor p. Axiom C completes A and B in 
stating that in the degenerate case when both factors of 
xp ®zp lie in Cp, we may not only change their relative 
length, but we are also free to rotatexp andzp in Cp , keeping 
the angle between them constant. 

The elements of Wp ® Cp are to be regarded as spinors, 
defined in the special terms of visual geometry. This will be 
justified in the next section, where we shall show Wp ® Cp to 
possess the two important properties of a spinor space. First
ly, it will be demonstrated how the rules A, B, C turn Wp 

® Cp into a linear, complex 2-space. Secondly, a mapping of 
Wp ® Cp (or more precisely, the non-zero elements of Wp 

® Cp ) on S2 will be defined. Algebraically, this mapping is 
the standard projection of a linear, complex 2-space on a 2-
sphere. It may also be obtained in any of the well-known 
ways, e.g., from the conformal plane of the 2-sphere or from 
the connection between spinors and null vectors of Min
kowski space. It has the property of inducing ordinary rota
tions of the 2-sphere when unitary transformations act upon 
the 2-space. 

3. SPINOR SPACE STRUCTURE OF W p ® C p 

Our first step is to prove that Wp ® Cp and C z are can
onically isomorphic. The reader is again referred to Fig. 1. 
As is seen in this figure the unit normal of Cp , pointing into 
Wp , is denoted ap. An arbitrary element of Wp may be de
composed into a vector along a p and a vector in Cp , the 
element thus written pap + zIp for some unique pair of 
numbers pER., zEC. In a corresponding manner we write for 
an arbitrary element of Wp ® Cp [making use of the rules 
(A), (C) in turn] 

(pap + zIp) ®z'lp = (pap) ®z'lp + (zIp) ®z'lp 

= ap ® (pz')lp + Ip ® (zz')Ip. (3.1) 
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Proceeding inversely, we start with an arbitrary pair of 
complex numbersz" Z2 EC to which we may assign a unique 
element of Wp ® Cp as follows: 

ap ®z, II' + Ip ®z21p = ap ®z, Ip + (Z2Z,- lip) ®z, Ip 

= (a p + Z2Z,- 'Ip) ®z, Ip (3.1a) 

(herez, *0; in the casez, = 0, the corresponding element of 
Wp ® Cp is just 11' ®z2Ip). Evidently, (3.1) constitutes a 
unique decomposition of the elements of Wp ® Cp. Defining 

ap ®ZIp~(~), 11' ®Zlp~(~), (3.2) 

we obtain a one-to-one mapping between WI' ® C p and C 2, 

transforming components into components. According to 
(B), the transformation of components is linear, thus the 
mapping is an isomorphism. It follows that any calculation, 
normally performed in C 2, could just as well be carried out 
in Wp ® Cp. For instance, spinor addition corresponds in 
Wp ® Cp to evaluation of 

XI' ®zp + yp ®z~. 

In order to carry out this operation, we may apply (3.1) 
to each term ofthe expression and then rule (B) and (3.1a) in 
turn. Alternatively, we can rely on the geometric character 
of W p ® C p in order to obtain a component-independent con
struction of the sum (analogous to the addition of Euclidean 
vectors according to the parallelogram rule). The full discus
sion of this procedure must wait until the developments of 
Sec. 6, however. 

Apart from carrying the structure of a vector space, W p 

® Cp provides a natural way to project its nonzero elements 
on the 2-sphere S2. It will be convenient to introduce affine 
vectors PQ, where Q is a point on S2 not equal to P. Any 
element Xp in the interior of Wp may clearly be written Xp 
= pPQ for some QES 2 and some positive factor p. The cor
responding expression Xp ®zp may be rewritten uniquely 

Xp ®zp = PQ® pZp. (3.3) 

We define Q to be the projection of(3.3) on S2, Continu
ity in the limit Q-..P demands P to be the projection on S 2 of 
all nonzero elements ofthe formzp ®z~;Zp,Z~ECp. The zero 
element of Wp ® Cp may be written in any of the following 
ways: 

PQ®Op =zp®Op =Op®Op 

(QES 2, ZpECp) and thus cannot be invariantly related to any 
particular point on S 2. This completes the definition of the 
projection mapping. 6 

The conformal plane of Fig. 2 is the plane parallel to C p, 

which meets S2 at the end point of the vector ap (we may 
thus write its elements a p + zip, ZEC). It is related to S 2 by 
ordinary conformal projection. We may write for any nonze
ro PQ®zp, 

(3.4) 

where p' ER + is some ~cale factor and z' EC is related to QES 2 

as a complex number to the corresponding point ofthe Rie
mann sphere. Let us study how the conformal plane behaves 
under the action of a unitary transformation of Wp ® Cpo 
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CONFORMAL PLANE 

FIG.2. Relation betwen Cp , S2, and conformal plane. 

The action of 

( a /3) 
-p a 

(3.5) 

(a, /3EG) on Wp ® Cp is defined by (3.2). We obtain for non
zero elements Xp ® Zp, written in the form (3.4) 

(a p + zip) ®z'lp 

= z'(a p ® Ip) + zz'(1p ® Ip) 

-z'[a(ap ® lp) -P(1p ® Ip)] 

+zz'[/3(ap ® Ip) 

+ a(1p ® Ip)] 

= ap ® (az' + /3z'Z)lp + I p(azz , - /3#') ® lp 

( 
az - /3 1) '(- t<-;\1 = ap + -_-- p ®z a +fJZ, p. 
/3z +a 

The transformation of the conformal plane, corresponding 
to (3.5), may thus be written 

az -/3 z_-_--. 
/3z+ a 

(3.6) 

It is well known that a complex transformation (3.6) corre
sponds to a rotation of the Riemann sphere. 7 Hence, (3.3) is 
an expression for the ordinary relation between spinors and 
the 2-sphere. 

4. THE TANGENT VECTOR CORRESPONDING TO A 
NORMED SPINOR 

Before proceeding, it should be mentioned that the 
methods of studying the unitary transformation (3.5) also 
apply to arbitrary, linear transformations of spinor space 
and to the corresponding full Lorentz group acting on the 2-
sphere. For the sake of clarity, we will, at the present, only 
focus our attention on the most basic properties of spinors. 
We have therefore postponed this relativistic version of our 
spinor picture to a separate paper. Accordingly, instead of 
discussing the full connection between spinors and null flags, 
we restrict our study to the fundamental case of normed 
spinors 8 and normed tangent vectors to the 2-sphere. We 
first mention a general method to obtain this relation and 

2433 J. Math. Phys., Vol. 20, No. 12, December 1979 

then apply it to the specific case of Wp ® C p and S2. 
Let us use the standard abbreviations SU2 and S03 for 

the group of unimodular, unitary spinor transformations 
and the group of rotations of the 2-sphere, respectively. Note 
that a rotation 'so, also acts on the tangent bundle of the 2-
sphere: each tangent vector nQ will be translated along a 
circle of transitivity, the angle between nQ and the circle 
remaining the same throughout the translation. In this way 
normed tangent vectors will be mapped into normed tangent 
vectors by 'so,, Normed spinors are trivially transformed 
into normed spinors under the action of unitary transforma
tions 'su,' More subtly, however, there corresponds to any 
pair S, 7] ofnormed spinors precisely one transformation 'su, 

such that 'su, S = 7]. Adopting the representation of unitary 
transformations by rotations 'su, -'so"~ we may thus map 
normed spinors on normed tangent vectors in the following 
way: Select a single normed spinor S as a reference and relate 
S arbitrarily to some fixed normed tangent vector n p (where 
P is a fixed point on the 2-sphere). Now, to any arbitrary 
normed spinor 7] there is precisely one 'su, such that 'su,S 
= 7]. To the transformation 'su, there corresponds a rota-

tion 'soJ and, letting 'so, act on n p, we obtain a new normed 
tangent vector, which thus has been related to 7]. Clearly, the 
relation between normed spinors and normed tangent vec
tors, so obtained, is invariant under unitary transformations 
and simultaneous rotations. Moreover, varying the tangent 
vector np , related to the fixed spinor S, every invariant repre
sentation of normed spinors by tangent vectors can be found. 

In our particular spin or space model, normed spinors 
have the form x~ ® e';, where x~ is a unit vector of Wp[cf. 
(3.1)]. Whenever x~ belongs to the interior of Wp we may 
alternatively write 

thus making the projection QES 2 of x~ ® e'; evident. For 
reference spinor S in Wp ® Cp we choose Ip ® Ip. We are 
free to relate any normed tangent vector to this spinor, but 
the obvious choice is of course I p. Next, we must character
ize the circles of transitivity on S 2, corresponding to the uni
tary transformation Ip ® Ip-PQ N ® e';. Note that to any 
tangent vector el at P and any other point Q 'E S 2 there is one 
and only one oriented circle };(el, Q ') on S2 to which el is a 
tangent and which contains Q '. As we shall see, the circles of 
transitivity are those parallel to };(e';, Q). 

The unitary transformation I p ® I p_PQ N ® e'; may be 
written in full as the basis transformation 

(4.1) 
Ip ® lp-PQ N ® e';. 

Here, for any point Q 'E S2, Q 'ES 2 denotes the point diamet
rically opposite Q (thus ap = pp = PPN). The angle 1/1 is the 
direction of PQ N in C p: 

N .'" PQ =Ptap + p2e~ 
(wherept ,P2 ER + ). The reader should check that, in rewrit
ing (4.1) by means of (3.1) and (3.2), a matrix of the form 
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FIG. 3. Associated to the normed spin or PQ.\ ® e;;', there is a normed tan
gent vector at Q, forming the angle a with I.(e~:,Q). For clarity. in this and 
the following figures tangent vectors are deliberately not drawn to their full 
length. 

(3.5) is obtained. In order to verify that (4.1) transforms the 
circle.2' (e~,Q) into itself we regard spinors of the form 

(PIPQN + p2e~) ®e';, (4.2) 

where PI ER + while P2 ER is arbitrarily real. Clearly, the 
projection of the spinors (4.2) on S2 spans.2' (e';,Q). More
over, (4.2) may be rewritten 

PI (PQN ®e~) + P2(lp ® Ip). 

Computing as in ordinary component-dependent spinor al
gebra it is straightforward to verify that this expression re
mains invariant in form under (4.1). The assertion is thus 
proved. It follows that the tangent vector 1 p moves from P to 
Q along .2' (e~,Q) under the unitary transformation taking 
1 p ® 1 pinto PQ N ® e1:. In other words, the normed spinor 
PQ N ® e'; becomes associated to the normed tangent vector at 

Q,Jorming the angle a with .2' (e~,Q) (cf. Fig. 3). 
It is interesting to note that, changing the "phase" e'; 

~'J in the spin or PQ N ® e'; and changing the circle 
.2' (e';,Q) accordingly, the tangent vector at Q, obtained by 
translating 1 p along.2' (e';,Q), is rotated through twice the 
angle r - a. This is, so to speak, the material reason for the 
well-known double degeneracy in the relationship between 
spinors and tangent vectors. Translating Ip along the oppo
site routes of.2' ( ± e~',Q), we find that one and the same 
tangent vector precisely corresponds to the two spinors PQ N 

® ± e~', differing only in sign. 
We have not yet discussed spinors of the form eij,' ® e~'. 

In this limit we may replace the circle.2' (e~',Q) by a circle in 
C p for which e~' is a tangent and on which eij,' is a point. It is 
not difficult to see that translation of I p along this circle 
yields a tangent vector e~(';' a). The consistency between 
this result and (C) should be noted in particular. 

5. TRANSFORMATION BETWEEN HALF-SPACES 

Two planes C p , CQ could differ from each other by 
being tangent planes to two different points of S 2 or by being 
the same tangent plane at P = QES 2 but possessing different 
unit directions IpECp, I~EC~. In this paragraph it will be 
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established that, to any normed spinor PQ S ® e~' of WI' 
® Cp , there is associated a space WQ ® CQ and an isomor
phism transforming PQ N ® e~' into the "canonical" spinor 
IQ ® IQ of WQ ® CQ. 

The isomorphism 

WI' ® Cp - WQ ® CQ (5.1) 

we are about to describe, resembles a "passive" transforma
tion of ordinary vector calculus. One way of bringing it 
about is to write 

(5.2) 
PQ.\'®e~';' a)_QQ® IQ 

(lQ is the tangent vector corresponding to PQ N ® e~~';¢ is the 
direction of PQ N in C p ), and extend this pairing by linearity 
to the entire of WI' ® Cp and WQ ® CQ. The tangent vectors 
associated to normed spinors of the two spaces 

a(PP® 11') + (3(lp ® 11') 

and 
a(QQ® IQ) + (3(lQ ® IQ) 

(a,(3EC) can, because of the symmetry of S 2, differ only by 
the same rotation which transforms II' into I Q. Since this 
rotation also corresponds to the unitary transformation 
(4.2), we find that spinors paired according to (5.2) corre
spond to the same tangent vector. It should be clear that the 
form of the transformation (5.1) is essentially (in fact up to a 
sign) determined from this invariance. We may therefore 
start from the correspondence between spinors and tangent 
vectors (and the geometrical description given to it) in order 
to obtain a more geometrical description of the transforma
tion than its purely component-dependent definition (5.2). 

It will be convenient to consider first the case when 
P = Q in (5.1). Let us say that the unit directions ofCp and 
C~ differ according to I ~ = e~~'. We wish to pair normed spin
ors x~ ® e~' and y; ® (e')'/ [w here (e')'/ = e~ (3 " v')] in such a 
way that they correspond to the same tangent vector. Thus, 
for normed spinors, the pairing must be of the form 

PQN®e';_PQN®(e'Y/. (5.3) 

Suppose that translation of Ip along.2'(e~,Q) and transla
tion of I~ along.2' «e')1,Q) =.2' (e~P+ ""),Q) yield tangent 
vectors nQ , nQ at Q, respectively. Defining 8 as the angle at P 
between the two intersecting circles 

the angle between ~ «e')1,Q) and nQ becomes a - 8 (see 
Fig. 4). With this notation, in order that nQ = nQ we must 
have 

a - 8 = (3 = a + 8 - 1/1, 

i.e., 28 = 1/1. Accordingly, we are left with two possible 
choices for the transformation (5.3): 

PQ N ® e~{3 + ",,/2) _ PQ N ® (e')1 

or 

PQN ® _ e~{3+ ""/2)_PQN ® (e')1. 
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FIG. 4. The tangent vectors Ip and nQ both form the same angle a with 
l:(e~,Q). When changing this circle into l:«e')1,Q), the angle a changes 
by the same amount 8 but in opposite directions at P and Q. 

In the limit Q_P these expressions become: 

eij' ® eij'12 = Ip ® e;; il/112_1;' ® I;', (5.4a) 

(5.5a) 4® -4/2 = Ip® _e;;il/112_1;'®I;', 

respectively. We will say that (5.3) and (5.4) are the unique 
transformations mapping each of the spinors I p ® ± e;; il/112 
into canonical form. 

Allowing P=I=Q in (5.1), we may pick out any normed 
spinor PQ N ® e7: to be transformed into canonical form: 

PQN ®e7:- I Q ® IQ (5.6) 

(since P=I=Q no inconsistency will arise if we drop the prime 
in CQ). The pairing (5.6) can be extended in a unique way to 
a transformation (5.1), just as (5.4) and (5.5) are the unique 
of extensions of (5.4a) and (5.5a). From the invariant corre
spondence between spinors and tangent vectors, it is clear 
that the transformation must be of the form 

PR N ®e~r+'P)_QR N ®eZ, 

where (5.6) is the particular case R-Q. In general, the angle 
rp will depend on RES 2 and we shall now determine this 
dependence. We introduce the unique, oriented circle on S 2 

passing through the points P,Q,R in tum: 

~ (P,Q,R) = ~ (e~a + {j),Q) (5.7) 

thus defining 8 as the angle between~ (P,Q,R) and ~(e7:,Q) 
at P (cf. Fig. 5). For the point R, we first seek the transforma
tion mapping PQ N ® e~a + {j) into canonical form (denoting 
by IQ its associated tangent vector) 

PQN®e~a+{j)_IQ®IQ' (5.8) 

Since Ip and IQ form the same angle with ~ (P,Q,R), they 
end up in the same tangent vector atR when translated along 
this circle. Hence, we may pair spinors in any of the two ways 

PR N ® ± e~a+{j)_QR N ® (e,)~a+{j). 

Only for one choice of sign the pairing agrees with (5.8), 
however, as is seen letting R_Q. In this limit QR N 
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_(e,)~a + {j), hence 

PR N ® e~a + {j) -QR N ® (e,)~a + {j). (5.9) 

From (5.6) and (5.8) we have IQ ® e~ -IQ ® IQ' implying 
[cf. (5.4)] 

QR N ® (e,)~a + {j)-QR N ®e~, 

which may be inserted in (5.9), 

PR N ®e~a+{j)_QR N ®e~. (5.10) 

As has already been discussed in the last paragraph, chang
ing the angle a to any other value y, the tangent vector asso
ciated to the spinors in (5.10) becomes rotated through twice 
the angle y - a. The relation (5.10) will still hold and we 
may write 

PR N ®e~r+{j)-QR N ®e'J. (5.11) 

Formula (5.11) is the general expression for the transforma
tion ofnormed spinors induced by (5.6). The angle 8 as a 
function of RES 2 is defined by (5.7) 

So far we have not dealt with nonnormed spinors. We 
extend (5.11) to this class linearly, writing 

PR N ®pe~r+{j)_QR N ®pe~, (5. 11 a) 

where pER + . As was discussed at the beginning of this para
graph, pairing spinors which correspond to the same tangent 
vector gives the linear transformation (5.2). Consequently, 
(5.11) [or (5.lla)] is a complex-linear transformation and 
must in fact agree with (5.2). Let us, as a check, apply (5.11) 
to the point R = Q. In this case the plane of the circle 
~ (P,Q,R ) = ~ (P,Q,Q )isorthogonaltoCp and we may write 

~ (P,Q,Q) = ~ (eij',Q), 

where t/I is the angle of PQ N in the plane Cp [cf. (4.2)]. Conse
quently 8 = t/I - a, and (5.11) takes the form 

'£ (P'Q,R)-

1: (e;:C+'!Q) 

FIG. 5. Interpretation of the phase shift 8 in the transformation PR N 

® e~" '""-+QR·v 
® e(\'. The unit directions lp, lQ (not shown ) are supposed 

to form the same angle with l:(e~·,Q). To obtain a precise definition of8, we 
rewrite ~ (P,Q,R ) in terms of its tangent vector at 
P: ~ (P,Q,R ) = l:(e~" t ",Q). 
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(5.12) 

Evidently, the two li.nes of (5.2) is obtained by letting R_Q 
[cf. (5.6)] and R = Q in (5.11). 

6. THE GEOMETRICAL INTERPRETATION OF SPINOR 
ADDITION 

It will be demonstrated that for any pair of spinors 

XI' ®zp, yp ® UpEWp ® Cp 

(xp=FyP, Zp=FU p) there is a space WQ ® CQ in which these 
correspond to a pair of spinors 

xQ ®zQ' YQ ®ZQEWQ ® CQ , 

both possessing the same phase zQ' Thus, we may geometri
cally obtain the sum of two spinors, passing to this particular 
space and there form their sum by means of the parallelo
gram rule applied to the vectors x Q' YQ [cf. rule (A)]. 

As a preliminary step we study the transformation 
(5.11) in the limit PR N_e~f1 wheree1 is any direction in Cpo 
In this limit~ (P,Q,R )-~ ( - et, Q) so the angle 8 of(5.7) 
becomes 1T + /3 - a. Accordingly, 

ei/® _e~(J (1)~QPN®IQ' 

or deleting the angle /3, 
Ip®lp~QP'I® -e'Q, (6.1) 

which is the required formula. Now consider two circles on 
S2: 

~(P,Q,R ):IQ+-+II<' 

~ (P,Q,Ro): I p+-+ IQ+-+ I R,,' 

translating the tangent vectors I p, IQ' I 1<' I R,,' into each 
other in the manner indicated. Associated to these circles are 
transformations (5.1) such that 

PR;~' ®e~;~QR.v ® IQ ~ IR ® IR' 

PR'I®lp~QRt;®IQ~IR ®I R • 
(l (I II 

(6.2) 

Here, 8 is the angle between ~ (P,Q,R ) and ~ (P,Q,Ro) at P. 
In order to define the sign of 8, we reexpress the two circles in 
terms of their tangent vectors at P: 

~ (P,Q,R) = L(e~" +- M, Q), 

~(P,Q,R() = L(e~;', Q). 

Comparing (5.6) and (6.1), we find that (6.2) implies 

Ip®lp~RPN® -e~~RopN® -IR", 

IQ®lQ~RQ.v® -11<~RoQN® -I R,,' 

Let us regard a sum of two spinors in WI< ® CR: 

RP' ®PI e~)' +- ,») + RQ S ®P2e'/:., 

(6.3) 

(6.4) 

(6.5) 

wherepi ,P2 ER , . According to (6.4) the expression (6.5) is 
equivalent to 

(pIRoPS +P2RoQN)®e'l." (6.6) 

defined in WI<" ® CR" Formula (6.6) is the general expres
sion for the sum of two spinors with different directions in 
WI< and different phases. As indicated by (6.3), such a sum 
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FIG. 6. Geometrical interpretation of the sum RP' ®p, e~: .,' + RQ' 

® p, e~;. First we pass to the equivalent expression R"P , ® e~" + R" Q ' 

® p, e~;". To this the parallelogram rule is applied. The sum is thus found to 

be (p, R"P' + p.R"Q ')® e~. 

may be evaluated in a component-independent way If we pass 
to any space WRn ® CR,.for which the circle ~ (P,Q,Ro) differs 
from ~ (P,Q,R ) by an angle equal to the phase difference 8. In 
WRn ® CRn we may apply the parallelogram rule to find the 
sum. The situation is thus as illustrated in Fig. 6. 

The reader is well-advised to study this procedure of 
spinor addition in detail. Note, in particular, that the point 
Ro of (6.6) may be replaced by any other point R b 
E ~ (P,Q,Ro) giving the same orientation to the circle, i.e., 

~ (P,Q,R o) = ~ (P,Q,R b). 
The projection of(6.6) on S2 is invariant under this substitu
tion. However, if we, instead of Ro choose a point R ~ 
E ~ (P,Q,R o) giving the opposite orientation to the circle, 
I.e., 

~ (P,Q,R o ) = ~ (P,R~, Q) 

the space W R :: ® C R:: will correspond to the difference be
tween the two spinors. The projection of this difference on S 2 

will also be located on ~ (P,Q,R o ) but on the side of P and Q, 
which is opposite to the projection of the sum. 
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The macroscopic disequilibrium theory for Markovian relaxation processes is applied to the two
spin Glauber model. The theory is tested rigorously by evaluation of all quantities explicitly. The 
probability distribution function is shown to be reproduced exactly by the minimal information 
procedure using the knowledge of certain macroscopic variables. The probability distribution 
functions obtained using a reduced number of macroscopic observables are examined and the 
deviations from the exact distribution function are discussed. It is concluded that the 
disequilibrium situation might be described satisfactorily if we choose a suitable set of 
macroscopic variables, but the result might crucially depend on the choice of these variables. The 
entropy deficiency, entropy production, and the first and the second time derivatives of the 
entropy production are evaluated explicitly for this model. The signs of such quantities are found 
to be in accordance with the predictions of more qualitative theories. 

I. INTRODUCTION 

A theory dealing with macroscopic disequilibrium for 
Markovian relaxation processes has recently been developed 
by Levine and co-workers, 1-3 and others.4

.
5 This theory re

lates the probability distribution functions to a few macro
scopic observables via the minimal information procedure, 
introducing intensive thermodynamic quantities ("forces") 
as the Lagrange multipliers. The time derivatives of these 
macroscopic observables ("fluxes") and the corresponding 
"forces" provide a legitimate connection to the irreversible 
thermodynamics developed by Onsager, 6 and Prigogine and 
co-workers. 7

•
8 Some elementary applications of this theory 

has been made to the case of vibrational relaxation of diato
mic molecules in a buffer gas. 1 

It is desirable, however, to find a situation in which the 
theory can be tested rigorously by evaluating all quantities 
involved explicitly. One of the simplest model system for 
such a situation is provided by the Glauber model. 9 The 
probability distribution functions of a finite Ising chain can 
be obtained precisely by a procedure of correlation expan
sion in the Glauber model. 

The main purposes of the present work are as follows. 
We, firstly, apply the disequilibrium theory to the system of 
which the exact solution to the master equation, or the time
dependent probability function, is known. We intend to ver
ify that the non equilibrium situation is described exactly by 
the knowledge of a set of macroscopic observables. We also 
study the deviation in system description due to the reduced 
number of macroscopic observables employed in the mini
mal information procedure. It is possible to evaluate the en
tropy deficiency, entropy production, and the first and sec
ond time derivatives of the entropy production for our 
model. This provides a very rare opportunity to verify the 
prediction of more qualitative theories such as irreversible 
thermodynamics concerning the signs of such quantities. 

The arrangements of this paper is as follows. We review 

"'Supported by the Research Institute for Basic Sciences, Seoul National 
University. 

the disequilibrium theory in Sec. II. We show clearly the 
relation between the entropy production and the net time 
rate of entropy produced in reservoir and system in a relax
ation process. The exact solutions to the average spin and 
spin correlation function in two-spin Glauber model are ob
tained in Sec. III. We apply explicitly the disequilibrium 
theory to the Glauber model in Sec. IV. We obtain the ex
pressions for the probability distribution functions and 
"forces" with sufficient and reduced number of macroscopic 
observables. We compare the results with the exact values. 
The entropy deficiency, entropy production, and the first 
and second time derivatives are calculated explicitly and dis
cussed in relation to the inequality ofPrigogine, in Sec. V. 
Section VI presents our conclusions. 

II. DISEQUILIBRIUM THEORY 

We consider a system in contact to a heat reservoir, in 
which the Markovian relaxation process is described by a 
master equation, 

!!..P(n,t) = - IP(n,t)Wnn, + IP(n',t)Wn'n' (1) 
dt n' n' 

where P (n,t) is the probability for the system to be found in a 
state n at time t, and Wnn, is the transition rate from state n to 
state n'. The probability distribution function P (n,t ) satisfy 
the obvious normalization condition 

IP(n,t) = 1. (2) 

The disequilibrium entropy of the system at time t can 
be defined in the form of missing information 

S(t) = - I P(n,t) InP(n,t). (3) 

We now introdu;e a set of macroscopic observables fAr' 
r = 1,2 ... , M J which is regarded to be sufficient to character
ize the disequilibrium situation macroscopically. The time 
dependence of these variables is expressed by the relation 

(A/t» = IP(n,t)Ar(n), (4) 
n 

whereAr(n) is the value ofAr at a particular state n. Once we 
know the probability distribution function assuming, for ex-
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ample, Eq. (1) is solved, the disequilibrium entropy and mac
roscopic observables are determined by Eqs. (3) and (4). 

It might be desirable, however, to estimate the probabil
ity distribution functions using the phenomenological 
knowledge of Ar(t). To get the best estimation, we require a 
minimum information procedure which maximizes S (t ) un
der the constraints of Eqs. (2) and (4). If we introduce the 
Lagrange multipliers Aa(t) and Ar(t) [r = 1,2, ... , M] corre
sponding to the constraints Eqs. (2) and (4), we find, 

( 
M ) P(n,t)=exp -Ao(t)- r~IAr(t)Ar(n). (S) 

The Lagrange multipliers Ao(t) and Ar(t) are, in principle, 
determined by the conditions 

~ exp( - Ao(t) - rtl Ar(t )Ar(n») = 1, (6) 

~AAn) exp( - Ao(t) - r~1 Ar(t )Ar(n») = (Ar,(t» (7) 

(r' = 1,2, ... ,M). 

Further macroscopic observables (A r' (t » [r' = M + 1, ... ] 
can be predicted using the probability distribution functions 
in Eq. (S) once the Lagrange multipliers are determined. The 
predicted observables, of course, may not coincide with the 
measured values if such measurements are carried out. But 
further information concerning such observables might be 
used to obtain better estimates for the probability distribu
tion functions. This procedure of improving the knowledge 
of P (n,t), however, may not continue indefinitely. After us
ing the information contained in a certain number of obser
vables, the estimate for P (n,t ) may no longer improve if all 
the other information is redundant. I For this case the La
grange multipliers corresponding to the additional observa
bles are regarded as vanishing. We expect that many La
grange multipliers Ar(t) becomes vanishingly small as the 
system approaches equilibrium, since at equilibrium only a 
few observables are required to determine the probability 
distribution functions. 

UsingtheexpressionP (n,t) given inEq. (S), thedisequi
librium entropy can be expressed 

,\1 

S(t)=Ao(t)+ I Ar(t)(Ar(t». (8) 
r=l 

The Lagrangian multipliers A r (t ) are the partial derivatives 
of Set) with regard to (Ar(t»: 

A t _ as(t) 
r( ) - a(AAt» 

(9) 

The time derivative of disequilibrium entropy of the system 

d d 
d/(t) = - ~[lnP(n,t) + 1] d/(n,t) (10) 

can be written, using Eqs. (2) and (S), 

(11) 

The equilibrium probability distribution pO(n) can also 
be written in the form of Eq. (5): 

pO(n) = exp [ - A g - r~1 A ~Ar(n)] (12) 
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and the corresponding entropy SO is 
M 

SO = A g + L A ~ (A r) 
r= 1 

(13) 

understanding that many of the A ~ vanishes. The observa
bles corresponding to non vanishing A? are conserved quan
tities, such as energy, otherwise the entropy S (t ) in Eq. (8) 
can continue to increase by changing (Ar(t ». The time de
rivative of the entropy can now be written 

~S (t) = f {tr(t) ~(Ar(t» 
dt r~ I dt 

Mod + I A r -(Ar(t», 
r~ I dt 

(14) 

where 

(IS) 

The second term in Eq. (14) is precisely the negative time 
derivative of the entropy in the reservior: 

M d d 
=- LA~-(Ar(t»R=-dtSR 

r~ I dt 

since the observables Ar are conserved quantity 

~ [(Ar(t» + (Ar(t» R ] = 0 
dt 

(16) 

unless A ~ = 0, where the quantities with subscript R belong 
to the reservoir. The first term in Eq. (14) is therefore the net 
time rate of entropy due to the relaxation process in the sys
tem plus environment, which is usually call the "entropy 
production." It is very easily verified that this entropy pro
duction is the negative time derivative of entropy deficiency 
which is defined as the averaged deviance of P (n,t ) from sta
tionary distribution P O(n), 

D(t) = I P(n,t) In[P(n,t)/pO(n)]. (17) 

To obtain the best probability distribution function, we may 
start from the entropy deficiency and follow minimizing pro
cedure. The entropy production 9 (t) due to the relaxation 
process is now written, 

d M 
9(t) = - -D(t) = I {tr(t)Xr(t) 

dt r~ I 
(18) 

in terms of the "forces" {tr(t) given in Eq. (15) and "fluxes" 
Xr(t) defined by 

d 
Xr(t) = -(Ar(t». (19) 

dt 

It has been shown2
.4 that both the entropy deficiency and 

entropy production are non-negative quantities and this is 
equivalent to the second law of thermodynamics. 

III. TWO-SPIN GLAUBER MODEL 

The kinetic Ising model, which was introduced by 
Glauber,9 relates the strongly interacting Ising model to a 
time-dependent disequilibrium situation via a master equa
tion in the form of Eq. (1). In this model the scalar spins, 
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which are located on lattice sites, can take the values ± 1 
corresponding to the up and down positions of the spins as in 
an Ising model. For the simplicity of our model, we take an 
Ising chain with only two spins surrounded by a heat 
reservoir. 

The Hamiltonian of the two-spin Ising chain is 

H = - JUI u2 ' (20) 

where U I 'U2 are the spin values and J is the interaction 
strength between these two spins. We write the probability 
distribution function in the form P(ul ,Uz ,t) for each set of 
(u l ,(2 ) at time t. Ifwe let w/u l ,uz) be the probability per 
unit time that the Jth spin flips from uj to - uj when the 
initial spin complexion is (u l ,(2 ), the master equation can be 
written 

- W2 (UI ,(2 ) P(UI ,u2 ,t) 

+ WI (- u, ,(2 ) P( - U I ,u2 ,t) 

+w2 (U,,-U2)P(u,,-u2 ,t). (21) 

To determine the possible form of wj(u, ,(2 ), we allow the 
tendency for the spins to align parallel each other and choose 
the form, as Glauber did, 

wj(u, ,(2 ) = !a(1 - 1W, ( 2 ) (22) 

which would have two possible values, !a(l - 1]) and 
~(l +1}). 

The parameter a is related to the interaction strength 
between the system and the reservoir. Since this parameter 
describes the time scale on which all transitions take place, 
we let it be unity for conveience. The other parameter 1}, 
describes the tendency toward alignment and describes the 
equilibrium state of system. We therefore choose 1] in such a 
way that the system would reduce to the correct equilibrium 
distribution. Following the procedure provided by Glauber, 
we obtain 

1] = tanh(J IkT). (23) 

The probability distribution functions are given by9 

P(u, 'U2 ,t) = !(l + L. ujqj(t) + L. UPk'j.k (t »), (24) 
J hCk 

where qj (t ) and 'j.k (I ) are the expectation values of uj and 
UjUk defined by 

qj(t) = (uj(t» = L. ujP(u"u2 ,t), 
1"1 

(25) 

'j.k(t) = (Uj(t)Uk(t» = L. uj u k P(U"U2 ,t), (26) 
kJ 

where the summation is taken over all the configuration of 
spins. The spin expectation functions qj (t ) satisfy the flowing 
coupled equations 

d 
--;-.. {It (t) = - ql (t) + 1]q2 (t), 
dt 
d 
d(l2(t) = -q2(t)+1]q,(t), 

while the spin correlation functions 'ij(t) satisfy 
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(27) 

d 
-"2 (t) = - 2'l2 (t) + 21], 
dt 

'12(t) = '12(t). 

The solution of Eqs. (27) and (28) are easily found: 

q, (t) = !{q, (0) + q2(0)je--('--1/)' 

+ -!!ql (0) - q2(0)le --(I +1/)', 

q2 (t ) = -!! q, (0) + q2 (0) I e -- (' -- 1/)' 

- -!!q, (0) - q2(0)je--(' +1/)', 

r(t) = {r(0) - 1] I e -- 2l + 1}, 

(28) 

(29) 

(30) 

(31) 

where r(t )="2 (t) = '21 (t). Equation (24) with Eqs. (29)
(31) completely determine the probability distribution func
tionsP (u, 'U2 ,t), once the initial conditions, q, (0), q2 (0), and 
r(0), are prescribed. 

IV. APPLICATION OF DISEQUILIBRIUM THEORY TO 
GLAUBER MODEL 

The two-spin Glauber model described in Sec. III pro
vides an excellent situation in which the disequilibrium the
ory can be tested rigorously, since we have already exact 
solutions for the probability distribution functions to com
pare with the same distribution functions determined by the 
disequilibrium theory. We also have the spin expectation 
functions qj (t) and spin correlation function "2 (t ) evaluated 
exactly, which can be chosen as the macroscopic observa
bles. We consider two different initial spin configurations: 
initially aligned and initially disaligned. 

A. Initially aligned configuration 

We assume that the initial values of the two spins are 
both + 1, which means 

ql (0) = q2(0) = 1 

and 

r(0) = 1. 

We then have, from Eqs (29)-(31), 

q, (t) = q2(t) = e--(I--1/)', '12(t) = 1] + (1 -1])e-- 2
'. 

(32) 

For a macroscopic variable it is more natural to choose the 
average spin function 

(33) 

rather than q, (t) and q2 (t) individually. 
We have freedom to choose the set of macroscopic ob

servables out of the independent expectation value functions 
ij(t), r(t), and q, (t). We therefore try the following four 
possibilities: 

(I) ij(t )"'2 (t ),q, (t), 

(II) ij(t )"12 (t), 

(III) ij(t ), 

(IV) '12 (t). 

It turns out immediately that, in the observable set I, q, (t) is 
redundant, and therefore set I reduces to the observable set 
II. For the sake of notational simplification, we introduce 
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two functions we could obtain the whole probability distribution functions 
exactly. q=q(t) = e-(1-1/)t, 

(34) We next consider the case in which the observable set 
r=r(t) = TJ + (1- TJ)e-2t 

which are indentical to ij(t) and r\2 (t), respectively, 
For the observable set II, we let 

A\ = 1(0"\ +0"2)' (A\(t» =q(t), 

A2 =0"\0"2' (A 2(t» =r(t), 
(35) 

with corresponding Lagrange multipliers A\ (I) and A2 (I), 
which should be determined by the conditions given in Eq. 
(7). Also we introduce the convention 

P(l,/) = P(l, l,t), P(2,/) = P(l, - 1,1), 

P(3,/) = P( - 1,1,t), P(4,/) = P( - 1, - 1,t). 
(36) 

Then, the distribution obtained by the minimum informa
tion procedure, Eq. (5), is written 

P(1,t) = exp[ - Ao - A\ - A2 ], 

P(2,/)=exp[ -Ao +A21, 

P(3,t) = exp[ -Ao +A2 ], 
P(4,t) = exp[ -Ao +A\ -A2 ]. 

(37) 

The equations determining Ao, A\ , and A2, Eqs. (6) and (7), 
are 

P(1,/) + P(2,t) + P(3,t) + P(4,t) = 1, 

P(1,t)-P(4,t) = q(t), (38) 

P(l,t) - P(2,t) - P(3,t) + P(4,t) = r(t). 

ThethreefunctionSAo (t ),A\ (t ), andA2 (t ) are easily obtained 
by Eqs. (37) and (38): 

AQ(t) = In4 -lln(1 - r) - a In[(1 + 2q + r)(1- 2q + r)] 
A\ (t) =! In[(l - 2q + r)/(l + 2q + r)], (39) 

A~(/) =! In(l- r) - a In[(l + 2q + r)(l - 2q + r)]. 

As times goes to infinity, q(t H, r(t )--+TJ, the above three 
parameters giving the equilibrium distribution will be 

A g = In4 -! In[(1- TJ)(l + TJ)J, 

A? = 0, (40) 

A ~ = lln[(l - TJ)/(1 + TJ)], 

where A g related to the partition function Z by 

Z = e
Ag 

= ~ exp( - r~\ A ?Ar(n»). (41) 

The probability distribution functions obtained by Eqs. (37) 
and (38) are 

P(1,t)=HI +2q+r), 

P(2,t) = P(3,t) = !(1 - r), (42) 

P(4,t) = HI - 2q + r). 
This result precisely coincides with the exact solution of the 
master equation given in Eq. (21). This coincidence is rather 
accidental due to the symmetry between 0"\ and 0"2 for this 
particular initial configuration. Still, it is remarkable that, 
using the knowledge of only two macroscopic observables, 
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III is taken. In this case we let 

(43) 

and the corresponding Lagrange mUltipliers A\ (t). Follow
ing the similar procedure as the case of observable set III, we 
obtain 

and 

Ao(t) = In4 -In(l _ q2), 

A\ (t) = In[(l - q)/(l + q)], 

P (1,1) = t(1 + 2q + q2), 

P(2,/) = P(3,/) = t(1- q2), 

P(4,/) = t(1- 2q + q2). 

(44) 

(45) 

An interesting comparison with the exact distribution given 
in Eq. (42) can be made. We observe that if q2 terms are 
replaced by r, the distribution functions in Eq. (45) coincide 
with the exact results. From Eq. (32) and Eq. (33), we notice 
that land r have similar time dependence 

q2(t) = e - 21e2 f/ 1
, 

r(t) = (l-lJ)e- Z1 + lJ, 
(46) 

if lJ is small. The major difference between these two func
tions occurs for a large t, at which q2-o while r--+TJ. We 
therefore conclude that the probability distribution func
tions obtained by the knowledge of a single observable q(t ) is 
very close to the exact distribution functions especially at the 
initial stage of relaxation. As the system approaches equilib
rium, the agreement becomes worse, and finally it gives an 
incorrect distribution at equilibrium. We can very easily pin
point the reason why it gives the wrong equilibrium distribu
tion. The macroscopic observable we have chosen, q(t ), ap
proaches zero as t--+ 00, and at equilibrium it provides no 
information at all. 

Finally we would consider the other alternative, the ob
servable set IV. In this case, we choose 

(47) 

and let the corresponding Lagrange multipliers A\ (t). Fol
lowing the procedure used in the other cases, we obtain 

and 

Ao(t) = In4 - !In[(1- r)(l + r)], 

A\ (t) = 1ln[(1 - r)/(l + r)], 

P(1,t) = P(4,t) = 1(1 + r), 
P(2,t) = P(3,t) = t(l- r). 

(48) 

(49) 

A comparison with the exact distribution shows that the 
probability distribution functions in Eq. (49) are good ap
proximation if q(t )<r(t). This approximation is valid near 
the equilibrium, in which q(t ) vanishes. The distribution ob
tained by the knowledge of r(t ) is therefore complementary 
to that obtained by the knowledge of q(t ), each having its 
own range of validity. 
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B. Initially disallgned configuration 

Ifwe taken the initial conditions 0"1 = 1,0"2 = - I at 
t = 0, we find 

q(t) = H ql (t) + q2 (t)] = 0, 

ql (t) = e - (I + 71)', 

r I2 (t) = 1/- (1 + 1/)e- 2,. 

(50) 

(51) 

(52) 

q2 (t) can be obtained explicitly from Eqs. (50) and (51). We 
choose the following four sets of variables as our macroscop
ic variables: 

(I) q(t),ql (t),rI2(t), 

(II) q(t ),ql (t), 

(III) q 1 (t ),r 12 (t ), 

(IV) q(t ),rI2 (t). 

We will simply present the resulting probability distribution 
functions for each of the above cases, using another set of 
abbreviations 

r=1/ - (I + 1/)e - 2'. 

For observable set I, 

P(1,l) = P(4,t) = *(1 + r), 
P(2,t) = !(l + 2q - r), 

P(3,t) = *(1 - 2q - r). 

For observable set II, 

P(l,t)=P(4,t)=Hl-q2), 

P(2,t) =!(1 + 2q + q2), 

P(3,t) = *(1 - 2q + q2). 

For observable set III, 

P(l,t) = HI + r)(1 + q), 

P (2,t) = !(1 - r)(1 + q), 

P (3,t ) = *(1 - r)(1 - q), . 
P(4,t) = *(1 + r)(1 - q). 

For observable set IV. 

P(I,t) = P(4,t) = *(1 + r), 
P(2,t) = P(3,t) = HI - r). 

(53) 

(54) 

(55) 

(56) 

Among these four sets of distributions, the probability distri
bution functions given by Eq. (53) coincide with the exact 
result obtained by the master equation. We notice that all 
three independent observables were needed to get the exact 
result in contrast to the case of initially aligned configura
tion, where only two observables were enough. All the other 
features are similar to the case of initially aligned configura
tion. The distribution obtained by the observable set IV in 
which q(t) and r 12 (t) are used is indentical to that which 
would be obtained by using a single observable r 12 (t). For 
this particular case the observable q(t) is redundant. The 
Lagrange mUltipliers Ao (t), A I (t), A2 (t), and A3 (t) corre
sponding to the partition function, q(t), ql (t), and r 12 (t), re
spectively, are shown to be 
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Au (t ) = In4 - ~(1 + r) 
- !In[(I + 2q - r)(1 - 2q - r)], 

AI (t) = ~ln[(1 + 2q - r)/(1 - 2q - r)], 
(57) 

Al(t) = ~ln[(1- 2q - r)/(I + 2q - r)], 

A3(t) = *In[(1 + 2q - r)(1- 2q - r)] - ~ln(1 + r), 

which would lead to equilibrium values 

A g = In4 - ~[(1 + 1/)(1 -1/)]. 

A ~ =A ~ = 0, 

A ~ = ~ln[(1 -1])/(1 + 1])]. 

(58) 

Comparing Eq. (58) with Eq. (40), we find that only two 
non vanishing parameters remain, each corresponding to the 
partition function and observable O"J 0"2' respectively. We 
also confirm that those two parameters are independent of 
the initial spin configurations yielding the same equilibrium 
distribution. The reason why only observable 0"10"2 has non
vanishing Lagrange multiplier at equilibrium is that this is 
the only observable determining the equilibrium distribu
tion. To make this point clearer, we notice that 0"1 0"2 is relat
ed to the energy of the system via the Hamiltonian given in 
Eq. (20). We can therefore relate (O"J 0"2) to the internal ener
gy of the system U 

(O"r 0"2) = - U /J. (59) 

We expect that the corresponding Lagrange multiplier 
should be the inverse temperature lIkTmultiplied by - J. 
We readily verify that this is indeed the case, using the values 
of 1] given in Eq. (23): 

~ln[(1 - 1])/(1 + 1])] = - J /kT. (60) 

V. ENTROPY PRODUCTION 

One of the fundamental concept characterizing the 
nonequilibrium phenomena is the entropy production dis
cussed in Sec. II. This quantity, however, has rarely been 
evaluated explicitly, although there have been numerous for
mal discussion4

•
7

•
8 concerning its properties. Our model pre

sented in previous sections permits an easy evaluation of the 
entropy production and its time derivative as functions of 
time. The examination of entropy production and its deriva
tives evaluated explicitly and exactly might provide extra 
insight into the normally untractable disequilibrium 
processes. 

For the case of initially aligned configuration we evalu
ate the "forces" f.JAt ), defined in Eq. (15), from Eqs. (39) and 
(40): 

PI (t) = A I (t) - A ~ = tIn [(1 - 2q + r)l(1 + 2q + r) 1, 
(61) 

/12 (t ) = A2 (t ) - A g 

= !In(1 - r) - !In[(1 + 2q + r)(1 - 2q + r)] 
- !In[(l -1/)/(1 + 1/)]. 

The corresponding fluxes are using Eqs. (19), (34), and (35) 
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FIG. 1. Time evolution of the entropy deficiency D(t) for the initially 
aligned configuration. The logarithm of the entropy deficiency is expressed 
as a function of time. 

d XI (t) = ~(t) = - (1- 1J)e-(I-1/)t, 
dt 

(62) 

X 2 (t) = !!.-r(t) = - 2(1 - 1J)e - 2t. 
dt 

The entropy production 9 (t) in Eq. (18) is written explicitly 
in terms oft, using Eqs. (34), (61), and(62): 

9(t) = !(1- 1J)e-(I-1/)t 

Xln[ 1+1J+ 2e -<,-1/)t+(1-1J)e- 2t ] 
1 + 1J - 2e-('-1/)t + (1 - 1J)e- 2t 

+ !(1 - 1J)e - 21 

X[ln( 1 +1J+2e-(ll-:)~+(I-1J)e-21) 

+ In( 1 + 1J - 2e - (I - 1/)1 + (1 - 1J)e - 2, ) 

1+1J 

-2In(l-e- 21 )]. (63) 

This result can also be obtained by evaluating the entro
py deficiency defined in Eq. (17) and differentiating as indi
cated in Eq. (18). A similar expression can be obtained for 
the case of initially disaligned configuration. In fact, we find 
that the entropy production for this case is indentical to that 
of initially aligned configuration case shown in Eq. (63), ex
cept that the value 1J is replaced by - 1J. The time depen
dence of entropy deficiency and entropy production for ini
tially aligned configuration are shown in Figs. 1 and 2, 
respectively. For the sake of convenience, they are plotted in 
log scale. It is readily verified that the entropy deficiency and 
entropy production are positive, which has been proved 
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FIG. 2. Time evolution of the entropy production, 9(t). The logarithm of 
9 (t ) is expressed as a function of time. 

rather generally for Markov system.2
•
4 As we notice from 

Figs. 1 and 2, D (t) and 9 (t) decrease exponentially. The 
decay rate for positive 1J is slower than for negative 1J. This is 
due to the tendency of maintaining initially aligned state for 
positive 1J which describes the ferromagnetic state. The "re
laxation time" may be obtained from the slopes. The slope 
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FIG. 3. Time evolution of the negative time derivative of the entropy pro
duction, - d9(t }Idt. The logarithm of - d9(t)/dtisexpressedasafunc
tion of time. 
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FIG. 4. Time evolution of the second time derivative of the entropy produc
tion, d 2 9(t )ldt '. The logarithm of d 2 &(t )Idt 2 is expressed as a function 
of time. 

for 17 = 0.8 is about one-third of that for 17 = 0.2, which im
plies that the "relaxation time" for 17 = 0.8 is three times 
longer than that of 17 = 0.2. 

The negative time derivative and second time derivative 
of the entropy production plotted in log scale are shown in 
Figs. 3 and 4. The signs of these quantities are in accordance 
with the inequality of Prigogine which was rather generally 
proved by Moreau.4 
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VI. CONCLUSION 

In this paper, we have rigorously tested the disequilibri
um theory by applying the theory to a finite Glauber model 
consisting of two spins. We have obtained the conclusion 
that the non equilibrium situation can be described exactly 
with an appropriate and sufficient number of macroscopic 
observables. The probability distribution functions which 
are obtained by the minimal information procedure then co
incide exactly with the exact solution to the master equation. 
The nonequilibrium situation is also approximately de
scribed by the knowledge of a reduced number of macro
scopic observables. In particular, if we choose the observa
bles which do not vanish at equilibrium for the description of 
the system, the probability distribution functions near the 
equilibrium are reproduced appropriately. On the other 
hand, the far-from-equilibrium situation is described mean
ingfully only with the inclusion of some macroscopic obser
vables which vanish at equilibrium. 

As a conclusion, we expect that a disequilibrium sys
tem, of which the exact solution to the master equation is not 
known might be described satisfactorily if we choose a set of 
appropriate macroscopic observables. But the result might 
crucially depend on the choice of these variables. 

I I. Procaccia, Y. Shimoni, and R.D. Levine, J. Chern. Phys. 65, 3284 (1976). 
'R.D. Levine, J. Chern. Phys. 65, 3302 (1976). 
'I. Procaccia and R.D. Levine, J. Chern. Phys. 65, 3357 (1976). 
'M. Moreau, J. Math. Phys. 19, 2494 (1978). 
'R. Spohn, J. Math. Phys. 19, 1227 (1978). 
'L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931). 
'I. Prigogine, Introduction to Thermodynamics 0/ Irreversible Processes 
(Interscience, New York, 1967). 

'G. Nocolis and I. Prigogine, Self-Organization in Non-Equilibrium Sys
tems (Wiley, New York, 1977). 

'R.J. Glauber, J. Math. Phys. 4, 294 (1963). 

H.I. Zhang and J.I. Lee 2444 



                                                                                                                                    

A guiding center Hamiltonian: A new approach 
Robert G. Littlejohn 
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 

(Received 1 May 1979; accepted for publication 8 June 1979) 

A Hamiltonian treatment of the guiding center problem is given which employs noncanonical 
coordinates in phase space. Separation of the unperturbed system from the perturbation is 
achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to 
illustrate the method, motion in the magnetic field B = B (x ,y)2 is studied. Lie transforms are 
used to carry out the perturbation expansion. 

1. INTRODUCTION 

In this paper I will report on a new approach to a Ha
miltonian formulation of the guiding center problem, an ap
proach which leads to a remarkably deep insight into the 
formal structure of classical Hamiltonian mechanics. This 
insight is not new, in the sense that the natural mathematical 
apparatus for an abstract description of Hamiltonian me
chanics is that of differential geometry, and differential ge
ometry has been exhaustively studied by mathematicians. 
Nevertheless, even those mathematicians who have explicit
ly concerned themselves with Hamiltonian mechanics have 
tended to use a language and a notation which is difficult for 
most physicists. Among these we might mention Abraham, 1 
Vinogradov and Kupershmidt,2 and Arnold.3 As a result, 
very little of the abstract point of view of Hamiltonian me
chanics has found its way into the physics literature, and 
certainly not into the more familiar textbooks. 4--6 In addi
tion, for most applications of interest in physics, even quite 
theoretical ones, a description of Hamiltonian mechanics 
which focuses on the differential geometry of phase space 
may be deemed to be unnecessarily academic and impracti
cal. The guiding center problem appears to be an exception, 
however, since for this problem one is virtually compelled to 
employ noncanonical coordinates in phase space. 

The term "the guiding center problem" refers to a cer
tain perturbative expansion of the solution to the equations 
of motion of a charged particle in a given electromagnetic 
field. The perturbation expansion is based on an approxima
tion, the "guiding center approximation," which may be 
roughly described by saying that electromagnetic effects 
dominate over inertial effects. This problem is of great inter
est and importance in plasma physics and astrophysics, and 
over the years various means have been devised for effecting 
this perturbative development. 7-14 All of these methods in
volve an enormous amount of algebraic manipulations, 
which have hindered studies into higher-order effects. For 
example, there still remains some controversy over certain 
second-order terms. This work has arisen out of an attempt 
to find a better way to solve this problem. 

If the differential equations of motion for the guiding 
center probelm are written down without regard to their 
Hamiltonian origin, then it is straightforward but laborious 
to subject these equations to a systematic perturbative treat
ment, yielding the guiding center expansion. The required 
perturbation methods, which are designed for systems of or-

dinary differential equations with nearly periodic solutions, 
were largely developed by Krylov and Bogoliubov, 15 Bogo
liubov and Mitropolski, 16 and Kruskal. 17 The work of Krus
kal is especially significant, because he showed how the per
turbative solutions relate to action integrals and adiabatic 
invariants in the case that the system of ordinary differential 
equations can be derived from a Hamiltonian. 

Similar perturbative methods exist for Hamiltonian 
systems. These methods are older than their non-Hamilton
ian counterparts, having been developed originally by Poin
care, 18 and they are the standard methods found in text
books.5.6.19-21 If a system can be analyzed with Hamiltonian 
perturbation methods, then it is much better to do so than to 
use non-Hamiltonian methods. The reason is that the equa
tions of motion in Hamiltonian mechanics are derivable 
from a scalar function, namely the Hamiltonian, so that one 
can deal with a scalar instead of a vector. Similar consider
ations apply to coordinate transformations, which in Hamil
tonian mechanics are specified by a scalar, namely the gener
ating function of the canonical transformation. This 
advantage becomes greatly enhanced as one proceeds to 
higher and higher orders. 

Unfortunately, the Hamiltonian for the guiding center 
problem, which will be discussed in detail in Sec. 4 below, 
cannot be easily analyzed by the standard methods of Poin
care. The reason is that the relation between the canonical 
momentum p and the physical variables x and v describing 
the motion of the particle involves the use of the magnetic 
vector potential A. That is, the introduction of the vector 
potential is the price one must pay in order to use Hamilton
ian mechanics. This in itself would not be so bad, except that 
in the guiding center approximation the transformation 
yielding p from x and v mixes up the ordering scheme, so that 
there is no clear separation between the unperturbed system 
and the perturbation. This difficulty is not inherent to the 
problem, but only to a Hamiltonian description of the prob
lem is terms of the usual set of canonically conjugate q's and 
p's. 

In this paper we take an approach to the guiding center 
problem which preserves the best features of the perturba
tion method of Poincare, and yet avoids the use of the vector 
potential. These goals are accommplished by employing 
noncanonical coordinate systems in phase space. This step 
leads one to think more in terms of a geometrical picture of 
phase space dynamics, and less in terms of coordinate repre-
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sentations with respect to canonically conjugate (q,p) pairs. 
One result is a heightened appreciation for the role of differ
ential geometry in the formalism of Hamiltonian mechanics. 

Sections 2 and 3 of this paper are included for the sake 
of establishing certain notation conventions and for the sake 
of completeness. Section 2 develops some of the essentials of 
a covariant formulation of Hamiltonian mechanics. This 
presentaiton is intentionally and necessarily incomplete, due 
to lack of space; for example, certain propositions are stated 
without proof. Unfortunately, there does not seem to be any
thing in print which covers this subject except in the abstract 
language of modern mathematics. 

In addition, in Sec. 2 we prove a certain theorem, Theo
rem 1, which is not at all profound, but which seems hereto
fore not to have been articulated in quite the same manner, 
and which is crucial to our perturbation development in Sec. 
5. In Sec. 3 we discuss in detail a theorem of Darboux, per
taining to the existence of canonical coordinates, which is 
central in our choice of coordinates in phase space. 

In Sec. 4 we set upIhe Hamiltonian for the motion of a 
charged particle in the guiding center approximation. The 
case studied is that of a nonrelativistic particle in a static 
magnetic field with a high degree of symmetry, namely 
B(x) = B (x,y)2. Although this is a very special case, it serves 
to illustrate the novel mathematical techniques described in 
this paper. The application of the same techniques to more 
realistic problems in straightforward and will be reported 
upon in forthcoming publications. In Sec. 4 we use a proce
dure suggested by the proof of Darboux's theorem to con
struct a certain "semicanonical" coordinate system in phase 
space, preparing the Hamiltonian for a standard perturba
tion analysis, along the lines of the method of Poincare. 

In Sec. 5 we carry out the perturbation expansion to 
second order in the guiding center approximation. The ex
pansion is based on the perturbation method of Poincare, but 
it differs in two significant ways. One way is that canonical 
transformations are expressed in terms of their Lie gener
ators, instead of the more conventional mixed-variable gen
erating functions. That is, we use a variant of the so-called 
Lie transform method, which has been pioneered by Hori,22 
Deprit,23 Dewar,24 and others. The second way is that a sys
tem of phase space coordinates is used which is 
noncanonical. 

Finally, in Sec. 6 we discuss various technical aspects of 
the method and possible extensions and generalizations. 

2. A COVARIANT FORMULATION OF HAMILTONIAN 
MECHANICS 

In this section we outline some of the essential features 
of Hamiltonian mechanics in the context of an arbitrary co
ordinate system in phase space. To do this it is necessary to 
call upon the formalism of differential geometry. A relative
ly accessible source for a more thorough coverage of this 
subject is the recent textbook by Arnold. 3 

We will denote a coordinate system on phase space by 
the symbol z or Zi, representing 2N coordinates. N is the 
number of degrees of freedom of the Hamiltonian system. 
When these coordinates are some choice of the usual q's and 
p's, we will call them canonical coordinates, and refer to a 
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canonical coordinate system. In this section, when we refer 
to canonical coordinates we will decompose the 2N coordi
nates Zi into q's and p's as follows: 

Zi=(ql' ..... qN'PI .... 'PN). (2.1) 

Canonical coordinates are to be regarded as a special case, 
and unless we state the contrary, the coordinates z i are not to 
be interpreted as necessarily representing a canonical co
ordinate system. 

A convenient place to being a covariant formulation of 
Hamiltonian mechanics is with the Lagrange brackets. If z 
represents a set of canonical coordinates, and ifZ represents a 
set of2N independent functions of z, then z may be interpret
ed as a possibly noncanonical coordinate system in phase 
space. The Lagrange Bracket of the quantity ii with the 
quantity i j will be denoted by the symbol wij' which, accord
ing to the definition, is given by 

wij = t (~~ ~; - :~ ~~). (2.2) 

It is convenient to introduce a certain constant, anti
symmetric, orthogonal 2N X 2N matrix y, which is repre
sented here by its partition into four N X N matrices: 

y = (-~- --~--:'j 
-1 : oJ 

(2.3) 

In terms of the matrix y, the Lagrange brackets wij can be 
written as follows: 

(2.4) 

Here and throughout this section summation over repeated 
indices is understood. 

The Poisson bracket of two phase functions! and g will 
be denoted by I!,g). The Poisson brackets of the coordinates 
z among themselves are of special importance, and we de
note these quantities by jj ij. According to the definition of 
the Poisson bracket. we have 

- ij _ f -i -j) _ ~ (ai
i 

ai
j 

ai
i 

ai
j

) (2 5) 0' -{z,z - ~ ----- ----. . 
k aqk aPk apk aqk 

This can also be written in terms of the matrix y. as follows: 

-'J ai' ail 
0' - - Ykl-' (2.6) azk ai 
In Eqs. (2.4) and (2.6) there may be recognized the 

transformation laws for the components of second-rank ten
sors of the covariant and contravariant types. respectively. 
According to this interpretation, wij and jjij are the compo
nents of two tensors with respect to the coordinate system z. 
When the coordinate system z is arbitrary. i.e., not necessar
ily canonical, or when no distinction need be made between 
two coordinate systems, we will drop the overbars and write 
simply OJij or 0' ij for the components of the two tensors with 
respect to the coordinate system z. 

The following connections between the OJ tensor and the 
0' tensor are important. By the well-known properties of the 
Lagrange brackets and Poisson brackets. we have. in any 
coordinate system, 
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O)ijif'} = 87. (2.7) 

In addition, it is easy to see that O)ij = oij = r ij if and only if 
the coordinate system z is canonical. 

The 0) and 0' tensors can be viewed in the abstract, apart 
from their component representations. For the 0' tensor, the 
relation between the two points of view is given by 

ij a a L a /\ a (2.8) 
0'=0" ai ® az}= k aqk apk' 

Thus, for example, the Poisson bracket of two phase fuctions 
/ and g can be regarded as the value of the 0' tensor on the 
differentials of the two functions: 

[/,g} = u(df,dg) = a/ oi} ago (2.9) 
az' az' 

Likewise, the 0) tensor can be regarded as a 2-form: 
N 

0) = ~O)ijdi /\ dz} = L dqk /\ dPk· (2.10) 
k 

The 2-form 0) is nondegenerate, meaning 

det(O) ij )*0. (2.11) 

It is also closed, meaning dO) = 0, or 

aO) aO)k aO)k' 
__ 'I + _1 + _.f = 0. (2.12) 
azk az' az1 

A manifold, such as Hamiltonian phase space, which is en
dowed with a closed, nondegenerate 2-form is said to be a 
symplectic manifold. 

The fact that 0) is closed is especially important. It im
plies and is implied by the Jacobi identity: 

[f,[g,h }} + [g,[h,f}} + [h,[/,g}} = 0. (2.13) 

We do not allow the 2-form 0) to depend on time, since 
to do so causes the Poincare invariants to depend on time. 
That is, we demand 

aO) 
--I] =0. 

at 
(2.14) 

From a practical point of view, this means that most time
dependent transformations z = z(q,p,t), taking us from a ca
nonical coordinate system to an arbitrary system, must be 
excluded. Time-dependent canonical transformations are an 
exception, since O)ij = r ij = constant in any canonical sys
tem. A dynamical system described by a time-dependent Ha
miltonian H may be treated by the well-known procedure of 
taking t and - H as canonically conjugate coordinates in an 
extended phase space of N + 1 degrees of freedom. In this 
paper there will be no need to consider either time-depen
dent coordinate transformations or time-dependent 
Hamiltonians. 

An important example of a noncanonical coordinate 
system in phase space is afforded by the dynamical system 
consisting of a nonrelativistic particle of mass m and charge e 
moving in a given, static magnetic field B(x). The usual ca
nonical coordinates (q,p) for the phase space of this system 
are given in terms of the particle's position x and velocity v 
by 

q=x, 
(2.15) 

p = mv + (e/c)A(x), 
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where A(x) is a vector potential corresponding to the mag
netic field B(x). The coordinates (x,v) parametrize phase 
space equally as well as (q,p), but they are noncanonical. 
Using Eq. (2.5), the components of the O'tensor with respect 
to this coordinate system are easily obtained: 

[Xi'X}} =0, 

[xi,vj } = - [vi,xj} = (lIm)8ij' 

[Vi'V)} = (e/m 2c)Bi)' 

where 

(2.16) 

Bij = EijkBk' (2.17) 

The components of the 0' tensor can be written in matrix 
form, with the ordering z = (x,v): 

.. 1 I 

(

0 : 1 ~ 
cl

I

= m --~~--i---~~-~---' (2.18) 

Here the symbol 8 represents the magnetic field tensor, de
fined in Eq. (2.17). The components of the 2-form 0) in the 
same coordinate system are given by 

~ e ') 
--8 : 1 

O)ij = m ____ n:: ___ + ____ . 
-1 : ° 

(2.19) 

Observe that the fact that 0) is closed implies the Maxwell 
equation V·B = 0. 

Let us now tum our attention to Hamilton's equations 
of motion and their consequences. These equations are easily 
cast into a generally covariant form by using the Poisson 
bracket and Eq. (2.9). The result is 

di _ i i H} _ ij aH --lz, -0'-. 
dt az} 

(2.20) 

One may say that the Hamiltonian transforms as a scalar 
under arbitrary time-idependent coordinate 
transformations. 

As an example of Hamilton's equations in a noncanoni
cal coordinate system, consider the (x, v) coordinate used in 
Eqs. (2.15)-(2.19). The Hamiltonian in the (q,p) coordinates 
IS 

H (q,p) = _1_ (p _ ~A(q»)2. 
2m c 

In the (x, v) system this becomes, using Eq. (2.15), 

H(x,v) = ~mv2. 

Then the equations of motion are 
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(2.22) 

(2.23) 
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These are, of course, the Newton-Lorentz equations. The 
"nonphysical" magnetic vector potential A disappears from 
the formalism when the (x,v) coordinates are used. 

Let us now return to Hamilton's equations of motion 
and replace the parameter t, describing the trajectories in 
phase space, with the nondescript parameter A. This is done 
because in two applications in this paper, one in the proof of 
Darboux's theorem and one in the perturbation analysis of 
Sec. 5, the trajectories which arise from Hamilton's equa
tions have nothing to do with the time evolution of a dynami
cal system. This replacement also avoids some inessential 
confusion over our disallowal of time-dependent coordinate 
transformations. 

Let S(Zo,A ) be the solution to Hamilton's equations 
which satisfies z = Zo at A = O. That is S(Zo,A ) satisfies 

aS i = (Tij aH, 
aA azi 

(2.24) 

where the right-hand side is evaluated at z = S(Zo,A ), and 
also S(Zo,O) = Zo for all Zo· We assume the equivalent of a 
time-independent system, meaning that Hamilton's equa
tions are autonomous, so that 

(2.25) 

for all Zo, A I ,Az . This is an elementary result from the theory 
of ordinary differential equations, 25 and it gives rise to an 
interpretation of the solution S as a representation of a one
parameter group of diffeomorphisms of phase space onto 
itself. In view of their origin from Hamilton's equations, 
these diffeomorphisms are called symplectic diffeomor
phisms, and the group is called a Hamiltonianjfow. 

Symplectic diffeomorphisms can be regarded as map
pings of phase space onto itself in a manner independent of 
coordinate representation, or, in conjunction with a given 
coordinate system z, they can be regarded as mappings of 
R ZN onto itself. Of course, the underlying Hamiltonian H 
and symplectic 2-form ware implicit. The latter point of view 
is more useful to us here, because it encourages us to think of 
symplectic diffeomorphisms as A-dependent coordinate 
transformations. That is, we associate a coordinate transfor
mation z-z with z = S(Z,A ); we will call such a coordinate 
transformation a symplectic transformation. 

For the pruposes of perturbation theory it is useful to 
associate a symplectic transformation with a linear operator, 
which we denote by T (A ). This operator acts on the vector 
space of phase functions and maps it into itself, according to 
the rule 

(T(A }f)(z) = f(S(Z,A» (2.26) 

for any phase function! That is, Tf = foS. The set 
( T(A )iAER J forms a linear representation of the Hamilton
ian flow, and the group multiplication law, corresponding to 
Eq. (2.25), is 

(2.27) 

A suitable basis for the Lie algebra of the Trepresentation of 
the Hamiltonian flow is the operator L, defined by 

Lf= (H,fj (2.28) 

for any phase function! With these definitions, Hamilton's 

2448 J. Math. Phys., Vol. 20, No. 12, December 1979 

equations can be written 

~ T(A) = -LT(A) 
dA 

with solution 

T (A ) = exp( - AL ). 

(2.29) 

(2.30) 

It is well known that the solutions to Hamilton's equa
tions of motion in the usual (q,p) language give rise to ca
nonical transformations. With respect to an arbitrary co
ordinate system in phase space, symplectic transformations 
are the proper generalization of canonical transformations, 
or at least the regular canonical transformations. 6 More
over, these transformations playa privileged role among all 
possible transformations, in spite of the covariant formalism 
being pursued here, because the 2-form W is invariant under 
Hamiltonian flows. This invariance can be stated in several 
different but equivalent ways. One way is to say that sym
plectic diffeomorphisms with respect to a canonical coordi
nate system yield canonical transformations. Another way is 
to state the invariance of the first Poincare invariant, which 
is the integral of W over some surface in phase space. 

For our purposes we choose a third way. We consider 
some coordinate system z, with respect to which W has com
ponents wij(z), which are to be regarded as definite functions 
of z. Under an arbitrary change of coordinates z-z the com
ponents of W go into wij 00, which we consider to be functions 
of the new coordinates Z, according to the usual rule for 
covariant tensors: 

(2.31) 

However, if the transformation z-z is a symplectic transfor
mation, then the invariance of W means wijOO = wijOO. Thus 
we have the following theorem: 

Theorem 1: The functional form of the components of 
the 2-form W (and hence also of the (T tensor) is invariant 
under symplectic transformations. 

We will make use of this theorem in Sec. 5. 

3. DARBOUX'S THEOREM 

An axiomatic approach to Hamiltonian mechanics be
ings with the 2-form w, assumed to be closed and nondegen
erate, and then develops the consequences of these assump
tions, such as the Jacobi identity. The approach taken in 
most textbooks on classical mechanics, on the other hand, is 
to prove theorems such as the Jacobi identity by employing a 
canonical coordinate system. The axiomatic approach is 
equivalent to the textbook approach only if it can be shown 
that a canonical coordinate system actually exists, i.e., a co
ordinate system such that wij = Yij' That one (and hence a 
whole class) does exist is a consequence of Darboux's theo
rem, which we shall prove in this section. 

For the purposes ofDarboux's theorem, it is convenient 
to decompose a set z of canonical coordinates into q's and p's 
in the following order: 

Z = (ql ,PI ,.·.,qN,PN)' (3.1) 

Corresponding to this ordering, the matrix Y has the form 
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rij= 

1 : 
-1 0: 
-- -- - --j -6-- -r-

I 

'-1 0 , 
I . 

This ordering differs from that used in Sec. 2. 

o 

(3.2) 

We shall denote phase space by f/J, representing a 2N
dimensional manifold. The construction of canonical co
ordinates given in the proof of Darboux's theorem generally 
holds only locally, i.e., in some finite neighborhood of a giv
en point. We shall, in this section, ignore all questions of the 
region of applicability of the construction, and speak as if it 
were valid for all of f/J. With this understanding, we may state 
the theorem. 

Theorem 2 (Darboux's theorem): Let there be given a 
closed, nondegenerate 2-form W on f/J and a coordinate sys
tem z with respect to which w has components wij' Then 
there exists a coordinate transformation ~Z such that the 
components wij of W with respect to the new coordinates 
have the form wij = rij' Furthermore, anyone of the new 
coordinates Zi, considered as a function of the old coordi
nates z, can be chosen at will. 

We remark that if the original coordinate system z is 
canonical itself, then the constructive proof of Darboux's 
theorem gives a method of determining a canonical transfor
mation ~Z in which one of the new coordinates Zi(Z) takes 
on a specified form. It is in this context that Darboux's theo
rem will be used in Sec. 4. 

Darboux's theorem is proved by induction, using the 
following lemma: 

Lemma: Let there be given the hypotheses of Darboux's 
theorem. Then there exists a coordinate transformation ~Z 
such that the components wij of w with respect to the new 
coordinates z have the form 

o 
• -------.- -- - - - ---
, 0 
I o 1 
I 

1-1 

(3.3) 

Furthermore, anyone of the new coordinates Zi(Z) can be 
chosen at will. 

To show how this lemma implies Darboux's theorem, 
we develop some simple corollaries of the lemma. To do this, 
it is convenient to label the new coordinates z as follows: 

z = (Z,q,p), (3.4) 

where the new coordinates Z, corresponding to the nij block 
in Eq. (3.3), represent 2N - 2 functions Z i(Z). First of all, we 
note that the (2N - 2) X (2N - 2) matrix nij is antisymme
tric. Next, since w is nondegenerate, we have det(wij)=r!=O, 
and hence also det(nij)=r!=O. Then, since w is closed, we have 
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aWij aW·k aWki + -} + -=0. (3.5) 
azk az' azj 

If the index k in this equation is set to 2N - 1 or 2N, corre
sponding to the new coordinates q or p and if neither i nor j 
takes on these values, then two terms vanish according to 
Eq. (3.3), since we have 10k = Wki = 0, and the remaining 
term gives 

anij = anij =0. 
aq ap 

(3.6) 

Hence the quantities n ij depend only on the new coordinates 
Z. When none of the indices ij,k takes on the value 2N-l or 
2N, Eq. (3.5) becomes 

an .. an k an k 
__ '1 + _1_. + __ '. = o. 
az k az ' az 1 

(3.7) 

In Eqs. (3.6) and (3.7), the indices i,j,k run over the numbers 
1, ... ,2N - 2 corresponding to the coordinates Z. 

The result of these corollaries is that the quantities nij 
are the components with respect to the coordinate system Z 
of a certain closed, nondegenerate 2-form n on some mani
fold cP of dimensionality 2N - 2. The manifold cP can be 
identified with a submanifold of f/J, as will be shown later. 
Hence on cP the 2-form n satisfies the hypotheses of Dar· 
houx's theorem, and by the lemma there exists a coordinate 
transformation Z---+Z, taking the components nij into nij' 
such that one more pair of q,p coordinates is constructed, 
and such that one more step toward the form ofEq. (3.2) has 
been taken. After N applications of the lemma, Darboux's 
theorem is proved. 

The proof of the lemma is constructive. We will call the 
program for the construction of the coordinates z = (Z,q,p) 
the Darboux algorithm. 

By hypothesis, w is nondegenerate, so det(wij)=r!=O. 
Therefore we can define a tensor u with components uij ac
cording to Eq. (2.7), and from this, a Poisson bracket accord
ing to Eq. (2.9). When we perform a coordinate transforma
tion ~z, the components jj ij of the u tensor with respect to 
the new coordinates z are the Poisson brackets of the new 
coordinates among themselves. With the definition 
z = (Z,q,p), we demand the following form for these Poisson 
brackets: 

(q,pj = 1, (3.8) 

(Zi,qj =0, (3.9) 

(Zi,pj =0, (3.10) 

(Zi,Zjj =~ij. (3.11) 

The precise form of the quantities ~ ij is immaterial, al
though they will automatically be the components of a 
(2N - 2) X (2N - 2), antisymmetric, invertible matrix, 
since the form of jj ij is given by 

o , _____ L ________ _ 

, 
jjij = : 0 (3.12) 

o 
-1 
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FIG. I. The q-characteristics and the construction of the functions p(z) and 
Z(z). 

Clearly, Egs. (3.8)-(3. 11) are equivalent to Eq. (3.12) which 
in tum is equivalent to Eg. (3.3). 

First we solve Eg. (3.8). We pick some function q(z) on 
4> for one of the new coordinates; the other 2N - 1 functions, 
p(z) and Z i(Z), will then be constrained by Eqs. (3.8)-(3.10). 
In terms of the given function q(z), Eg. (3.8) is a first-order, 
linear inhomogeneous partial differential equation for the 
unknown function p(z). Such an equation always has a solu
tion, 26 which may be found by integrating along the charac
teristics of the partial differential operator. 

In this case the characteristics are the curves z = z(A ) 
which are the solutions to the following set of ordinary dif
ferential equations: 

dz i 
. 

-={z',qj. 
dA 

(3.13) 

These characteristics are the trajectories which result upon 
treating q(z) as a Hamiltonian. Therefore, we will call them 
"q-characteristics." The parameter A, which is suggestive of 
time, is a real number parametrizing the trajectories. It is 
natural to treat the operator d / dA as a field of tangent vec
tors, and to write 

(3.14) 

A picture of the solution p(z) to Eg. (3.8) is useful; see 
Fig. 1. In this figure, Q represents a contour surface of con
stant q, i.e., a (2N - I)-dimensional manifold. Because q is 
constant along any q-characteristic, every q-characteristic 
lies in some such contour surface, such as the q-characteris
tic C q in the figure. To find p(z) , we choose a (2N - 1)
dimensional manifold Po, cutting all the Q surfaces. Po is 
arbitrary, except that it must be nowhere tangent to any Q 
surface, since that would result in dq /\ dp = 0 and preclude 
the use of q and p as new coordinates. The surface Po is to be 
taken as an initial value surface for p(z); for example, it is 
convenient to take p(z) = 0 for z = EPa. For ZfiPo' p(z) is 
defined as the negati ve of the elapsed A parameter, relative to 
Po, of the q-characteristic passing through z. From Eq. 
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(3.14) it then follows that 

dp 
-= Ip,qj = -1 
dA 

and Eq. (3.8) is satisfied. 

(3.15) 

Next we want to solve Eg. (3.9) for 2N - 2 functions 
Z i(Z) which are independent of each other and also of q and 
p. Considering q as given and p and Z as unknowns, Eg. (3.9) 
is the same partial differential equation as Eq. (3.8), except 
that it is homogeneous. Such an equation possesses 2N - 1 
independent solutions, so we seem to have one more solution 
than we need. Actually, we do not, because q itself satisfies 
the differential equation, i.e., I q,q j = 0, and the remaining 
2N - 2 solutions are left for the Z i. 

To construct the solutions Zi(Z) to Eq. (3.9), observe 
that these functions must be constant along q
characteristics: 

dZ i 

-=0. 
dA 

(3.16) 

The Z i may be found by constructing a coordinate system on 
the surface Po, in which q is one of the coordinates and the 
other 2N - 2 coordinates are Z '. This defines Z '(z) for 
zEPo. For zfiPo' the values Z i(Z) are propagated along q
characteristics so that Z '(z) = Z '(z') whenever z and z' are 
on the same q-characteristic. The result clearly satisfies Eq. 
(3.16), and hence also Eq. (3.9). 

The functions Z '(z) so constructed are not unique, since 
any invertible transformation of the form Z = Z(Z,q), tak
ing Z into Z, gives a new set of solutions. Such a transforma
tion can be regarded as a coordinate transformation on Po . 

When we tum to Eg. (3.10), we see that the Z' must 
satisfy further constraints. The latitude we have in the choice 
of the Z', as mentioned in the last paragraph, is useful here, 
because by a proper choice of the coordinate system (Z,q) on 
Po it is possible to satisfy Eqs. (3.9) and (3.10) 
simultaneously. 

The characteristics of Eg. (3.10) are found by treating 
p(z) as a Hamiltonian, and we will call them the "p-charac
teristics." They are the solutions z = z(p,) of the ordinary 
differential equations 

dz i 
. 

-=Iz',pj. 
dj..l 

(3.17) 

As before, we may define a tangent vector field d /dj..l by 

(3.18) 

The functions Z '(z) are to be simultaneous constants of 
the q-characteristics and the p-characteristics. An arbitrary 
pair of Hamiltonian flows does not in general possess simul
taneous constants, since the diffeomorphisms belonging to 
the two flows do not in general commute. It may be shown, 
however, that two Hamiltonian flows commute if and only if 
the Poisson bracket ofthe two Hamiltonians is a constant. In 
the case at hand, the q-flow and the p-flow commute, since 
Iq,pj = 1. 

To construct the Z '(z), we first select some contour 
surface Qo of q(z), and form the (2N - 2)-dimensional mani-
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FIG. 2. The construction of the functions Z(z) as simultaneous constants of 
the q- and p-characteristics. 

fold (/> which is the intersection of this surface with Po, as 
shown in Fig. 2. The manifold (/> is the same one mentioned 
earlier, on which the 2-form n is defined. Within (/> we con
struct a coordinate system by arbitrarily choosing 2N - 2 
independent functions Z i(Z). Thus the Z i(Z) are defined for 
"LE(/>. The values Z '(z) are then propagated along the p-char
acteristics passing through (/>. These characteristics lie en
tirely in one contour surface of p, namely Po. Therefore the 
Zi(Z) are now defined for ZEPo, and they are constants of the 
p-characteristics on this surface. The definition of the Z i is 
then extended to all of l/J by propagating along q-characteris
tics, as shown in Fig. 2. Thus, finally, the Z i(Z) are defined on 
all of phase space, and they are constants of the q-character
istics everywhere in l/J. 

The last step is to show that the Z i(Z) are constant of the 
p-characteristics, not just on Po, but everywhere in l/J. To do 
this, consider the quantities { Z i,p }, which are known to van
ish on the surface Po. To find their values elsewhere, we 
compute their derivatives along the q-characteristics, using 
Eqs. (3.14), (3.8), and (3.9): 

d . {{' dA {Z',p} = Z',p},qj 

= {{q,p},Zi} + {{Zi,q},p} = 0 (3.19) 

Hence the {Z i,p} vanish everywhere in l/J, and Eq. (3.10) is 
satisfied. The Jacobi identity has entered at this point, and it 
is here that the fact that (t) is closed, which implies the Jacobi 
identity, has been called upon. 

This completes our proof of Darboux's theorem. Al
though it may be regarded as primarily of theoretical inter
est, we will make a practical application of it in the next 
section. 

4. APPLICATION OF DARBOUX'S THEOREM TO THE 
GUIDING CENTER PROBLEM 

4.1. Preliminaries 

Equations (2.15) and (2.21) describe the motion of a 
nonrelativistic charged particle in a static magnetic field. 
For the purposes of this section and the next, we want to 
mOdify these equations in three steps. 

The first step is to introduce a dimensionless perturba-
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tion parameter E by replacing the charge e by e/ E. Then when 
the solutions to the equations of motion are developed in 
powers of E, the result is the "guiding center approxima
tion." Although the true solution is found in the end by set
ting E = I, it us useful to consider E to be a variable, describ
ing a family of systems. In particular, we shall speak of the 
order of an expression in terms of its behavior as E-o, it 
being understood that the particle variables x and v and the 
fields A and B are to be held constant in this limiting process. 
For example, the gyroradius mv 1 c/ eB is of order one, mean
ing 0 (E), and the gyrofrequency eB fmc is of order - 1, 
meaning 0 (E - 1). The physical meaning ofthe limit E-o is 
that the particle motion is dominated by a nearly circular, 
rapid gyration of small gyroradius, which samples only 
small variations in the magnetic field during a single gyro
period. The physical meaning of this limit is discussed in 
greater detail by Northrop, 8 and some of the delicate math
ematical aspects of the limit are discussed by Kruskal. 9,27 

The second step is to suppress the constants e, m, and c 
for the sake of notational convenience. These constants are 
easily restored by a dimensional analysis. The resulting Ha
miltonian is 

H(q,p) = l[p - (l/E)A(q)] 2 (4.1) 

and the relation between the particle variables (x,v) and the 
canonical coordinates (q,p) is 

x=q, 
(4.2) 

v = p - (l/E)A(q). 

The third step is to restrict consideration to magnetic 
fields of the form B( x) = B (x,y)i, and furthermore to consid
er only particle motion in the x-y plane. The problem thereby 
becomes two dimensional, and we write x = (x,y), 
v = (vx ,vy), etc. The magnetic field can be treated as a scalar 
in the two-dimensional problem; we assume B > 0 in the re
gion of space under consideration. 

4.2. Two coordinate transformations 

In this section we will subject the Hamiltonian in Eq. 
(4.1) to a sequence of coordinate transformations. The first is 
given by Eq. (4.2); it was discussed in Sec. 2 in greater detail. 
Under the coordinate transformation (q,p)-(x,v), the Ha
miltonian becomes 

(4.3) 

The components c/j of the (T tensor in this coordinate system 
can be conveniently represented by giving the formula for 
the Poisson bracket of two phase functions f and g: 

{J,g) = af. ag _ af. ag +..!.. B. (af X ag). 
, axav avax E av av 

(4.4) 

This is easily seen to be equivalent to Eq. (2.16). Note that E 

appears explicitly in the Poisson bracket. 
The second coordinate transformation is motivated by 

the form of the solution for a uniform magnetic field, which 
corresponds to the limit E-o. A picture of the particle mo
tion for the case that B (x,y) is uniform is shown in Fig. 3, 
assuming a positively charged particle. The following defini-
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c~a } { 
FIG. 3. Guiding center variables for a uniform magnetic field. The unit 
vectors a, c rotate with the particle. 

tions, relating to the second coordinate transformation, are 
valid for an arbitrary field B (x,y), but their physical interpre
tation is most simple in the uniform case. 

First we define a unit vector b along the ma$netic field 
B. According to previous conventions, we have b = z. Next 
we define a unit vector c in the direction of the particle's 
velocity: 

V= vC. (4.5) 

Finally, we define a unit vector a by a = b x c. Thus the triad 
(a,b,c) forms a right-handed set. Note that for a uniform 
magnetic field a is in the direction of the gyroradius vector r, 
which is the displacement between the guiding center posi
tion X and the position of the particle x: 

x=X+~ ~~ 

In the units chosen, we have, for a uniform magnetic field, 

r = (ElJIB)a. (4.7) 

Figure 3 also shows the gyrophase B, which we define as 
the angle between a and the x-axis, measured in a clockwise 
sense. Using this angle, we may state the relations between 
the triad (a,b,c) and (x,y,z): 

c = - sinBX - cosBY, 

a = cosBX - sinBY, 

b=z. 
(4.8) 

In the uniform field limit, B evolves linearly in time with 
frequency B I E. 

We now make the coordinate transformation 
(x,y,vx ,Vy~(x,y,B,v). The Hamiltonian keeps the form of 
Eq. (4.3), but the Poisson bracket changes, as indicated here 
by the components of the a tensor: 

{X;.Xj) =0, 

(x,v) =c, 
{x,B 1= - Mv, 

I B,v I = B lEV. 

4.3. The Darboux algorithm 

(4.9) 

The third coordinate transformation is not trivial, and 
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requires some motivation. Consider a Hamiltonian H (q,p). 
A typical strategy in Hamiltonian perturbation theory is to 
find a canonical transformation (q,p~(ii,ji) such that the 
new Hamiltonian K is independent of one or more (perphaps 
all) of the new generalized coordinates ii. To be specific, sup
pose it is made independent of one new coordinate, say iiI . 
Then none of the equations of motion for the other 2N - 1 
phase coordinates depends on iiI, i.e., the iiI time evolution is 
decoupled from the evolution of all the other phase coordi
nates. In addition, the conjugate momentum PI is a constant 
of the motion. 

It may be seen from Eq. (2.20) that such a strategy does 
not work so easily in the case of a noncanonical coordinate 
system. The Hamiltonian may be independent of one of the 
coordinates i, but it does not follow in general that some 
other coordinate will be a constant of the motion or that the 
given coordinate will decouple from the others. The reason is 
that consideration must be given to the components of the a 
tensor, which in general depend on z. Consider, for example, 
the Hamiltonian in Eq. (4.3) and the a tensor given by Eq. 
(4.9). These give the following equations of motion: 

dx ~ 
-=vc 
dt ' 

dv =0, 
dt 

dB = B(x). 
dt E 

(4.10) 

Thus, althoughaH laB = 0, Bis not decoupled from theoth
er variables. 

It may not be necessary, however, to have a canonical 
coordinate system in order for the usual strategy of Hamil
tonian perturbation theory to work. Consider, for example, 
the components of the a tensor shown in Eq. (3.12), with 
respect to the coordinate system (Z, ,oo,Z2N _ 2,q,P)' Such a 
coordinate system could be considered "semicanonical," be
cause of the relations in Eqs. (3.8)-(3.10). If aH laq = ° in a 
coordinate system of this type, then p is a constant of the 
motion, and q is decoupled from the other coordinates. 
There is no need for the other 2N - 2 coordinates Z to fall 
into canonically conjugate pairs, and in fact it may be desir
able that they not do so. 

These considerations suggest that we transform from 
the coordinates (x,y,B,v) to a new, semicanonical set 
(X, Y,B,J), in which B remains unchanged and J is canonical
ly conjugate to B, i.e., {B,J 1 = 1. The other two coordinates 
X and Yare to have vanishing Poisson brackets with both B 
and J, but beyond that their form remains to be determined. 
As it turns out, these two quantities are related to a kind of 
generalized guiding center position. 

Evidently, the coordinate transformation we desire is 
the result of one application of the Darboux algorithm to the 
coordinate set (x,y,B,v), with B chosen as the new generalized 
coordinateq, withJ corresponding top, and with X = (X,Y) 
corresponding to the (2N - 2)-vector Z. Actually, it is desir
able to modify the form ofEqs. (3.8)-(3.10) slightly, and ask 
for solutions J, X to the set 

I B,J I = liE, (4.11) 
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v 

FIG. 4. The O-characteristics converge on the surface v = o. 

[X,O] =0, 

[X,Jj =0. 

(4.12) 

(4.13) 

The form ofEq. (4.11), which is in contrast to [O,J] = 1, is 
chosen so that the solution J will be of order zero, i.e., 0 (1), 
instead of 0 (€). 

To solve these equations we will need the O-characteris
tics, i.e., the trajectories which result from treating 0 as a 
Hamiltonian. We put d IdA. = [ ,0 j and useEq. (4.9) to get 
the following differential equations for the O-characteristics: 

dx Ii 

dA. 
- -, 

v 
(4.14) 

~= _ B(x). (4.15) 
dA. EV 

Likewise, Eqs. (4.11) and (4.12) can be written in terms of 
the parameter A.: 

dJ 
-=--, 
dA. E 

(4.16) 

dX=O. 
dA. 

(4.17) 

To get a picture of the O-characteristics we may exam
ineEq. (4.15). Since we are assumingB > 0, Eq. (4.15) shows 
that as the parameter A. increases the O-characteristics move 
monotonically inward on the surfaces 0 = constant toward 
the two-dimensional surface v = 0, which we shall call Vo. 
The projections of some of these characteristics onto the 
Vx - Vy plane are shown in Fig. 4. It is clear that Vo is a 
singular surface for the differential equations in Eqs. (4.14) 
and (4.15), since a single point on this surface is converged 
upon by a whole family of O-characteristics, each one corre
sponding to a different value of O. That this is so is not sur
prising, since 0 has a branch point at v = O. The singular 
nature of the O-characteristics on this surface will cause us to 
make certain slight alteration in the Darboux algorithm, as it 
was presented in Sec. 3. 

4.4. Obtaining J 

To proceed, it is useful to eliminate the parameter A. 
from Eqs. (4.14)-(4.16) in favor ofv. Since v depends mono
tonically onA., this change ofindependent variable is permis-
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sible, and it gives 

dx E A 

-=-a, 
dv B 
dJ v 
-=-. 
dv B 

(4.18) 

(4.19) 

Although these equations depend upon the unspecified 
function B (x) and cannot, therefore, be integrated in closed 
form, nevertheless a perturbative solution in powers of E is 
easily obtained. Since every O-characteristic meets the sur
face Vo' the simplest initial condition to assume for the func
tion J is J = 0 when v = O. Then integrating Eq. (4.19) by 
parts and using Eq. (4.18) in an iterative manner yields the 
formal solution 

00 ( E)"V" + 2 1 
J(x,O,v) = L - L" --, 

" ~ 0 (n + 2)! B (x) 
(4.20) 

where L is the Lie operator defined by 

L= _1_li'~' 
B(x) ax (4.21) 

The function J is our solution to Eq (4.11). Note that to 
lowest order it is the magnetic moment of gyration: 

J = v 2/2B + o (E). (4.22) 

The surface Vo corresponds, in the sense that it is the 
initial value surface for J, to the surface Po in Fig. 2 and in 
the discussion of the Darboux algorithm in Sec. 3. Neverthe
less, it fails to correspond to Po in that it is two dimensional 
instead of three dimensional. This failure is a result of the 
singularity of 0 on v = 0, and it causes Vo to correspond, in a 
somewhat different sense, to the surface cP in Fig. 2. These 
considerations are a warning to be careful in following the 
Darboux algorithm. 

4.5 Obtaining X 

We proceed with the construction of a simultaneous 
solution to Eqs. (4.12) and (4.13) as follows. First we deter
mine the J-characteristics on Vo. We let f.l be the real param
eter associated with these characteristics, i.e., we put 
d I df.l =! ,J J. In an arbitrary region of phase space the 
equations defining the J-characteristics are complicated, due 
to the complicated form ofEq. (4.20). But when v = 0, they 
simplify greatly, yielding 

dx = 0 (4.23) 
df.l ' 

~=o. 
df.l 

(4.24) 

Equation (4.24) is no surprise, because the J-characteristics 
must remain in a J contour surface, which is v = 0 by con
struction. As for Eq. (4.23), it tells us that theJ-characteris
tics on Vo are not curves at all, but rather immobile points. 

Next we select a coordinate system on Vo' which is to 
correspond to the coordinates Z on cP as described in Sec. 3, 
and hence also to the quantities X in Eqs. (4.12) and (4.13). 
The simplest and most obvious coordinate system is the rec
tangular system x supplied by the original problem. It is for 
this reason that we use the symbol X here instead of Z. 
Therefore we define, for points on Vo, 
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v 

( x,v,8) 

y 

x 
FIG. 5. Geometrical meaning of the functions X(x,B,v). The figure shows a 
B-characteristic moving toward the surface v = o. 

X(x,v = 0,8) = x. (4.25) 

The quantities X are now propagated along J-charac
teristics in order to satisfy 

{X,J) =0 (4.26) 

on Va. But since the J-characteristics are just points, there is 
nothing to this step, and Eq. (4.26) is automatically satisfied 
on Va. 

The quantities X are next propagated along 8-charac
teristics to extend their definition to all of phase space. The 
two-dimensional surface Va reaches all of four-dimensional 
phase space by following 8-characteristics because a whole 
family of 8-characteristics meets any given point of Va. The 
result is that the value of the function X at any given phase 
point z = (x,8,v) is found by following the 8-characteristic 
passing through z until it reaches v = O. This is shown sche
matically in Fig. 5. The coordinate 8 has been suppressed in 
the figure in order to make a drawing possible. By this defini
tion, we have 

{X,8) =0 (4.27) 

everywhere in phase space. 
Exactly as was done in Sec. 3, we can prove that 

did)' {X,J) = 0,sothatEq.(4.26)issatisfied,notjuston Va, 
but everywhere in phase space. It is not at all easy to verify 
Eq. (4.26) directly, using the solution for J given in Eq. (4.20) 
and that for X given below. 

At this point we find an explicit expression for the func
tion X(x,8,v). This is obtained from Eq. (4.18), by means of 
an iterated integration by parts, exactly as Eq. (4.20) was 
obtained. Eq. (4.25) serves as initial conditions. The result is 

X(x,8,v) = exp( - EvL )x, (4.28) 

where the Lie operator L is defined in Eq. (4.21). It is inter
esting to note that when this series is carried through 0 (E), 
the result is the guiding center position: 

X = x - (EvIB)a + O(E2). (4.29) 

This may be compared to Eqs. (4.6) and (4.7) for the case of 
the uniform magnetic field. 
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Our ability to express the solution X in term of a simple 
Lie series is probably fortuitous. For example, the analogous 
situation does not obtain for the guiding center problem in 
three dimensions. Nevertheless, some of the many properties 
of these series 28 will be of use to us here. For example, Eq. 
(4.28) may be inverted to solve for x: 

x(X,8,v) = exp( + EvL )X. (4.30) 

In this equation the Lie operator L is given by 

L= _1_a.~ 
B(X) ax 

(4.31) 

which is to be contrasted with Eq. (4.21). Lie operators are 
best regarded as operators which take functions into other 
functions, so that the independent variables in question are 
dummies. Therefore in what follows we shall usualy not ex
plicity indicate the independent variables in the Lie operator 
itself, it being understood that they are the same as those of 
the operand. Equations (4.28) and (4.30) are example so this 
convention. 

4.6. Obtaining the (T tensor 

We now have an explicit form for the variable transfor
mation (x,8,v)---+(X,8,J), given by Eqs. (4.20) and (4.28). In 
order to make use of the new coordinate system, we need in 
addition the components of the (J' tensor with respect to the 
new coordinates. Of the six independent components of the 
4 X 4 antisymmetric component matrix a'j, five were deter
mined by the construction of the new coordinates, as shown 
in Eqs. (4.11)-(4.13). The remaining component corre
sponds to the one independent component of the 2 X 2 ma
trix I u, which is shown in Eq. (3.12). This remaining com
ponent is the Poisson bracket {X, Y I, which according to Eq. 
(3.6) can depend only on X, i.e., not on 8 or J. 

Consider the Poisson bracket {X, Y I at an arbitrary 
phase point z = (X,8,J). It is easily established that this Pois
son bracket is constant along both 8- and J-characteristics, 
i.e., that 

d d 
d). {X,Y I = dJ.L {X,Y J = O. (4.32) 

Effectively, this is an application of Poisson's theorem: The 
Poisson bracket of any two constants of a Hamiltonian flow 
is another such constant. Therefore {X, Y J can be evaluated 
at any point on the 8-characteristic which passes through 
z = (X,8,J), and the result will be the same as at z itself. 
Clearly, the most convenient point to make such an evalua
tion is on Vo. 

In order to find {X, Y J on Vo it is necessary to compute 
{X, Y J in the neighborhood of Vo and then to let v-o. In this 
regard, it may be seen that Eq. (4.28) can be considered a 
power series in v as well as in E. Writing this series out, and 
using Eq. (4.8), we have 

X=x-(EvIB)cos8 +O(v 2), 
(4.33) 

Y =Y + (EvIB) sin8 + O(v 2). 

Then a direct computation of the Poisson bracket, using Eq. 
(4.9), gives 

Robert G. Littlejohn 2454 



                                                                                                                                    

IX,YJ = - e/B(x) + o (v). (4.34) 

But when we let v--+O, x becomes identical with X, and we 
obtain 

{X,Y} = - dB (X). (4.35) 

By the arguments above, this is valid at any point (X,e,J) of 
phase space. As predicted, I X, Y 1 depends only on X. 

Altogether, in the coordinate system (X, Y,e,J) the com
ponents of the (J matrix are 

o 
+ dB (X) 

o 
o 

-dB(X) 

o 
o 
o 

o 
o 
o 

-1/e 

That is, we can write the Poisson bracket of two functions! 
and g in terms of the coordinates (X,e,J) as follows: 

e (J! Jg J! Jg) 
If,gj = B(X) ayaX - ax ay 

-.!.- ( a! ag _ a! ag ). 
+ e ae aJ aJ ae 

(4.37) 

4.7 Iterating the Darboux algorithm 

At this point it is interesting to consider what would 
happen if another iteration of the Darboux algorithm were 
carried out, representing a coordinate change 
(X,Y,e,J)-+(Q,p,e,J), which would bring the (J tensor into 
the form tli = Yij/€' Except for the factor 1/£, which is a 
minor consideration, we would then have constructed, by 
means of a number of noncanonical intermediaries, an over
all canonical transformation (qx,qy,Px,Py)-+(Q,p,e,J). Ac
cording to the theory in Sec. 3, the new coordinates Q and P 
would be functions of X alone, and they would satisfy 
IQ,P 1 = lIE. 

The functions Q and P of X which are produced by a 
second iteration of the Darboux algorithm cannot be con
structed perturbatively, as were X and J. Nevertheless, these 
functions are related in a simple manner to the well-known 
Euler potentials, 29 which are usually denoted by a and /3: 

Q (X) = /3 (X)/ e, 

P (X) = a(X)/ £. 

The functions a and /3 satisfy 
VaXV/3=B 

(4.38) 

(4.39) 

which in our two-dimensional field configuration becomes 

B (X Y) = aa a/3 _ aa a/3. 
, ax ay ayax 

(4.40) 

From this and Eq. (4.37) it is easy to show that I Q,P 1 = lie. 
Incidentally, we see that Darboux's theorem implies the ex
istence of Euler potentials, at least for the two-dimensional 
field configuration considered here. 

In the remainder of this paper we choose to us the co
ordinates X instead of the Euler potentials a and/3, i.e., we 
choose to remain with the semicanonical coordinate system 
(X, y,(),J). This is done for several reasons. In the first place, 
what we gain by using canonical coordinates is the ability to 
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use standard textbook formulas for Hamiltonian mechanics, 
while what we lose is that we must deal with Euler potentials, 
which are nonphysical in the same sense that the vector po
tential A is nonphysical. On the other hand, Eg. (4.37) shows 
that the Poisson bracket in the (X,(),J) coordinate system is 
not excessively complicated in comparison to the usual for
mula for a canonical coordinate system. In the second place, 
when the guiding center problem is generalized to three-di
mensional fields and is analyzed along the lines presented 
here, there results a set offour noncanonical variables, corre
sponding to the two variables (X, Y) given here. These four 
variables cannot be transformed into two canonically conju
gate pairs except by using functions which are much less 
familiar than the Euler potentials. That is, the two-dimen
sional problem is a special case, in that the second applica
tion of the Darboux algorithm is solvable in terms of well
known functions. To treat the general case, it seems better to 
stay with noncanonical or semicanonical coordinate sys
tems, and this we shall do also in the special two-dimensional 
case. 

4.8. The Hamiltonian 

Let us now consider the inverse of the transformation 
(x,e,v)-+(X,(),J), which we will need in order to express the 
Hamiltonian in terms of the new coordinates. To begin with, 
we have in Eg. (4.20) the quantity J expressed as a function 
of(x,e,v). Using Eg. (4.30), J maybe expressed as a function 
of (X,e,v). In the process of eliminating x in favor of X, there 
results a double infinite series involving the operator L. This 
can be collapsed back into a single series, yielding finally 

J(X,e,v) = f £nv
n 

+ 2 L n( _1_). (4.41) 
n=on!(n+2) B(X) 

Next, we invert this series to obtain v as a function of(X,e,J). 
Carried out through second order, this gives 

v(X,(),J) = (2BJ)1/2 + £ (2BJ) (ii.VB) 
3B 2 

(2BJ)312 + ~ -..O..------C..-_ 

72B4 

X [9B(iiii:VVB) -7(ii·VB)2]. (4.42) 

This can then be substituted into Eq. (4.30) to obtain x as a 
function of (X,e,J): 

(2BJ)112 (2BJ) 
x(X,e,J) = X + £ il - £2 -- (ii-vB)ii 

B 6B3 

+ £3 (2BJ)3/2 [_ 3B (iiii:VV B) 
nBS 

+ 5 (ii-V B nil. (4.43) 

In Eqs. (4.42) and (4.43), B means B (X) and V means a/a X. 
These two formulas give the desired inverse transformation, 
(X,e,J )-+(x,(),v). 

Finally, we can use Eqs. (4.3) and (4.42) to find the 
Hamiltonian in the (X,e,J) coordinate system. The result is 

H (X,(),J) = BJ + £ (2BJ)3/2 (a-VB) 
3B 2 
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+ ~ (2BJ~2 [3B(aa:VVB) _ (a.VB)2] 
24B 

+ o (€J). (4.44) 

In the next section we will follow the usual strategy of Ha
miltonian perturbation theory in order to find a transforma
tion which will make H independent of (}. The result will be a 
Hamiltonian for the guiding center motion. 

5. THE GUIDING CENTER HAMILTONIAN 

In this section the Hamiltonian in Eq. (4.44) is subject
ed to a near-identity coordinate transformation of the form 
(X,(},J)---+(X,tf,J) such that three criteria are fulfilled. First, 
the new Hamiltonian is to be independent of iJ. Second, the 
transformation is to be free of secular terms. And third, the 
new coordinates are to be semicanonical in the same sense 
that the old ones are, so that J will be a constant of the 
motion (the generalized magnetic moment) and so that the 
time evolution of tf will decouple from that of the other phase 
coordinates. The first two criteria are standard in Hamilton
ian perturbation theory for nearly periodic systems; the third 
is a novel element, arising from our use of noncanonical co
ordinates in phase space. 

Weare not looking for canonical transformations, in 
the usual sense, because our coordinate system is noncanoni
cal. However, on the strength of Theorem 1, we do want to 
use symplectic transformations, since these will cause the 
third criterion to be fulfilled. Although these coordinate 
transformations are very much like canonical transforma
tions, being in a sense canonical transformations expressed 
in non canonical coordinates, it is nevertheless awkward to 
express them in terms of the usual mixed variable generating 
functions. Instead, we express these symplectic transforma
tions in terms of a set of Lie generators, following the theory 
outlined in Sec. 2. Our procedure has been thoroughly dis
cussed by Dragt and Finn.30 

Consider a sequence WI 'W2 ,'" of time-independent 
phase functions, and associated operators LI ,L2, .. · which 
are defined on analogy to Eq. (2.28): 

L,J = €! wnJl (5.1) 

for any phase function! The factor € has been introduced 
into this definition because the Poisson bracket given in Eq. 
(4.37) has a term which is O(€ -I). 

Next, each of these functions is used to generate a sym
plectic transformation, according to the formula 

Tn = exp( - €nLJn). (5.2) 

The factor lin is included in order to make the resulting 
formulas follow as closely as possible the conventions of 
Cary.31 Finally, a symplectic transformation Tis construct
ed by multiplying together the Tn: 

(5.3) 

T-I=TI-IT2-IT3-1.... (5.4) 

These operators are expanded as power series in € by 
multiplying together the exponential series associated with 
Eq. (5.2). To obtain the correct ordering in powers of € it is 
necessary to take account of the fact that the operators Ln 
consist of a 0 (1) part and an 0 (€2) part, according to Eq. 
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(4.37). Therefore we define two more series of operators, as 
follows: 

Mnf= aWn af _ aWn af 
a(} aJ aJ a(} 

(5.5) 

and 

so that 

Ln = Mn + ~Nn+2' (5.7) 

When the operators T and T - I are expressed in terms of the 
M and N operators, the results are, through third order in €, 

T = 1- €MI + ¥( - M2 + M i) + ~ €3 

X(-2M3 -6NJ -M~ + 3M2 M I) + o (€4), 
(5.8) 

T-I=I+€MI +!C(M2 +Mi)+~J(2M3 +6N3 

+Mi + 3M 1M2) + o (€4). (5.9) 

In terms ofthecoordinates z = (X,(},J)andz = (X,tf,J), 
we may say, somewhat loosely, 

z= Tz, 

z= T-Iz. 

(5.10) 

(5.11) 

As was noted in Sec. 4, the independent variables of the Lie 
operators M nand N n which appear in the expansion of Tare 
the same as those of the operand. 

When the symplectic transformation T is applied to the 
Hamiltonian H, there results a new Hamiltonian K, accord
ing to 

K = T -IH. (5.12) 

In this equation we expand both K and H in powers of €: 

(5.13) 

(5.14) 

Then using Eq. (5.9) and collecting terms gives a hierarchy 
of equations, which through second order can be expressed 
as follows: 

O=Ko-Ho, 

MIHo =K1 -HI' 

M2HO =2(K2 -H2)-MI(HI +KI)' 

(5.15) 

(5.16) 

(5.17) 

These equations are written in this form because they are to 
be regarded as partial differential equations for the W n ' 

which specify the transformation T. To see this, note that 

aWn 
MnHo =B--. a(} 

(5.18) 

The perturbation expansion is carried out by selecting 
the W n , order by order, so that K is independent of (}, and so 
that the Wn contain only purely oscillatory terms in (}. The 
resulting W n are 

WI = [(2BJ)3/2/3B 3 He ·v B), 

W2 = [(2BJ )2/24B 5] ae:(3BVV B - V BV B ). 
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The new Hamiltonian K, which we may justifiably call the 
guiding center Hamiltonian, is given by 

K{X,l) = BY + c(J'l/4B2)[BV2B - 3(VB)2] + o (E3), 

(5.21) 

where B means B (X) and where V means a/ax. 
The equations of motion resulting from K are immedi

ate; the effect of the E ordering of the Poisson bracket should 
be noted. 

ax Eb {- J'2 [V2B -= -x JVB+c-V --
dt B 4 B 

+ o (c), (5.22) 

(5.23) 

(5.24) 

The first term of Eq. (5.22) is the so-called "grad B drift." 
Finally, the relation (5.10) can be written out, connect

ing z and z. This gives 

X = X + E3 b XV[ (2BJ)3/2 (C'VB)] + o (E4), 
B 3B 3 

(5.25) 

0= () + E (2BJ)112 (c.VB) + c (2BJ) ac:(3BVVB 
B2 12B4 

- 5VBVB) + o (c), (5.26) 

T = J + E (2BJ)3/2 (i.V B) + c (2BJ)2 [(7ii + 9cc) 
3B 3 48B 5 

:VBVB + 3B(ii - cc):VVB] + o (E3
). (5.27) 

In all cases these formulas have been carried out to the high
est order which is consistent with the knowledge of only WI 

and W 2 • 

By combining Eqs. (5.25}-{5.27) with (4.20) and (4.28) 
the variables (X,o,l) can be expressed in terms of (x,v). We 
remark that although the convergence of the series in 
Eqs.(5.25}-{5.27) is questionable, the convergence of the se
ries in Eqs. (4.20) and (4.28) is easy to extablish for suffi
ciently small values of E and for 1/ B a real analytic function 
of x. The practical utility of perturbation series may not be 
lost even if the series are divergent. 

6. DISCUSSION AND CONCLUSIONS 

The use of the transformation given in Eqs. (4.20) and 
(4.28), which we may call the Darboux transformation, is 
the most unusual element in the approach taken in this paper 
to a perturbation problem. There is nothing new, however, in 
the function which this transformation serves. The Darboux 
transformation fulfills the purpose of isolating the unper
turbed system from the perturbation, and it is exactly the 
difficulty of achieving this separation that has made previous 
Hamiltonian treatments of guiding center motion so non
standard in appearance and awkward in execution. In addi
tion, the Darboux transformation yields a set of variables 
which are natural to the unperturbed system, since to lowest 
order X and J are constants of the motion and () evolves 
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linearly in time. The importance of these two goals-the iso
lation of the unperturbed system and the choice of an appro
priate set of coordinates for the unperturbed system-has 
been made very clear, on the basis of an invariant, geometri
cal picture of phase space orbits, in a seminal paper by Krus
kal 17 on nearly periodic systems. These goals are common to 
both Hamiltonian and non-Hamiltonian systems, and the 
Darboux transformation forms a kind of bridge between a 
Hamiltonian and a non-Himiltonian treatment ofthe guid
ing center problem. 

In textbook problems on pertubation theory the unper
turbed system is separated from the perturbation at the out
set, and hence the separation, as a task in itself, is hardly 
recognized. In a non-Hamiltonian treatment of the guiding 
center problem it is nearly trivial to achieve this separation, 
as has been shown by Bogoliubov and Mitropolski. 16 It was 
on the basis ofthis non-Hamiltonian separation that the an
gle () was chosen as a new coordinate in the construction of 
the Darboux transformation in Sec. 4, and this choice caused 
the desired separation in the Hamiltonian treatment as well. 

Likewise, the choice of appropriate variables for the un
perturbed system is often nearly unconscious in textbook 
examples. In Hamiltonian systems, this choice can be for
malized by saying that one must solve the Hamilton-Jacobi 
equation for the unperturbed system before proceeding with 
a perturbation treatment, although often the required solu
tion is obvious. In our example, the Darboux transformation 
automatically provides us with a set of coordinates appropri
ate to the unperturbed system, because the canonically con
jugate variables () and J are effectively action-angle variables 
for the unperturbed system. 

The construction of the Darboux transformation, as it 
was given in Sec. 4, is not unique, in the sense that the selec
tion of any phase function which differs from () by terms of 
order E or higher would satisfy the two goals discussed above 
equally as well as () itself. The only reason for choosing () is 
that it has simple dependence on (x, v). Indeed, if if, given by 
Eq. (5.26), were chosen, then not only would the unper
turbed system separate from the perturbation, but also the 
entire Hamiltonian would decouple from if. This consider
ation raises the possibility that the construction of the Dar
boux transformation in Sec. 4 and the perturbation treat
ment in Sec. 5 could be merged, although I have not yet 
investigated this question. 

In this paper a Hamiltonian treatment of the guiding 
center problem has been achieved at the expense ofthe con
struction of the Darboux transformation. It may well be 
asked if the result is worth the price. There are several rea
sons to believe the answer is yes. 

In the first place, even if the results are carried to lowest 
order, giving only the classic, well-known "drifts," the meth-
0d provides, nonetheless, a Hamiltonian treatment of these 
lowest-order results within the framework of a systematic 
ordering scheme. 

Second, the method seems to give the shortest avenue to 
higher-order results, in terms of the labor involved, although 
this may best be judged by those who have used other meth
ods. The perturbation treatment in Sec. 5 is no worse than 
any standard Hamiltonian perturbation treatment, and 

Robert G. Littlejohn 2457 



                                                                                                                                    

enormously better than a non-Hamiltonian treatment. The 
Darboux transformation itself is perturbative, i.e., it is a 
power series in € instead of a transformation in closed form, 
but it is based on a secular perturbation treatment which is 
quite simple. On balance, it seems that a simple secular per
turbation expansion plus a standard Hamiltonian perturba
tion expansion is much less laborious than a non-Himilton
ian expansion. 

Third, a simple Hamiltonian treatment of the guiding 
center problem opens the door to the addition of other per
turbations, such as electromagnetic waves, and to the study 
of, for example, the effects of these on adiabatic invariants. 
some results along these lines have already been achieved by 
Grebogi, Kaufman, and Littlejohn. 32 

Fourth, successive iterations of the Darboux algorithm 
give a simple means of exploring the other adiabatic invar
iants of guiding center motion, such as the longitudinal in
variant and the flux invariant. g 

Fifth, since the dynamics of statistical ensembles of 
charge particles in the Vlasov approximation can be de
scribed in Hamiltonian terms, the guiding center Hamilton
ian can be used to treat nonuniform magnetic fields in a 
plasma, a case of great practical importance. The possible 
applications of a guiding center Hamiltonian to kinetic the
ory are too numerous to mention. 

Several extensions of the results of the present paper 
have already been completed and will be reported upon in 
forthcoming publications. Two-dimensional, fully electro
magnetic fields have been treated, as well as three-dimen
sional magnetostatic fields. The results are promising, and 
work is beginning on three-dimensional electromagnetic 
fields and relativistic treatments, as well as on applications in 
other directions. 
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The Currie-Hill conditions for the relativistic world-line invariance of a Newtonian-like 
dynamical system of interacting particles are generalized to cover the case of invariance under 
any given finite-dimensional continuous group of transformations of space-time. Necessary and 
locally sufficient conditions are obtained both in the general case and in the important particular 
case when the group of transformations includes time translations as a subgroup. 

I. INTRODUCTION AND SUMMARY 

In 1960 Havas and Plebanski I showed that, for a system 
ofinteracting particles, Newtonian causality, also called pre
dictivity,2 is not incompatible with special relativity, as had 
been generally thought until them. Subsequently, there has 
been a gradual revival of interest in the study of Newtonian
like dynamical systems as the basis for a possible alternative 
to the field theories which are normally associated with the 
fundamental interactions of physics. l An important result in 
the study of dynamical systems with Newtonian causality is 
that ofCurrie4 and HilP giving a system of first-order partial 
differential equations that the force functions have to satisfy 
in order to have relativistic world-line invariance. Later Bel6 

proved that those conditions were also sufficient. In this pa
per we generalize that result, obtaining necessary and locally 
sufficient conditions for the world-line invariance under any 
finite-dimensional continuous group of transformations of 
space-time, for a dynamical system with Newtonian 
causality. 7 

In Sec. II some indications on the notation used are 
given. In Sec. III the single-time and multiple-time formula
tions of the equations of motion for a system of N classical 
structureless point particles with Newtonian causality are 
studied in detail as a preparation for the main results to be 
obtained later. No essential original contribution is to be 
found here. 

In Sec. IV we start with a given realization of a Lie 
group Gr on space-time RD+ 1 (Sec. IV.A) and from it we 
develop the naturally induced realizations on R2D + 1 (Sec. 
IV.B) and on (R2D + I)N (Sec. IV. C). In Sec. IV.C the concept 
of in variance of the dynamical system under Gr is defined, 
and it is proved that a necessary and (locally) sufficient set of 
conditions for that invariance is [H,N(L)] = O. The vector 
field H is the generator of the group of transformations 
(ta' x~, v~) I---+(ta + T, X~i, v~') , where X~i and V~i are the 
(components of the) positions and velocities at t ~ = ta + T 
along the dynamical trajectories going through x~ at ta with 
velocities v~, and N(L) are the generators of the constant
time transformations (ta' x~, v~) ~(ta' i~, v~), which give 

"'This paper is based on the first part of the Ph.D. thesis of the author 
(Temple University, 1978). 

h'Present address: Departament de Fisica Teorica, Universitat Autonoma 
de Barcelona, Bellaterra (Barcelona), Spain. 

the same images of the dynamically possible trajectories as 
the given realization of Gr when applied to each particle 
independently ofthe others. [See Fig. 1, for two particles; 
(Fl , F 2 ) is a pair of dynamically possible trajectories, and 
fA (F1) and/A (F2) are the images of those trajectories under 
the transformation/A of the group.] In Sec. IV.D the main 
results of this paper are derived. Theorem 1 states that the 
invariance conditions [H, N(L) ] = 0 on (R2D + I)N are equiv
alent to [h,1)(L) ] = 0, where hand 1)(L) are the vector fields 
on R2DN + 1 corresponding to Hand N(L) on (R2D + I)N, i.e., 
referring to Fig. 2, hand 1)(L) are the generators of (t, x~, v~) 
I---+(t + T, X;i, v;') and (t, x~, v~ )~(t, i~, i~), respectively. 
Theorem 2 applies in the important particular case when the 
group of transformations includes time translations as a sub
group. Basically, it expresses the necessary and (locally) suf
ficient conditions for the invariance of the system under Gr 

in terms of commutation relations between the 1)(L) 's. 
Finally, in the Conclusion, Sec. V, the main results of 

this paper are discussed. 

II. NOTATION 

Throughout this paper the following indices are used: 
(i) a, b, ... = 1, ... , N (labeling the particle); 
(ii) i,j, ... = 1, ... , D, where D is the dimensionality of 

space (normally D = 3); 
(iii) a, /3, ... =0, 1, ... , D; 
(iv) I, J, ... = 1, ... , 2D; 
(v) A, /-L, ... = 0, 1, ... , 2D; 
(vi) L, M, ... label the parameters of the Lie group Gr. 

tt 
I 

, 

I,.T[ 
, 
\ 
\ 
\ , 

v' , , : 

1'1 
I 

x' , I,.T 

t), 
~ 

XI/' 

-~/ --

, , 
1; t(t;) r, t(r,) 

FIG. 1. Transformations generated by the vector fields Hand N (space
time diagram for two particles and dimensionality of space D = 1). 
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r; f.(t;) r. {cr.) 

FIG. 2. Transformations generated by the vector fields h and 1). 

The summation convention is used for all kinds ofindi
ces except those labeling the particles (a, b, ... ). We assume 
a' =j:.a. 

(xa)==(xo; x') (t, Xi) ; 

(X1)=(xi, Vi); 

(X" )=(X O
, X I)==(Xa, V')=(t, Xi, v) ; 

(X!)=(X~, V~); 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

X =(X ~ )=(X~, X ~ )=(ta, X~, v~); (2.5) 

y=(t, X ~)=(t, x~ ,v~) . (2.6) 

Since the treatment in this paper is strictly local,7 we can 
identify the space-time manifold with]RD + I = [ (xa

) j. Simi
larly, we consider ]R2D+ 1= {(X")}, (]R2D+ I)N = [X}, and 
]R2DN+ 1 = {y}. 

The parameters of the Lie group G r are designated A L, 

and (A L)= A. The unit element is Ao. The structure con
stants of G rare C f.M' Partial derivatives are sometimes de
noted by commas: 

Ill. NEWTONIAN CAUSALITY 

A. Single-time formulation 

(2.7) 

We consider a system of N point particles with coordi
nates x~. The equations of motion are said to have Newtoni
an causality if the specification of the positions and velocities 
at any given time to determines the trajectories completely 
and uniquely.l In other words, there is Newtonian causality 
if the dynamically possible trajectories are given by 

(3.1) 

where tp ~ are functions such that, for all Yo =(to, x~a' v~a) , 

tp~(Yo;to)=x~a , 

(3.2) 

with 

• i ( )_ a i ( ) tp a Yo; t = - tp a Yo; t . at 
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From Eq. {3.1) there follows 

dx~ . dt =¢~(Yo;t), (3,3) 

d 2x i 
. 

dt 2a = 4i~(Yo; t). (3.4) 

Taking t = to in Eq. (3.4) we get 

Because ofEqs. (3.2) and (3.3) this is equivalent to 
{d2X~/dt2Lu = {Jl~(t, x~, dx~/dt)}1o' and since to is arbi
trary, we finally obtain 

d;;: =#~(t,xL a;;). (3.5) 
Thus, Eqs. (3.1) imply Eq. (3.5). Conversely, given the sec
ond-order system of ordinary differential equations (3.5), 
there exists a unique solution (3.1) satisfying Eq. (3.2). 
(However, this solution may be only local, i.e., valid for t in a 
certain neighborhood oflo. 7) Therefore the equations of mo
tion have Newtonian causality if and only if they are equiv
alent to a second-order system of ordinary differential eqU/l
tions ofthe form (3.5). 

In order to have a system of first-order differential 
equations instead of second-order ones it is convenient to 
introduce the new variables v~ with dynamical trajectories 

v~ = ¢ ~(yo; t) . (3.6) 

Then the system (3.5) is\quivalent to the first-order system 
[cf. Eq. (2.4)] 

dX! I J 
- =ha(t,X b), (3.7) 

dt 

with (h!) =(v~, Jl~). In terms of the (2DN + I)-dimension
al variabley [cf. Eq. (2.6)] the system (3.7) is equivalent to 

dy = h(y) , (3.8) 
dt 

where h is the vector field on ]R2DN + I, 

h- a XhI a --+ -- at ~ a aX! . (3.9) 

The solution ofEq. (3.8) through Yo is given in terms ofthe 
exponential mapping by 

i.e., 
(t - to)h( ) y=e Yo , 

(t - to)h( ) (t i ( ). i ( » e Yo = , tp a Yo; t ,tp a Yo; t . 

B. Multiple-time formulation8 

(3.10) 

(3.11) 

So far the initial data were all given at the same time to' 
We now consider a set of initial data X! given at times X ~ 
=1;" possibly different for each particle. Consider the set of 
equations 

X! = tP~(X~b; 1;,), (3.12) 

where 

tP~(X~b; t)=[e,h(to = 0, X~b)]! . (3.13) 
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It 

T.l 
it 

I. 

T. 
i. X. 

0 
--~.--~ 

>'<t >.<, x' 
(I) (2) 

FIG. 3. Initial data at times t;, (schematic diagram for two particles on 
R20 + " with R20 reduced to R). 

Since 

{ 
a<P!} = (jb{jl 

J a J' ax Ob 1=0 

and thus the Jacobian det([ a<p !/aX~b J 1= 0) is not zero, the 
implicit-function theorem tells us that, for values of the t"a 's 
small enough (in absolute value), there exist unique func
tions I{/! (X) such that 

I[J--] -I <P al{/ b(X); ta ==X a .. 

Thus, Eq. (3.12) is equivalent to 

X~b ::;: I{/~(X), 

and we have 

(3.14) 

(3.15) 

X! = <P~(X~b; ta) = <P! [I{/~(X); ta]. (3.16) 

It is convenient to measure times on each trajectory from the 
corresponding initial time ta' To this end we define 

Ta= ta - t"a=X~ -X~ . 
We also define the functions <P ~ as follows: 

<P~(X~b; t) = t, 
and then Eq. (3.16) is equivalent to 

" ,,-X a = n AX; Ta) , 

with 

n~(x; Ta)=<P~[I{/~(X);X~ + Ta]' 

In particular, we have 

n~(X; Ta) =X~ + Ta , 

n~(X; 0) =X~. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Lemma: The n 's constitute a realization of an N-pa-
rameter additive group (the T's being the parameters): 

n~ [nt(X; Tb); T~] = n~(X; Ta + T~). (3.23) 

Proof: First we notice that 

I{/! [nt(X; Tb)] = I{/!(X) , (3.24) 
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[which is an immediate consequence ofEqs. (3.20) and 
(3.21)] and the definition of I{/~ [Eq. (3.14)]. Now, making 
the substitutions Xt _n t(X; Tb) and Ta _T~ in Eq. 
(3.20) and using Eqs. (3.24), (3.21), and (3.20) in the right 
hand side of the resulting expression, we obtain Eq~ (3.23). 
This completes the proof. 

From the theory 'of continuous groups of transforma
tions9 it is known that the necessary.aqd sufficient condition 
for Eq. (3.23) to be satisfied is that there exist N mutually 
commuting vector fields H(b) on (R2D + I)N such that Eq. 
(3.19) is the solution of the system of partial differential 
equations 

(3.25) 

satisfying the initial conditions (3.22). Since n ~is not a 
function of T ~ (a' #), the vector fields "(b) have to beofthe 
form . 

H(b)=Ht~ 
axt 

(3.26) 

(no sum over b, see Sec; II), and taking this into account Eq. 
(3.25) is equivalent to 

ax" 
_a =(jbH"(X). (3.27) 
aT

b 
a a 

Once it is known that the system (3.7) can be written in the 
multiple-time form (3.27), it is easy to obtain the expression 
for H~. We get 

H~(X)=I, 

H!(X) = h! {<p~ [I{/~(X); X~], X~}. 

(3.28a) 

(3.28b) 

The commutability conditions for the generators "(b)' 

["(a), "(b)] = 0, (3.29) 

which are nothing other than the conditions for complete 
integrability of system (3.25), are equivalent to 

,,~~ . 

.Y H H a =H~, -- = 0 (a'#) (3.30) (,') ax~, 

because ofEq. (3.26). In view of this commutability the solu
tion ofEq. (3.25) with initial value X when Tb == o can be 
written as 

X = e 1:. T .n'b)(X) 

(3.31) 

[the exponential factors in the right hand side ofEq. (3.31) 
can be taken in any order]. Thus, 

_ [ L T"H"" _ ]" 
n~(X; Ta) = eh (X) a' (3.32) 

with the values of the Ta, 's (a'#) in the right hand side of 
the equation arbitrary. In particular, we can take Ta, = Ta 
= T; then we have, with n =(n ~), 

n (X; T) = eTH(X) , (3.33) 

where H is the vector field 

(3.34) 
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What Eq. (3.33) says is that X = !1 (X; T) is the solution of 

~; = H(X) , (3.35) 

with the initial condition (3.22). Thus, the system of partial 
differential equations (3.25) is equivalent to the system of 
ordinary differential equations (3. 35) because ofthe commu
tability of the H(6) 's, and both Eqs. (3.25) and (3.35) are 
equivalent to the system (3.8) on R2DN + I. More explicitly, 
this means that the general solutions of the three systems 
(3.8), (3.25), and (3.35) define the same family of N-tuples of 
geometrical trajectories in R2D + 1 in either of the following 
two cases: 

(i) the vector field h = (a /at) + ~bh ~(a/aX~) is given 
(with arbitrary h ~), the H(b) 's are defined by Eq. (3.26) with 
(3.28), and H is defined by Eq. (3.34); 

(ii) the vector field H = ~bH~(a/aX~) is given, satisfy
ing Eqs. (3.28a) and (3.30) (and otherwise arbitrary), the 
H(b) 's are defined by Eq. (3.26), and h is defined by Eq. (3.9) 
with 

(3.36) 

Notice that when we start with the single-time formulation 
[case (i)] the commutability conditions (3.30) are a conse

quence of the definition of H ~, while when we start directly 
with the multiple-time formulation [case (ii)] those commu
tability conditions have to be required independently. 

In the preceding paragraph it was not assumed that the 
first-order system (3.8) was equivalent to a second-order sys
tem (3.5). If this is the case we have to require h ~ = v~ in 

case (i), from which there follows H ~ = v~, and vice versa in 
case (ii). Then the identity of N-tuples of geometrical trajec
tories in R2D + , is equivalent to the identity of their projec
tion on space-time RD + I. 

IV. WORLD-LINE INVARIANCE 

In this section we establish necessary and sufficient con
ditions for the in variance of a dynamical systems with New
tonian causality under a group of transformations of space
time. The main result of this paper, obtained in Sec. IV.D, is 
the derivation of a set of such necessary and (locally) suffi
cient conditions expressed in terms of vector fields on 
R 2DN

+ '. This result is not obvious because the action of the 
group is given on RD + , (space-time) rather than on R2DN + , 

directly. 10 

For theorem 2 at the end of the section it wiII be re
quired of the continuous group oftransformations to include 
time translations, but apart from that the group is arbitrary. 

A. Realization of Gr on lR 0 I- 1 

We assume that a realization of an r-parameter Lie 
group Gr on RD + , is given. Let 

(4.1) 

define this realization (for one particular parametrization of 
G" A L being the parameters). The generators of the realiza-
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tion are 

(4,2) 

B. Realization of Gr on lR 20 + 1 

We want to extend the realization (4.1) of G r on R20 +- , 

to obtain a realization on H2D + , which is equivalent to the 
former for every trajectory Xi = (jJ i(t) (nor necessarily a so
lution of any equations of motion) if we take Vi = ¢ i(t). We 
have 

with 

FD + i(XJ1; A L)= df'/dt == to + viti 
d/o/dt /~o + vi /~i 

(4.3) 

(4.4) 

The natural components of the generators of this real

ization,B2L)=!aF"/aA LIAn' are 

(4,5) 

-:D+' _ ki + iki i( kO ikO) - (L) -:. (L),O v:. (L),i - V :. (L),O + v:. (L),i . 

C. Realization of Gr on (R 20 -I 1) N 

The generalization of the realization (4.3) of Gr on 
R2D + , to a realization on (R2D + ')N is straightforward. We 
assume that for each particle we have a realization of the 
form (4.3), independently of the other particles. Thus, we get 

X~,( = F1(X~; A L)=F~(X; A), (4.6) 

i.e., 

X' = F(X; A )=FA (X). (4.7) 

For the generators we have 

_ " -,( a " { aF~} a 
'::'(L) = ';-':(L)a ax~ =.;- aAL Aoax~ (4.8) 

and, from Eq. (4.6), 

BtL)a(X) = BtL)(X~), (4.9) 

We can now define the concept of world-line invariance 
under (the given realization of) Gr' We say that the equa
tions of motion have world-line in variance under Gr , or sim
ply that they are invariant under Gr , if, when we transform 
each dynamically possible N-tuple of geometrical trajector
ies point by point using Eq. (4.6), each new N-tuple of geo
metrical trajectories obtained is also dynamically possible 
(i.e., satisfies the equations of motion), for any value of A. 
Analytically, this means that there are N functions T ~ of T, 
A L, andX; such that 

!FAoeTH(X)I~ = !eT:,(T;A;X)HoFA(X)l; (4.10) 

are identically satisfied. It can be proved" that a necessary 
and sufficient condition for it is that there exist N 2 r scalars 
on (H2D + l)N, ctL' such that 

(4.11) 
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because of Eq. (3.26) this is equivalent to 

[E(L)' H(a)]~ = caLH~ , (4.12) 

with C~L = D~CaL' Taking A = 0 in Eq. (4.12), we obtain CaL 
= - Y HE~L)a ; inserting this in Eq. (4.12) again and using 

[H, H(b)] = 0 (4.13) 

[which is a consequence of Eqs. (3.29) and (3.34)], we obtain 

[E(L l' H] = [ ,f E?L)bH(b)' H] , 
i.e., 

[H, N(L) ] = 0 , (4.14) 

with 

(4.15) 

Therefore, Eqs. (4.14) are necessary and (locally) sufficient 
conditions for the in variance of the equations of motion un
der Gr. 

The geometrical meaning of N(L) (which has N~L)a 
= 0) was illustrated in Sec. I by means of Fig. 1. In the next 

subsection we will be more explicit about "I(L) , but what will 
be said there about the interpretation of"l(L) applies, mutatis 
mutandis, to N(L)' 

D. Realization of Gr on IR 2DN r 1 

The result just derived may be new, but the previous 
results presented in this paper were not really original, al
though some aspects of their presentation may have been. 
Actually, Sec. III and the foregoing part of this Sec. IV were 
only preparation for the new theorems to be proved present
ly, which are a generalization of previous results of Currie,' 
Hill,5 and Bel. 6,2 

Theorem 1: A necessary and (locally) sufficient condi
tion for the invariance of equations of motion (3.8) under Gr 

is that the following set of commutation relations between 
vectors on RWN + 1 be identically satisfied: 

[h, "I(L) ] = 0 , 

where 

TJ~)L) (t, X~)= 0 , 

(4.16) 

TJ{L)a(t, X~) N{L)a(X~ = t, X~) (4.17) 

= E{L)(t, X~) - E~L)(t, X~)h ~(t, X~), 

and, as seen before [Eqs. (3.9) and (3.36)], 

hO = 1 , 

h ~(t, X~) = H~(X~ = t, X~). (4.18) 

Proof We have to prove that Eq. (4.14) ¢::::::::? Eq. (4.16), 
i.e., 

(4.19) 

where the left-hand side of the double implication is on 
(RW + I)N and the right-hand side is on RWN + I. 

That Eq. (4.14) => Eq. (4.16) is trivial: TakeX~ = t(for 
all b) in Eq. (4.14). To prove that Eq. (4.16) => Eq. (4.14) we 
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define 

V(L)=[H, N(L)] [on (Rw+ I)N] (4.20) 

(which implies V~L)a = 0), and we have to prove that V(L) 

= 0 if Eq. (4.16) is satisfied. First we notice that 

V(L) = [H,E(L) - ,fE?L)bH(b)] 

= [H, E(L)] - I (Y HE?L)b)H(b) (4.21) 
b 

because ofEq. (4.13). Now we have 

[H(e) , V(L) ] 

= [H(e» [H, E(L)] - ,f (2" HE~L )b)H(b)] 

= [H(c» [H,E(L)]] - I (YH(c)1 HE 7L)b)H(b) 
b 

= [H, [H(e» E(L)]] - I (Y HY H(dE~L)b)H(b) 
b 

= [H, [H(c» E(L)]] - (2" HY HE7Lk·)H(e) 

[in going from the second to the third line use has been made 
of the Jacobi identities and Eq. (4.13); for the last line we 
have used 

(fl -0 S;:e (fl -0 ] 
~ H(e).!: (L)b = Ub ~ H.!: (L)c • 

For C = a' #a this gives 

using 

[H(a')' V(L)]~ = [H, [H(a')' E(L ) ] ]~ 
aH" - [H, 2(L) ]~, __ a_, 
ax~, 

[H(a')' E(L) ]~ = 8~, [H, E(L ) ]~ . 

From Eq. (4.21) we have 

[H, E(L) ]~, = V~'L)a' + (Y HE7L )a,)H~, 

and when we use this in Eq. (4.22) we get 

[H(a'), V(L)]~ 

aH" aH" 
VII a «fl -0 )HI' a - (L)a' -- - ~ H.!: (L)a' a' --. 

ax~, ax~, 

(4.22) 

The last term is zero because ofEq. (3.30). Thus, we get 

aH" Y V" - VI' a 
H(,,) (L)a - - (L)a' ax~, (4.23) 

For any X we consider the following functions of the Tb's: 

VtL)a(Tb)-VtL)a [n~(X; T,,)]. (4.24) 

Then Eq. (4.23) tells us that 

aV2L)a I' aH~ -
-- = - VILla' --, at x~ =n~(X; Tb ). (4.25) aTa , ax~, 

Let a be fixed. When all the Ta , 's (a' #a) are such that 

(4.26) 

then we have V1!.)a = o because of the hypothesis (4.16) and, 
therefore, also 
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d" (a )" dT: vtL)a = ~ aT
b 

vtL)a = 0 (n = 1,2, ... ). (4.27) 

This formula allows us to express anV~)alaT; as a homo
geneous function of degree one of partial T-derivatives of 
order n - 1 of terms of the form avtL )alaTa' (a' =j=a). From 
this and Eq. (4.25) there follows that, when the Ta' 's satisfy 
Eq. (4.26), not only vtL)a vanish, but also their T-deriva
tives of any order vanish. Consequently, we have V~L)a = 0 
identically, which completes the proof. 

The interpretation of the vectors "l(L) is clear. They are 
the infinitesimal generators of the constant-t transforma
tionsy -1 = FA (y) defined implicitly by the equations 

1 = FA 0 e1(Y;A )h(y), (4.28) 

with T(y; A) = F~ ,(y, - t, sothaty-0 = yO = t, Le . .FA is 
the constant-t transformation such that the image of any 
dynamically possible N-tuple of geometrical trajectories un
der FA is the same as the image under FA (see Fig.2 ). In 
general, these transformations FA do not constitute a group, 
but it is clear that when the equations of motion are invariant 
under Gr then they do constitute one, giving a realization 
A I---+F,1 of Gran ]R2DN + 1. A necessary set of conditions for 
A I---+F,1 to be a realization of Gr is 

["l(LP"l(M)] = e~M"l(N) , (4.29) 

and thus Eqs. (4.29) are necessary conditions for the world
line invariance of the equations of motion under Gr. We now 
amplify this result. 

Theorem 2: Let the one-parameter group of time trans
lations, with generator S(O) = a I at, be a subgroup of Eq. 
(4.1), Then 

ah I 
__ u =0 
at 

together with any of the following: 

(i) ( [h, "l(L) ] I r ~ r" = 0 , 

(ii) ["l(OP"l(M)] =e~\1"l(N)' 

or 

(iii) 5 ['\'1 '\'1 ] J = eN I '\'1 1 ~ ·,(L)' "(M) r~ r" LM ~ "(.'1) r ~ r" 

(430) 

(4.31) 

(4.32) 

(4.33) 

constitute a set of necessary and sufficient conditions for the 
in variance of the equations of motion (3.8) under Gr· (to is 
arbitrary but fixed; for example, to = 0.) 

Proof (1) Equation (4.16) => Eq. (4.30): From ~(O) 
= a lat we have 

"l(0) = - ~ h ~ a:~ , 
and thus 

a 
h = - -"l(Cl) . 

at 

Consequently, 

[h, "l(L) ] = iJ(L) - ["l(0) , "l(L) ] , 

(4.34) 

(4.35) 

(4.36) 

where the dot indicates that iJ(L) is the vector field whose 
natural components are the time derivatives of the natural 
components of "l(l, ) : 
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From Eq. (4.36) there follows that Eq. (4.16) implies 

1J(L) = ['11(OP '11([.) ] , (4.37) 

and taking L = 0, we get iJ(O) = 0, which is equivalent to Eq. 
(4.30) because ofEq. (4.34). 

(2) Equation (4.16) => Eqs. (4.31), (4.32), and (4.33): 
This is trivial, taking into account that Eq. (4.16) => Eq. 
(4.29). 

(3) Equations (4.30) and (4.31) => Eq. (4.16): First we 
obtain consequences ofEq. (4.30) alone. From :::(0) = a lat 
(on ]R2D I ') we obtain 

[ .... .... ] ..:. 
':'(0)' ~(L) == ~(l") (on ]R2D+ '), 

and since 

[
.... .... ] eN .... 
':'(0)' ':'(L) = 01. =-(N) (on ]R2O + '), 

there follows that 
..:. e v .... ( 2D' 
=-(L) = bL=-(N) on]R +). (4.38) 

On the other hand, from Eqs. (4.17) and (4.30), 

a I a: 1 

T/(L)u (t XJ) = ~ (t XJ) 
at 'b at' u 

a':o 
- ~ (t XJ)h I(t xJ) at 'aa'b' 

and using Eq. (4.38), we get 

iJ(L) = e i;L "l(N) . (4.39) 

Now we define 

Vu. ) [h, "l(L) ] , (4.40) 

and using Eq. (4.30) and (4.39) [which is a consequence of 
Eq. (4.30)], we get 

V(L) = [h, iJ(L)] = [h, e ~,"l(N) ] 

= e6~ YIN) . (4.41) 

Now we use Eq. (4.31) for the first time. If it is satisfied, all 
V U,) 's vanish for t = to, but then because of Eq. (4.41) they 
must vanish identically. Thus we get V(L) = 0, which is pre
cisely Eq. (4.16). 

(4) Equations (4.30) and (4.32) => Eq. (4.16): From Eqs. 
(4.36) and (4.39), 

[h, "l(L) ] = e ;;L "l(N) - ["l(OP "l(L) ] , 

and the right hand side vanishes if Eg. (4.32) is satisfied. 
(5) Equations (4.30) and (4.33)=> Eq. (4.32): We define 

~(I .. J1) -["l(L)' "l(M)] - etM"l(N) . (4.42) 

Then, using Eq. (4.39), one easily obtains 

i- (e N e peN e PeN e P ) ':>(L,M) = OL ,\1S + MO LN + LM ON "l(P) 

+ e;;L~(\1,N) - e~M;(L.N) • 

Because of the Jacobi relations between the structure con
stants9 we get 

;(1,,,\1) = e~~;(M,N) - e~M~(L,N) , (4.43) 

and therefore if the ~(L.M) 's vanish simultaneously for t = to, 
i.e., if Eg, (4,33) is satisfied, they vanish identically and we 
have Eq, (4.29). TakingL = 0, we get Eq. (4.32). This com
pletes the proof of the theorem, 

Angel Salas 2464 



                                                                                                                                    

V. CONCLUSIONS 

We have obtained necessary and sufficient conditions 
for the world-line in variance under a group of transforma
tions of space-time of a dynamical system with Newtonian 
causality. These conditions were expressed first in terms of 
vectors on (R2D + l)N[Eq. (4.14)] and then in terms of vectors 
on R2D + 1 [Eq. (4.16)]. When the compact equations (4.16) 
are expressed explicitly in terms of the acceleration functions 
J.1~ and the generators of the realization ofthe group on 
space-time ~(L)' they take the form [omitting the subindex 
(L ) of each of the S 's, since it is common to all of them] 

a i a i 

S ~ ;ta ~ [S ~ + Jb ( S ~ - S ~)] ~ 

" [£:. k£:' . £:0 . k£:O + L ~~.O + Vb~Jb.k - v'b~ b.O - v'bVb~ b.k 
h 

) ° 0] aJ.1~ i i ° ) + J.1b(5 a - S b) au'. - (5 a.) - VaS a.))J.1a 
b 

+ 2(5~.0 + ~S~.)J.1~ - S~.()(} - 2v'aS~.0) + V~S~.()(} 
i . 0 . k i i' k 0 + 2vav'aS a.O) - v'aVaS aJk + Vav'aVaS aJk = O. (5.1) 

This is a generally nonlinear system of first-order partial 
differential equations for the functionsJ.1~. Since we have one 
such set for each of the r values of L, there are DNr equations 
for the DNunknownsJ.1~. We have not studied under which 
conditions this system has solutions where each particle is 
influenced by all others, nor does this seem to be an easy 
problem in the general case. 12 

The nonlinear terms are (S~ - S~)~b(aJ.1~/aJb) and 
therefore the system is linear if and only if S O(x~, t) 
= S O(x~, t), i.e., iff each S?L) is at most a function of t, 

which is equivalent to the condition that the transformations 
tl--+t' = fO(t; A L) should be independent of the spatial co
ordinates. This is, of course, the case for inhomogeneous 
Galilei transformations (where tl--+t' = t + A 0) but not for 
Poincare transformations, for example. Furthermore, 
whether the system is linear or not, it admits the solutionJ.1~ 
= 0 (all particles moving along straight lines with constant 

velocity; cf. Newton's first law) only if the last six terms on 
the left hand side vanish. Assuming that the transformations 
constitute a group, a necessary and sufficient condition for 
this is that S "'s be of the form 

S U(x) = AU + B px{3 + C{3xux{3 , 

where all the coefficients are constants. In terms of the trans
formations themselves, this requires that thefa>s be ratios of 
linear functions of the x{3's all with the same denominatorlJ. 
A particular case is when the transformations are linear as 
with the Galilei and Poincare groups. ' 

In most fundamental physical theories time is assumed 
to be homogeneous. Therefore, the consideration of dynami
cal systems which are invariant under time translations is 
physically relevant, as well as mathematically convenient. 
For the case of in variance under a group of transformations 
including time translations as a subgroup we have proved 
that the conditions (4.16) are equivalent to the commutation 
relations [TJ(LP TJ(M)] = C~MTJ(N) together with the re-

2465 J. Math. Phys., Vol. 20, No. 12, December 1979 

quirement that the acceleration functions J.1~ should not de
pend explicitly on t [i.e., that the dynamical system (3.7) 
should be autonomous]. Actually, these conditions may be 
relaxed somewhat (Theorem 2 of Sec. IV.D). In particular, 
we only need to require the commutation relations for the 
TJ'S for one particular value oft, for example t = O. This form 
of the necessary and sufficient conditions for the invariance 
of the dynamical system as commutation relations between 
infinitesimal generators for the transformations of initial 
conditions at t = 0 was obtained by Be16

•
2 for the Poincare 

group (which, of course, includes time translations), and 
here this result has been generalized. 14 

In a paper in preparation the conditions for the trans
formations to be canonical will be studied. 
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A cumulant identity for noncommuting operator random processes is discussed. Its validity is 
negated by exhibiting a counterexample in which statistical independence and noncommutativity 
are clearly separated. 

I. INTRODUCTION 

In a variety of contexts, one encounters random pro
cesses which are linear combinations of statistically indepen
dent random processes. For example, let the process i be 
given by 

i =y +i (1) 

in whichyandi are statistically independent. The cumulant 
functions associated with each of these random processes are 
defined by 

exp[KAs)] = (exp(Si», 

exp[Ky(S)] = (exp(SJi), 

exp[Kz(S)] = ( exp(Si). 

(2) 

Kubo 1 has shown that from (1), and the assumed statis
tical independence of y and i, that the identity 

(exp(Si» = (exp(Syl) (exp(Si) (3) 

holds. From (3) it follows that the cumulant functions are 
related by 

(4) 

In physics, lone often encounters random processes 
which are also operators. Noncommutativity becomes im
portant and ordered exponentials are required. For example, 
let the operator process X be given by 

(5) 

in which Yand Z are statistically independent operator ran
dom processes. If expQ is used to denote an ordered expo
nential, ordered by the ordering operation Q, then Kubo 1 

has proposed the ordered generalization of (3) 

(exPQ(SX» = Q «exPQ(SY» (exPQ(SZ»), (6) 

In a subsequent critique of the generalized cumulant 
expansion method for operator processes, Fox 2 asserted that 
if Q ordering is time ordering, then identity (6) is no longer 
valid, and he said, "it is not difficult to show that for T order
ing (time ordering), counterexamples to Eq. (6) caribe con
structed." Several valid results derived by Kubo using (6) 
were rederived by Fox using other methods. 

Recently, Apresian 3 has published a paper in which he 
reviews the generalized cumulant expansion method and in 
which he rederives one of Fox's results by invoking an identi
ty equivalent with (6) for the case in which Q ordering is time 
ordering. Apparently, Fox's assertion that counter examples 
may be easily constructed in this case has been insufficiently 
convincing. 

It is the purpose of this paper to exhibit a simple coun
terexample explicitly. This example makes clear the fact that 
for operator random processes statistical independence and 
noncommutativity must both be taken into account during 
cumulant analysis. Specifically, the counterexample in
volves an operator random process which is the sum of two 
statistically independent but noncommutative operator ran
dom processes. 

II. TIME ORDERED EXPONENTIALS 

Consider the stochastic differential equation 2 

~b(t ) = if (t )b(t) 
dt 

(7) 

in which if(t) is a time-dependent operator random process 
and b(t) is a vector. The formal solution to (7) is 

b(t) = I exp[i'dsif(s) ]b(O) (8) 

in which T exp denotes the time-ordered exponential which 
may be ddIned by 

lexp[i'ds if(s)] 

= I + i'dsif(s) + i' dS1 f'ds2if(Sl)if(S2) + ... 

+ i'dS1 f' dS2 ... 

xf" 1 dSn if(s,)if(S2) ... if(sn) + .... (9) 

Alternatively, Tmay be defined by its action on an arbitrary 
product of int~rated operators 

!' tV,i'dS M(j)(S)} 

(' (" (" 
= Jo ds, Jo dS2 '''Jo 

p 

X M (p(2»(S2 ) .. ·M (p(k »(s k) (10) 

in which l:p is the sum over all k ! permutations of the index 
setj = 1,2, ... ,k. By expanding the exponential in (8) in the 
ordinary way, and then applying Tto the summands accord
ing to (10), Eq. (9) is obtained. ~ 

Time-ordered cumulants associated with the operators 
random process if are defined by 2 

(II) 
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One may also define the moments of if very naturally by 

Iexp[Ldsif(s)] = n~o ~! (r( Ldsif(s)t) 

I + m~ J~tdS A (m)(s). (12) 

The moments and the ordered cumulants are know 2 to be 
related by 

of m 

in which the "sum over partitions of m" is specified by 

f 1m, = m. (14) 
,~ I 

This relation may be inverted to obtain the ordered cumu
lants in terms of sums of products of the moments, and it is 
known 2.4,5, that for noncommuting operator processes that 
the inverted relation must be written out with great care. 

In particular, if (if(s» = 0, then 

LdS G (I)(s) = LdS A (I)(s) = 0, 

i'dSG(2)(S) = i'dSA (2)(S) = i'ds1f' ds2(if(SI)if(S2»' 

i'dS G (3l(S) = i'dS A (3)(S) = i'dS I f' dS2 f'ds3 

X (if (sl)if (s2)if (S3»' 

i'dS G (4)(S) = i'dS A (4)(S) - f[ [ (i'A (2)(S) Yl 
= f'ds l ("ds2 ("ds3 ("ds4 {(if(sl )if(S2) 

Jo Jo Jo Jo 
X if(S3)if (S4» - (if(sl)if (S2» 

X (if(S3)if(S4» 

- (if(sl )if(S3» (if(S2)if(S4» 

- (if(sl )if(S4»(if(S2)if(S3» }. (15) 

The assumption that (if(s» = 0 has rendered the expres
sions for the second and third cumulants especially simple, 
and the expression for the fourth cumulant, while more com
plicated, is also much more simple that it would be other
wise. The higer-order cumulants become complex very rap
idly. Nevertheless, closed form combinatorial expressions 
are available 2,4.5 although for present purposes they will 
prove unecessary. 

III. A COUNTEREXAMPLE TO (6) 

Consider the stochastic differential equation 

~ n (t ) = i(](t )b + g(t)b +)n (t) 
dt 

(16) 

in which](t) andg(t) are Gaussian random processes ofzero 
mean with non-Markovian second moments and are statisti
cally independent: 

<](t» = 0 = (g(t», 

<](t)](s» = F(t - s), (g(t)g(s» = G(t - s), 
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< ](t )g(s» = 0, (17) 

and band b t are boson annihilation and creation operators, 
respectively, satisfying the commutation rule 

[b,b + ] = 1. (18) 

The statistical independence and the noncommutativity of 
the two portions of the operator random process in (16) have 
been explicitly separated. 

The averaged solution to (16) may be written 

(n (t» = (l'exP[ii'dS(f(S)b + g(s)b +)])n (0). (19) 

On the right-hand side is the desired quantity and it is tempt
ing to compute it using the Kubo-Apresian identity which in 
this case reads 

X' exp[i i'dS(](S)b + g(s)b +)] 
= !( (.~exp[i i'dS](S)b ]!(exP[ii'dsg(S)b + ])). (20) 

It will be shown below that this "identity" is incorrect! 
If (20) were correct, it would quickly yield a result 

because 

(lexP[ii'ds](S)b]) = ( eXP[ii'dS](S)b ]) 

= exp [ - i'dS I f'dS2 F(sl - s2)bb ]. 

and 

<[exP[ii'dsg(S)b + ]) = <exP[ii'dsg(S)b + ]> 

=exp [ - i'dS 1f'dS 2 G(SI -s2)b rb t]. (21) 

In each case, the first step follows because the exponential 
arguments are commutative with themselves for all times so 
that I ordering the exponential isn't required. The second 
step follows because in the commutative case the second cu
mulant is exact for a Gaussian process of zero mean, 2 and 
the exponential argument in each case is merely the second 
cumulant expression which follows from (15) and (17). 

Define F (s I ) and G (s I ) by 

F(sl) f'dS 2 F(sl - S2) 

and 

G(SI)- f'dS 2 G(SI -S2)' 

Therefore, the validity of (20) reduces to the validity of 

(lexp[i i'dS(](S)b + g(s)b +)]) 

(22) 

= I (exp [ - i'dSF(S)bb ]exp [ - i'dS G(s)b + b + ]). 

(23) 

The left-hand side may evaluated using the ordered cumu
lant expansion: 
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= lexpL~li'dS(G(m)(S)l 
From (15) and (17) it follows that 

i
tds G(I)(S) = 0, 

() 

LdS G(2)(s) = - LdS] fldS2 [F(s] -s2)bb 

+ G (s] - s2)b + b + ] 

(24) 

- LdS] [F(s])bb + G(s])b +b +]. (25) 

The Gaussian character 6,7 of](s) andg(s) and (17) imply that 

(26) 

In the Appendix, it is shown that the Gaussian character and 
(15) also imply 

i'dS G(4)(S) = LdS].CdS2 f'dS3 f'dS4 

X ([G(s] -s3)F(S2 -S4) 

+ 2G(s] -s4)F(S2 -s3)]b +b} 

- [F(s] -s3)F(S2 -S4) 

+ F(s] - S4) G (S2 - S3) ]bb +}. (27) 

These first four cumulants are sufficient to demonstrate that 
(23) can not be true. 

Expanding the right-hand side of (23) up to terms of 
second order in F and G yields 

z(exp [ - LdSF(S)bb] exp [ - LdSG(S)b +b +]) 
= 1 - LdS( F(s)bb + G(s)b + b +) + LdS] fldS2 F(s]) 

XF(S2)bbbb + i'dS]fldS2G(S])G(S2)b +b +b +b + 

+ Z((LdSF(S)bb) (LdSG(S)b +b +)) + .... (28) 

The last explicit term in (28) may be rendered as 

= itdS] i'IdS2 [F(s] )G(s2)bbb + b + 
[) () 

+ G(s] )F(S2)b + b + bb ] (29) 

according to (10). Now, expanding the left-hand side of (23) 
up to the same order in F and G yields instead 

(I exp [i LdS(](S)b + g(s)b +)]) 
= zexpL~]L dSG(m)(s)] 

i
t it (' i

SI 
= 1 + ods G(2)(s) + 0 dsG(4)(S) + Jo ds] 0 dS2 

X G (2)(S] )G (2)(S2) + ... 

= 1 - LdS[ F(s)bb + G(s)b + b +] + LdSG(4)(S) 
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+ i'dS] fldS2 [F(s] )F(S2)bbbb 

+ G(s])G(s2)b +b +b +b + 

+ F(S])G(S2)bbbb +b + 

+ G (S] )F (s2)b + b + bb] + .... 
(30) 

Equation (30) contains all the terms of Eq. (29) plus the 
additional, non vanishing fourth cumulant contribution 
which is given explicitly in (27). 

The basis for this discrepancy, and consequently for the 
invalidity of the Kubo-Apresian identity (6), lies in the fact 
that although the commutator of](s)b and g(t)b + , 

[](s)b, g(t)b + ] = ](s)g(t), (31) 

vanishes on the average: 

(](s)g(t» = 0, (32) 

its higher moments do not vanish: 

(](s)g(t)](s')g(t'» = F(s-s')G(t- t'). (33) 

Moreover, the average of products of the commutator with] 
band g b + do not vanish: 

(](t )b](t ')g(s')g(s)b + ) = F (t - t ')G (s' - s)bb + . 

(34) 

It is precisely such relations which give rise to a nonvanish
ing fourth cumulant G(4) in the Appendix. 

IV. CONCLUSION 

In the case of operator random processes which do not 
commute, statistical independence alone will not eliminate 
higher-order correlation corrections which have their origin 
in the noncommutativity. Consequently, the Kubo-Apre
sian identity is not universally true and can not be invoked in 
proofs of other results. That such considerations are not 
purely academic is illustrated by the occurrence of equations 
with precisely the structure of (16) in the study of the cou
pling of atomic electrons with phonons. 6 
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APPENDIX: DERIVATION OF (27) 

The expression for S~ ds G(4)(S) given in (15) may be 
used if 

if (s) j(s)b + g(s)b + (AI) 

is substituted. A self-explanatory short-hand rendering of 
this expression is 

LdS G (4)(S) = LdS] fl dS2 f'dS3 f'dS4 {(1 2 3 4) 

- (I 2)(3 4) - (I 3)(2 4) 
- (I 4)(2 3)}. (A2) 

The Gaussian property implies 7 that (1 2 3 4) may be re-
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duced to products of pair correlations, but only if noncom
mutativity is respected: 

~ 

(1 2 3 4) = (1 2)(3 4) + (1 (2 3) 4) 
+ (1 (1) 4),L--J 

, , (A3) 

where the bars in the last two terms of the right-hand side 
indicate which correlation pairs are involved. Therefore, 
(A2) reduces to 

LdSG(4)(S) = LdSI f'dS2 f'dS3 f' dS4 

~ 

X{(1 (23) 4)-(1 3)(24) 
L-..-...I 

+0 (3) 4)-(14)(2 3)}. (A4) 
1 , 

Using (AI) gives 

(13)(24)=[F(sl- S3)bb+G(sl- S3)b+b+] 

X [F(S2 -s4)bb + G(S2 -s4)b +b +], 

(1 4)(2 3) = [F(sl -s4)bb + G(SI -s4)b +b +] 

..------. X [F(S2 -s3)bb+G(S2 -s3)b +b +], 
(1 (2 3) 4) 
~F(sl -s3)[F(S2 -s4)bbbb 

+ G (S2 - s4)bb + bb + ] 

+ G(SI -s3)[F(S2 -s4)b +bb +b 

+ G (S2 - s4)b + b + b + b + ], 

q (21) 4) = F(sl - s4)[F(S2 - s3)bbbb 
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+ G (SI - S4)[ F(S2 - s3)b + bbb + 

+ G(S2 -s3)b +b +b +b +]. 

From (18) it follows that 

bb + bb + = bbb + b + - bb + , 

b + bb + b = b + b + bb + b + b, 

bb + b + b = bbb + b + - 2bb + , 

b + bbb = b + b + bb + 2b + b. 

Using (A.6) in (AS) yields the identities 

(AS) 

(A6) 

(I (23)4) = (1 3)(2 4) - F(sl -S3)G(S2 -s4)bb + 
L---...I 

+ G (SI - s3)F(S2 - s4)b + b, (A7) 

q (23) 4) 
= (1 4)(2 3) - 2F(sl -S4)G(S2 -s3)bb + 

+ 2G(sl -s4)F(S2 -s3)b +b. 

Insertion of (A 7) into (A4) results in (27). 
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Solution of the wave equation for the logarithmic potential with application 
to particle spectroscopy 
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We present an almost complete solution of the Schrodinger equation for a logarithmic potential. 
In particular we obtain two pairs of high-energy asymptotic expansions of the boundstate 
eigenfunctions together with a corresponding expansion of the eigenvalue determined by the 
secular equation. We also obtain a pair of uniformly convergent solutions and a pair of uniform 
asymptotic expansions. Various properties of the solutions and eigenvalues are examined, 
including the scattering problem of the cut-off potential and the behavior of Regge trajectories. 
Finally the relevance of these investigations to the spectroscopy of heavy quark composites is 
discussed. In particular we point out that the relevance of the logarithmic potential can be tested 
only if more than two consecutive energy levels are known. In a separate paper the methods 
outlined here are applied to quark-confining potentials of the generalized power type. 

1. INTRODUCTION 

The states r(9.4 GeV le2
) and r / (lO.OGeV le2

) recent
ly discovered at Fermilab' in the dimuon mass spectrum of 
the reaction 400 GeV p + nucleus-,u·w + anything led to 
the observation that their mass difference (approximately 
0.6 Ge V Ie') is about the same as that between t/J (3.1 Ge Vie') 
and t/J/ (3.7 GeV Ie'). Quigg and Rosner2 therefore raised the 
question whether the quark-antiquark binding potential is 
such that this mass difference is independent of the effective 
mass of the constituent quarks. Using scaling arguments 
they found that a potential of this type, giving a level spacing 
which is independent of the quark mass, is the logarithmic 
potential. Investigating its spectrum Quigg and Rosner 
found that the logarithmic potential is not ruled out as a 
candidate for the quark-antiquark interaction provided a 4s 
charmonium level is found near 4.2 GeV Ie'. 

The study of quark confining potentials has received 
new impetus by the discovery of the r, r / states. In view of 
forthcoming high energy eY colliding beam experiments 
which can be expected to produce new and perhaps unusual 
data, it is of interest to study the quark-anti quark force on a 
more general basis and to ask if the data (e.g., level spacings 
and leptonic decay rates) can be used to infer information on 
the nature of the quark-antiquark binding potential. With 
this question in mind Quigg and Rosnerl and Thacker' con
sidered a general power potential and the inverse scattering 
problem with applications to T/; and r families. The investi
gations of Quigg and Rosner,·l are based on scaling argu
ments and WKB approximations for the wavefunctions. 
However, for a theoretical exploration it is desirable to have 
more complete solutions and explicit expressions for energy 
eigenvalues and Regge trajectories.5 As Quigg and Rosner6 

have shown, in the case of some potentials, an explicit 
knowledge of eigenvalues allows a simple evaluation of the S 
wave bound state wavefunction at the origin and hence the 
calculation of leptonic decay widths. 

'''A.V. Humboldt foundation fellow on leave from the University of 
Gorakhpur. 

In the following we consider in detail the logarithmic 
potential. We derive various types of solutions of the wave
functions as well as explicit asymptotic expansions for the 
energy eigenvalues and Regge trajectories. Our methods of 
solution are very general and parallel the methods of solu
tion of more complicated standard differential equations 
such as the Mathieu equation, as a comparison with the rel
evant literature reveals. In Secs. 2 and 3 we derive two pairs 
of high energy asymptotic expansions for the discrete eigen
functions together with the corresponding asymptotic ex
pansion for the eigenvalues. In Sees. 4 and 5 we derive a pair 
of uniformly convergent expansions for the solutions-this 
has been obtained previously by Gesztesy and Pittner8-and 
a pair of uniform asymptotic expansions, and we discuss the 
relevance of these solutions for the scattering problem of the 
cut-off potential. In Sec. 6 then, we investigate the physical 
implications of the asymptotic expansions of the energy ei
genvalues and Regge trajectories. In particular we demon
strate the near-independence of the level shift of the quark 
masses and obtain an explicit expression for the bound state 
wavefunction at the origin. Finally we discuss the relevance 
of the logarithmic potential for particle spectroscopy. 

In a separate publication we repeat the methods devel
oped here for the generalized power potential. 

2. A FIRST PAIR OF ASYMPTOTIC 
EIGENSOLUTIONS 

We consider the Schrodinger equation for the un
screened logarithmic potential 

VCr) =gln(rlro), g:>O. 

Separating off the motion of the center of mass in the usual 
way, we obtain the radial wave equation for the relative mo
tion of two particles of masses m" m2, 

d
2

t/J + 2,u (E _ /(l + 1)Ij' _ V(r»)t/J = 0 (1) 
~ ~ ~~ , 

where, as usual, tJI-(l!r)t/J(r). Pi(cos().eim<P. 
,u = m,m 2/(m, + m,) is the reduced mass of the two parti
cles and r is their separation. 
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Inserting the potential, we have the equation 

d
2

¢ ( r) dr + a - f3lnr - -;; ¢ = 0, 

where we have set 

a = 2/-lE'lff, E' = E + g lnro, 

f3 = 2/-lglff, r = / (/ + 1). 

Next we set 

r = ~ - c (- 00 < z < 00), 

where c is a constant. Setting also 

¢ = e(z - c)/2ifJ 

and choosing 

c = -alf3, 

we obtain our basic equation 

d
2

ifJ + [_L2+ U(z)]ifJ=O, 
dz2 

where 

L 2 = r + * = (/ + W 
and 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Our next step is to find that value of z, say zoo for which U (z) 
becomes maximal. In the vicinity of this maximum 
U (z) - L 2 can become positive and the solutions therefore 
oscillatory as required for the existence of eigenvalues. Sim
ple differentiation yields the value 

Zo = - i· 
It may be noted that the spectrum of bound states lies in the 
domain - 00 < E < 00 since V (r~ - 00 for r~ and 
V(r~ + 00 for r-oo. 

Expanding U (z) in the neighborhood of the maximum 
at Zo we obtain 

U(z) = U(zo) + I (z ~ Zo)i U(l)(zo). 
i= 2 I. 

(10) 

where 

U(I)(ZO = - 4) = _(Je(2a- t3 )It3(i - 1)2i - 1 (11) 

for i = 0.1.2 ..... For i = o this expression is positive. for i = 1 
it is zero. and for i> 1 it is negative [as required for a maxi
mum of U(z) at z = Zo for (J> 0]. We now set 

h 4 = 4(Je(2a - {3)I{3 =4Ele • (12) 

i.e., 

(It will be convenient at times to use E instead of h as the 
parameter of our expansions.) 

We now change the independent variable in (7) to 
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w = h (z - Zo). (13) 

The equation then becomes 

d 2ifJ + (~ _ L 2 + !h 4) _ .lW2)ifJ 
dw2 h 2 4 

00 (i_l)2 i- 3 Wi =I ·_ifJ· 
i=3 d h i - 2 

(14) 

For large values of h the right-hand side of this equation 
may-to a first approximation-be neglected. The corre
sponding behavior of the "eigenvalues" (lIh 2)( - L 2 + !h 4) 
can then be determined by comparing the equation with the 
equation of parabolic cylinder functions. The solutions are 
square-integrable only if 

1 i;;< - L 2 + hh 4) = iq, 

where q is an odd integer. i.e .• 2n + 1. n = 0.1,2 .... [provided 
the wavefunction is required to vanish at infinity; other
wise--e.g .• if the potential is cut off at some value r = Ro - q 
is only approximately an odd integer qo. i.e., 
q = qo + o (lIRo)]. For the complete solution we set 

h\ ( - L 2 + ih 4) = iq + ~ . (15) 

The quantity.::1 in (15) remains to be determined. Substitut
ing (15) in (14) we have an equation which can be written 

gqifJ= 2.::1 ifJ+ I (1_1)2i-2 ·~ifJ, (16) 
h i=3 11 h l

-
2 

where 

(17) 

Equation (16) is now in a form suitable for the application of 
our perturbation method. To a first approximation ifJ = ifJ'O) 
is simply a parabolic cylinder function D(q _ l)Iiw). i.e., 

ifJ (0) = ifJq = D(q _ 1)I2(W). g qifJq = O. (18) 

where 

D ( ) - 2(q - 3)/4 - w'/4cp (3 - q 3. W2) 
(q - 1)/2 W - e -4- '2 ' 2 ' 

cp being a confluent hypergeometric function. The function 
ifJ q is well known to obey the recurrence formula 

wifJq = (q.q + 2)ifJq + 2 + (q.q - 2)ifJq - 2' 

where 

(q,q + 2) = 1, (q,q - 2) = i(q - 1). 

For higher powers we have 
- 2i 

wiifJq = I Slq,])ifJq + j' 
j= 2i 

(19) 

(20) 

(21) 

and a recurrence relation can be written down for the coeffi
cients S. The first approximation ifJ = ifJ (0) then leaves un
compensated terms on the right-hand side of (16) amounting 
to 

R (0) = 2.::1 A. ~ (1 - 1)2'- 2 wiifJ 
q h 'l'q +k ~h ,- 2 q 

1 = 3 I. 
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2.:1 00 1 2i_ 

== -t/Jq - L --""'i-2 L Si (q,;)t/Jq+j' 
h i=3h j=-2i 

where we have set 

_ (i - 1)2i - 2 
Si(qJ)= Si (q,;). 

11 

We now rewrite (22) in the form 

00 1 - 2i 

R ~o) = L ~ L [q,q +jL t/Jq+/w), 
i= 3 h j= 2i 

where 

[q,q]3 = 2.:1 - S3(q,0) 

and forji=O 

[q,q + ;13 = - S3(q, j), 

and for i> 3 

[q,q + J1 = - Si (q,J). 

Since 

f/flq+j=f/flq-j, f/flqt/Jq+j=jt/Jq+j 

(22) 

(23) 

(24) 

(25) 

a term flt/J q + j in R ~O) may be removed by adding to t/J( 0) the 
contributionflt/J q + /j except, of course, whenj = O. Thus the 
next-order contribution of t/J becomes 

t/J(I)= f ;~2 Ii [q,q~j1;t/Jq+J{w), (26) 
;=3 h j=2; J 

j=#J 

In its tum this contribution leaves uncompensated 

R(I)= ~ _1_~; [q,q+jLR(o). 
q £.. h i - 2 £.. . q+} 

;=3 j=2i J 
j=#J 

and yields the next contribution 

",(2) = ~ _.1_ ~; [q,q +jl; ~ 
'I' £.. h,-2 £.. . £.. ht-2 

;=3 }=2i J t=3 

-u 
X L 

/=U 
/+/*,O 

j=#J 

[q+j,q+j+lL '" 
j + l 'l'q+}+l' 

Proceding in this way we obtain the solution 

(27) 

t/J = t/J(O) + t/J( I) + t/J(2) + '" which is an asymptotic expan
sion in descending powers of h, valid for !w2 < 1 [conver
gence of the hypergeometric expansion in D(q _ 1)I2(W)], 
Thus 

Z - Zo < 21/21h or Z around Z00 (28) 

Together with this solution we obtain an eigenvalue equation 
from which.:1 in (15) follows. The latter is obtained by set
ting equal to zero the sum of the terms in t/Jq in R ~O),R ~I),. •• 
which have been unaccounted for so far. Thus 
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or 

j= 2; 
j"pO 

0= -[q,q]3+ -2 [q,q].+ L . [q+J,q 3 
1 1 ( -6 [q,q+j]3 .]) 

h h j=6; 

j*,O 

(30) 

This is the equation from which.:1 and hence the eigenvalues 
are determined. As in our previous investigationS of a power 
potential, the expansion is much simpler than may appear on 
first sight because [owing to the fact that (19) does not con
tain terms in t/Jq + I't/Jq,t/Jq _ I] many terms are zero, e.g., 
S3(q,0). Thus 

2h.:1 = [SM,O) - ?S3(q,6)S3(q + 6, - 6) 

+ !SM, - 2)SM - 2,2)] + 0(*) 

= -=--!. (33q2 + 1) + _q_ (35q2 _ 1) + 0 (_1_). 
2232 2432h 2 h 4 

Substituting.:1 into (15) we obtain 

(l + ~y = ~ - ;;qh 2 - _1_ (33q2 + 1) 
2 8 2332 

(31) 

[The coefficient ofthe term of 0 (lIh 2) is the contribu
tion ofS.K. Bose who collaborated in the initial stage of 
this work.] 

We have thus obtained a large-h asymptotic expansion 
of an eigenfunction of the Schrooinger equation for the loga
rithmic potential. This expansion is valid in the region 
around Z = Zo or lnr = alP - l A second, linearly indepen
dent solution in the same domain is obtained by the inter
changes w-+ ± iw, q-+ L q, h-+ ± ih. 

3. A SECOND PAIR OF ASYMPTOTIC 
EIGENSOLUTIONS 

Our next objective is to derive a second pair of large-h 
asymptotic expansions for the eigenfunctions of the logarith
mic potential which is valid in regions oflarge Z where the 
expansions obtained above are no longer applicable [see 
(28)]. Of course, the corresponding eigenvalue expansion 
will be identical with (31) above. It is convenient to use the 
parameter E instead of h, i.e., 

E= ~h4. 
4 
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Our starting point is Eq. (7) in which we insert for L 2 the 
expressson (15) in terms of the quantity.::1' =.::1h which is to 
be determined by iteration. We then have the equation 

d 2¢ _ E(J.... + ze2Z)¢ + (-.!l...- EII2 _ .::1 ,)¢ = O. (32) 
dz2 2e e1l2 

We now set 

¢ = X(z) exp( ± EII2 r [v(z)] 112 dz ), 

where 

1 
v(z) = - + ze2z 

2e 

and X(z) satisfies 

d 2X dX v'(z) -- + 2EI/2VII2(Z) - + lE1I2 --X 
dz2 - dz - 2 V1l2(Z) 

(33) 

(34) 

+ (-.!l...- E1I2 -.::1 ')x = O. (35) 
e1l2 

From now on we consider only the equation for the upper 
signs. The equation for the lower signs leads to another solu
tion which can be obtained from the solution we shall derive 
by changing the signs of E1I2 and q throughout. Thus, choos
ing the upper signs in (35), we can rewrite the equation in the 
form 

_ (e)I12(d 2X ' ) 9q{'- - --.::1X' 
E dz2 

(36) 

where 

d 112 v'(z) 9 _ 2e l12vl12 ___ e _ . __ - q. (37) 
q dz 2 V1l2 

Since we know that .::1' is at most of 0 (0) in E for E-->' 00 

we can-to a first approximation-neglect the terms on the 
right-hand side of (36) and write for the solution to that 
order 

X'O) =Xq, 

where X q is the solution of 

9 q Xq =0, 
i.e., 

Xq(z) = V~12 exp( - 2:12 r Vl~~Z»). 

(38) 

(39) 

(40) 

where C is an overall multiplicative constant which we shall 
ignore except in the context of normalization. 

Proceeding as in the derivation of our first solution, we 
evaluate d 2X q / dz2 and obtain 

d 2Xq { 5'2 ' 
dz2 - .::1 'X q = - .::1 ' + 16 ~2 + 2e~~v312 

+!L·--~Xq. 2 I " } 
4e v 4v 

Looking at the solution (40) we observe the following 
relations 

Xq jj = (Xq+ 1 Y, Xq+j =~. 
Xq Xq) Xq Xq -j 
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(41) 

(42) 

Further, since 

9 q + j =9 q -J 
and 

9 q{' q + j = Jx q + j 

(43) 

it is desirable to reexpress (41) as a sum over various X q + j 

because then the perturbation procedure becomes particu
larly simple! This type of expansion is simply an expansion 
in terms of eigenfunctions, such as (e.g.) a Fourier expan
sion. In order to derive such an expansion it is not possible to 
use a simple power expansion ofthe integrand and integral in 
the relation 

_Xq-I ( 1 fZ dZ) x=-- =exp -- --
X q 2el12 VI12 (44) 

because in that case reversion of the resulting series leads to 
divergent sums for each coefficient of the sum over powers of 
x. The correct step is to use an expansion around 
z = Zo = -! for which 

v(zo) = 0 and v'(zo) = O. 

Then 

v(z) = f (z ~ !)i v(<)(zo), 
i = 2 I. 

where for i = 2,3,.·· 

e 

We then have (apart from an additive constant) 

_l_fz ~=!ln(z+!)+ f r~(z+!)i, 
2e1/2 VI12 

i ~ 1 21 

where 

(45) 

(46) 

(47) 

Expression (47) can now be substituted into (44) and the 
resulting expansion in powers of (z + !) can be reversed. We 
quote the following two expansions which have to be used 
repeatedly in subsequent steps: 

(z + _21)112 = ~ d Xq -(2i+ I) 
£.. 2i+ 1 ' 

i=O Xq 

where 

d3=~ ds=E ... 
3' 72' 

and 

~ f. Xq +2i 
£.. 21 , 

2,1.0 Xq 

where 

j. = 1, fz = -1' 10 = - k" 
Inserting (48) into (45) and inverting the series we 

obtain 

1 
--=e 
v(z) 

y 
i= 2,1,0 
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where 

~4 = 1, ~2= 
11 

~o=-,'''' 
6 

In a similar way we find 

V'2 ~oo X q + 2i --;- = £.. 'r2;--, 
V ;=2,1,0 Xq 

where 

v" 
v 

where 

and 

1 
Eo= -3'"'' 

v' 1/2" X q + 2; m =e £.. K 2;--, 
V ;= 2,1,0 Xq 

where 

8 
K. = 2, K2 = - 3' Ko = 0, .. · . 

(SOa) 

(SOb) 

(SOc) 

These expansions can now be substituted in (41). Then 

d 2X q .d I _ - 00 

dz
2 

- Xq - L (q,q+2I)Xq +2;' (SI) 
;=2,1,0 

where for i=foO: 

5 q q2 
(q,q + 21) = J61' 2; + ""2 K2; + "4 ~2; - !E2; 

and for i = 0: 

5 q q2 
(q,q) = -.d' + -'To + - Ko + - ~o - aEo 

16 2 4 

(S2) 

Thus the first approximationx' 0) = X qleaves uncompensated 
on the right-hand side of (36) a sum of terms amounting to 

(S3) 

Using (43) we see that these terms can be taken care of by 
adding to X'O) the next order contribution 

(1)=(~)1/2 -00 (q,q+2;) 
X 2: 2' Xq+2j 

E j= 2,1"" 'J 
(S4) 

#=0 

excluding, of course, the term in X q' The coefficient of X q in 
(S3) set equal to zero, i.e., 

(q,q) = 0 

yields an expression for .d I (to the same order of approxima
tion) which is identical with the expression obtained pre
viously for our other type of eigenvalue expansion. This re
sult therefore reassures us, that our approach and its 
solutions are correct. The complete solution is obtained in 
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our standard fashion7
•
9 leading to the sum 

X = X'O) + X' I) + X(2) + ... 
in powers of (e/E)1I2. The corresponding equation for.d I and 
thus the eigenvalues is 

0= (q,q) + (:'y!2 Y (q,q 2~ 2J) (q + 2j,q) 
E j=2,1,... 'J 

j#O 

e -00 -IX; 

+- 2: 2: 
E j =2,1, ... j'=2,1, ... 

(q,q + 2J)(q + 2j,q + 2j + 2j') 

2j(2j + 2j') 
NO j+/#o 

X(q + 2j + 2j',q) + .... 

Successive contributions X (0) ,X ( I ),'" of X form a rapidly de
creasing sequence provided that 

(
:,)112 Xq±2 < I, 
E Xq 

i.e., 

( 
1 fZ dz ) (E)I!2 exp + - -- < -

e1l2 VI/2(Z) e . 
(SS) 

This relation allows arbitrarily large values of z (since E- (0) 
but excludes the region around z = -! [in view of the loga
rithmic term in (47)]. 

Thus, we now have two paris oflarge-h or E asymptotic 
expansions of the eigenvalues and eigenfunctions of the loga
rithmic potential over (presumably) the entire range of the 
independent variable. We could even proceed to demon
strate that the two types of eigenfunctions we have derived 
are proportional to each other in their common region of 
validity. Such a verification would proceed along the lines of 
Refs. 7 and 9. 

4. UNIFORMLY CONVERGENT SOLUTIONS 
AND THE SCATTERING PROBLEM OF THE CUT
OFF POTENTIAL 

For the extension of our analysis to the cut-off potential 
which also permits scattering, it is useful and desirable to 
have yet another type of solution. For this reason we now 
derive an expansion which is uniformly convergent for finite 
values of E or h. This type of solution has also been obtained 
by Gesztesy and Pittner.8 We therefore skip the proof of its 
convergence, but investigate in more detail its relevance for 
the scattering problem. 

Our starting point is Eq. (7) which we write 

d 2A. 
-"'- - L 2t/J = Eze2zt/J. 
dz2 

Setting 

t/J = e ± L'.!(Z) 

we find that/satisfies the following equation, 

d 2 d/ -/ + 2L - = Eze2j. 
dz2 - dz 
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From now on we consider only the upper equation. The solu
tion of the lower equation then follows by changing the sign 
of L. We solve (58) by iteration. Thus, iflL is the solution of 

d 2 d 
-IL +2L-IL=0 
dz2 dz 

we-have 

IL = constant or IL ex e - 2Lz. 

We take the first of these alternatives because the second 
form leads to ¢ = e - L'i Ignoring an overall constant, we 
take IL = 1, and set 

/= 1 + ! ~J;, (59) 
i= 1 

whereJ; is the solution of 

~ J; + 2L!!... J; = ze2'l; _ I' (60) 
dz1 dz 

Solving for ft, we setft = e2Zg,(z) and then g,(z) = az + b 
where a and b are constants. Then 

1 ( L+2) 
g,(z) = 4(L + 1) z - 2{L + 1) . 

Proceeding in this way we obtain the solution 

X(Z2- (L+ 1)(L+4)+(L+2)2 z+ (L+ 1)(L+4)2+(L+4)(L+2)2-2(L+ 1)(L+2») ... J. (61) 
2(L + 1){L + 2) 8(L + 1)(L + 2)2 + 

As pointed out earlier, a second solution is obtained by re
versing the sign of L or replacing / by - / - 1. 

Rewriting (61) in terms of r, we obtain 

¢(r) = r l
+ 1 exp( - ; (I + 1)) 

+(J2r4g{l,lnr- ;) + ... J, (62) 

where gl,gZ"" are new functions oflnr. The solution (62) is 
obviously the so-called regular solution. 

We now look at the expansion (61) more closely and 
sum up the terms containing leading powers of z. Looking at 
higher terms which we do not reproduce here we see that the 
leading powers can be summed to a Bessel function of imagi
nary argument, i.e., (apart from an overall constant), 

t/!R(r) =,J+ 1 exp( - ; (/ + 1») 

(
(/ + !)!Il + 1/2 ( ± r( {JZ)I12) ) 

X + ... [ ± (rl2)(f3z)"2] I + 1/2 . 
(63) 

Now, In{x) has the following asymptotic behavior. 

In(x)c::=. eX [1 + a (.!.)]. 
(21Tx)I12 x 

Considering only the dominant term of this expansion and 
the first term summed in (63), we have (inserting a constant 
N) 
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Hoo exp[ _ (al{J)(1 + 1)](1 + 1)!21+ 1/2 
¢(r) c::=. N 2 

(21T)112( ± {Jz)(l + 1)/2 

X exp[ ± r( - a + {Jlnr)"2], 

where z = - al{J + Inr. 

Thus, if k 2=2p,E Iff, and so 

k 
2 2flg Inro a - + --'-:::...-.....:. 

- fz1' 

the solution t/! has the asymptotic form 

exp{ + r[ - k 2 + 2flg Inrolfz1 + {Jlnr} '!2) 

( _ k 2 + 2f.lg Inrolfz1 + {Jlnr)(l + 1)12 

(64) 

(65) 

(66) 

This behavior shows that for r_ 00 lnr dominates over the 
energy k 2, and we do not have scattering. Of course, if the 
potential is cut off at some distance Ro. the term lnr does not 
arise in the asymptotic form (66) and scattering is allowed. 
In fact requiring the wavefunction to be continuous at R o, 

the S matrix is 

(67) 

where the SUbscript R indicates that the solution used is the 
regular solution discussed above. The Jost function 
[..(k) = f-(e - i1Tk ) is given by 

j.{k) = eikR{ dt/!~;o) - ikt/!R{Ro»). 

Its zeros determine the eigenvalues or-as was shown in the 
context of the linear power potential'°-an expansion 
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q=qo+o(~J, 
where qo is exactly an odd integer, and q only approximately. 
For Ro----'"' 00, i.e., the potential with no cut off, q~o. This is 
the case we have discussed previously. 

The asymptotic form (63) suggests that solutions can be 
found in terms of cylindrical functions. This is in fact the 
case. Changing the independent variable of (56) to 

CiJ = [Eze2rl'l2 
we obtain the equation 

-+-.-- 1+-ifJ d 2ifJ 1 difJ ( L 2 ) 

dCiJ 2 CiJ dCiJ CiJ2 

= _ (1 + ~) (1 + 4z) ifJ + ~. 1 . difJ . 
CiJ2 (1 + 2zy CiJ (1 + 2z)Z dCiJ 

(68) 

For 1 z 1----,",00 the terms on the right-hand side of this equa
tion become negligible and so 

ifJ----,",IL(CiJ) 

as we found above. We do not pursue this solution in further 
detail in the present context, although it would be interesting 
to know the complete iterative solution of (68). 

5. UNIFORM ASYMPTOTIC SOLUTIONS 

The last type of solution we wish to discuss comple
ments the uniformly convergent solution for large values of 
E, i.e., it is a uniform asymptotic expansion for large values of 
E. 

In our basic equation (56) we set 

ifJ = A (z) exp( r €1/2Z112~ dZ)' 

Then A (z) is found to satisfy the equation 

(69) 

2 dA + (1 + 1-,.4 = 1 (LZA _ d
2
A). (70) 

dz 2zr E!l2z 112eZ dz2 

For E 1/Z
----,", 00 we can neglect the terms on the right-hand side 

to a first approximation. Then A o, the first term of the 
expansion 

(71) 

satisfies 

2-+ 1+- 0=0 dAo ( 1 ~ 
dz 2z 

so that 

(72) 

C being an overall multiplicative constant. The equation for 
Al is 

(73) 

which can be solved by first setting 
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This equation is again of a standard type but is nontrivial. Its 
solution can be given only in terms of the incomplete gamma 
functionr, 

f~ z - n12e - Z dz = - i"" z - n/2e - Z dz 

Then 

+ ire -1,z) + ~r( - 2.,z)]. 
32 2 

Proceeding in this manner we find the solution 

ifJ = Ce - Z/2z'1/4 exp[ ElI2 fZ z!lZ~ dZ] 

(74) 

This expansion is asymptotic in ElIZ and presumably is valid 
over the entire range of z. We do not explore it in more detail 
in the present context. 

Without going into details we mention that it is also 
possible to derive Fourier-types of solutions in rising powers 
of E. These can be obtained by replacing the factor z or the 
right-hand side of (56) by its expansion in terms of sinnz (n 
an integer). This solution parallels the well known Fourier
type solution of the Mathieu equation. 

6. The logarithmic potential and particle 
spectroscopy 

We now investigate the implications of the logarithmic 
potential for the level spacing and leptonic widths of super
heavy quark-antiquark bound states. 

Solving the expansion (31) for I we obtain the Regge 
trajectories 

l=aiE ) 
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FIG. I. Regge trajectories for the logarithmic potential for '0 = 5 GeY-', 
g = 0.5692 GeY, f.l = 0.78 GeY Ie', and q = 1,3,5,7. 

_ q(1691q2 + 23) + 0(_1_)] 
2333h 6 h 8 ' 

where q = 2n + I, n = 0,1,2,· .. , and 

h 2 _ 2ro (2 )112 (E I ) - - flg exp - - - . 
fz g 2 

(76) 

(77) 

In Figs. I and 2 we show the behavior of these trajectories for 
quark masses me = 1.56 GeV je2

, mb = 4.9 GeV Ie 2. We ob
serve in particular that the spacing between successive tra
jectories diminishes with increasing mass of the quarks. 

Solving our expansion (31) for E we obtain 

E=!L _ ~ In(8j1gro ) 
2 2 fz2 

+ g In[ 2q + ( 8(1 + !)2 + ~(69q2 + I) 

(78) 

TABLE I. Masses in the !{I and r families for '0 = 5 Ge Y-' and g = 0.5692 
GeY (the first states require quark masses of 1.56 and 4.9 GeY Ie'; input 
values are underlined). 

Masses (GeY Ie') calculated by using 
(a) formula (78) (b) numerical integration 

~ 
f/!Q...ill) 
!(I(3.973) 
!(I(4.163) 
!(I(4.304) 

Y'( .MQ) 
Y'( .2J1.2) 
Y'(1O.2S) 
Y'(1O.47) 

2478 

¢(l.Q2i) 

~ 
!(I(4.00S) 
!(I(4.233) 
!(I(4.405) 

Y'( 9.40) 
Y'( .2J1.2) 
Y'(1O.31) 
Y'(1O.54) 
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Since the quark mass is twice the reduced mass j1, the mass 
M of a bound quark-antiquark pair is given by 

M= 4j1 +E. 

We observe that the level spacing Mn - Mn' or En - En' is 
independent of the reduced mass j1 of the quarks and the 
range parameter ro of the potential. This difference is seen to 
depend only on the coupling constant g (and, of course, on 
the quantum number q). Thus the level spacing between the 
first two radial states fixes g uniquely, and a real test of the 
level spacing due to the logarithmic potential is possible only 
if more than two radial states are known. In Table I we show 
masses of the 1/1 and Yfamilies obtained with the help of(78). 
In order to demonstrate the usefulness of this formula, we 
compare these values with those obtained by Quigg and 
Rosner2 by numerical integration. It should be observed that 
for the lowest S wave states (q = I) the binding energies are 
still slightly negative. 

Decay widths are well known to play an important role 
in exploring the origin of a newly found hadronic state. The 
leptonic and hadronic decay widths of a vector quark-anti
quark bound state such as the 1/1 can be expressed in terms of 
the S wave bound state wavefunction at the origin. Thus 

and 

Here a is the fine structure constant, as the strong coupling 
constant, and eQ is the charge of the constituent quark of 1/1. 

In order to derive an expression for 1 CJI(O) 12 we proceed 
as follows. In the case of an S wave bound state, the wave
function is related to the potential V via the following 
expression, 

I CJI(O}j2 = ~f CJI+(r) dV CJI(r) dr. 
217' dr 

(80) 

This relation is obtained by dividing the S wave radial wave 

90 

70 

w 
cr 50 

'1i 

30 

-0.8 -0.4 1.2 1.6 2 

E (GeV) 

FIG. 2. Regge trajectories for the logarithmic potential for '0 = 5 GeY-', 
g = 0.5692 GeY,f.l = 2.45 GeY/e', and q = 1,3,5,7. 
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equation (1) by ¢, differentiating with respect to r, taking the 
expectation value and performing two integrations by parts. 
Quigg and Rosner6 have shown that in the case of a power 
potential the expression on the right-hand side of (80) can be 
related to the energy of the appropriate bound state. Their 
considerations do not hold for the logarithmic potential. We 
therefore proceed as follows. We assume that 

VCr) = 0 for r<ro, 

r 
= g In - for r> roo 

ro 
(81) 

This seems a reasonable restriction on V (r) since it is well 
known that at short distances the Coulomb force (corre
sponding to exchange of massless gluons) is expected to be
come important. We ignore this component here. 

For simplicity we restrict our considerations to the 
WKB approximation. The expression on the right-hand side 
of (80) can then be written 

L dr ¢~KB (r) - dr ¢~KB (r) , i' dV (1' )-1 
21T 0 dr 0 

where ris the classical turning point given by 

E - VCr) = 0, 

i.e., 

(82) 

(83) 

Now, the WKB approximated wavefunction ¢WKB is pro
portional to [E - V (r)J-1I4 multiplied by an oscillatory fac
tor, the square of which can be taken as constant. Thus (82) 
can be written [using (81)] 

~ 56 dr[E - V(r)]-II2(dV /dr) 

21T s~ dr[E - V(r»)-112 

L S~" dr[E - V(r»)-1/2(dV /dr) 

21T S~ dr[E - V(r)r IlZ (84) 

Setting VCr) = E sinze, we have 

IF dr[E- V(r»)-IIZ dV =2EII2. 
r.. dr 

(85) 

To evaluate the denominator of (84), we use the Bohr-Som
merfeld quantization relation (where q = 2n + 1, 
n = 0,1,2, .. ,) 

l' 12ft [E - V (r)] 1112 dr~(n - !)1T. 

Differentiating this expression with respect to n-the as
sumption of continuity in n implied by this procedure is ap
proximately true and best when n is large-we have 

(E-.)1I2 dE r dr[E _ V(r)]-1I2 = 1T. 
2 dn Jo (86) 

Using (85) and (86) the expression (84) for 11[/(0) 12 becomes 
(to a reasonable approximation) 

312 dE 
11[/(0) /2 = ~ (2E)1I2 _ . 

1T' dq 
(87) 
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TABLE II. The leptonic decay rates !,(V-'>[<[-) in KeV (input values are 
underlined). 

Mass (GeV Ie') Calculated Experiment 

~ 4.80 4.8 ± 0.6 

~ 1.60 2.1 ± 0.3 
tf;(3.973) 0.96 identification of 

level uncertain 
tf;(4.l63) 0.69 level not observed 

so far 

Inserting (78) for E, this yields 

11[/ (0) 12~2ft3I2g2[ 1 -lneft!r6) t21 q1T2[2 + !(69)1/2] ]-1. 

(88) 

We see, therefore, that for a logarithmic potential q I 1[/ (0) 12 
is approximately constant, i.e., I 1[/ (0) I Z decreases with 
q = 2n + 1, n = 0,1,2, .. ·. This result should be compared 
with corresponding expressions for other types of potentials, 
since the dependence of the wavefunction on the radial quan
tum number has a strong bearing on the behavior of the 
leptonic decay rates of successive radial excitations such as 
¢, ¢', ¢". Thus, for the Coulomb potential we have" 

II[/(OWex: J.. 
n3 

and for the generalized power potential'·l2 r A 

11[/ (0),2 ex: n2(A - Il/(A + 2). 

We see that for the logarithmic potential the decrease of the 
leptonic widths of sucessive radial excitations is consider
ably weaker than for the Coulomb potential, but is not inde
pendent of n as for the linear potential. 

Using (88) we find that the logarithmic potential gives 
leptonic decay rates which are in reasonable agreement with 
data known for the ¢ family, as Table II shows. However, 
hadronic decay rates come out too small, as the second of 
formulas (79) indicates, unless multichannel corrections are 
applied. 

7. CONCLUSIONS 

Our investigation shows that simple perturbation meth
ods can be developed for solving explicitly the wave equation 
for a logarithmic potential. It is not difficult, but perhaps 
tedious, to include in the potential the necessary Coulomb 
component. In particular we derived two branches of as
ymptotic eigensolutions which are valid in different regions 
of r and together cover the entire range of the independent 
variable. That these solutions lJ are correct is verified by their 
respective eigenvalue expansions which are seen to be identi
cal. Pairs of uniformly convergent and uniform asymptotic 
solutions have also been derived and are useful particularly 
for investigating the scattering problem of the cut off 
potential. 

Our explicit eigenvalue expansion can be used directly 
for the calculation of binding energies, Regge trajetories, and 
leptonic decay rates of bound states of heavy quarks. It is 
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seen that the level spacing of radial and orbital excitations is 
independent of the quark masses, and that the leptonic decay 
rate of a radially excited state is inversely proportional to its 
radial quantum number. These results are in reasonable 
agrement with available data. However, two consecutive 
states do not suffice to test the predictions of the logarithmic 
potential. Hadronic decay rates may turn out to be too small. 
It can be instructive to keep this potential in mind when data 
of the new generation of accelerators become available. 

Note added in proof Finally we comment on the rela
tion between the methods used in this paper and the WKB 
approximation. A reader of the preprint of this paper re
marked that "a simple WKB approximation for the log r 
potential gives results which are more accurate than the ex
pansions considered in this paper." This statement is wrong. 
The "simple WKB approximation" referred to by this read
er is the dominant term of our expansion [Le., the first two 
terms of expansion (31 )], as can be seen by comparison with 
the work of Gesztesy and Pittner. 8 In fact, the expansions 
derived in this paper are the WKB expansions. In the present 
context we do not demonstrate this equivalence, but this has 
been done in the literature for the case of the Yukawa poten
tial. Perturbation expansions similar to those derived here 
have been derived for the eigenvalues and eigenfunctions of 
the Yukawa potential in papers quoted under Ref. 14. The 
approximations derived for the same potential by the usual 
WKB method have been obtained by BoukemaY The first 
paper of this author discusses the usual WKB approxima
tion and agreement with our expansion is obtained only up to 
the second term in the expansions. However, in the second 
paper a correction to the WKB approximation is investigat
ed and complete agreement with our expansion is obtained 
(up to the first four terms calculated). Thus it may be argued 
that our methods are superior to the usual WKB 
approximation. 
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oscillator problema) 

Richard L. Hall 
Department of Mathematics, Concordia University, Montreal, Quebec, Canada 

B. Schwesinger 
Gesamthochschule Siegen, Fachbereich 7, Adolf Reichwein Strasse, 5900 Siegen 21, Germany 

(Received 24 April 1979; accepted for publication 6 August 1979) 

It is shown that Schrodinger's nonrelativistic equation for a translation-invariant system of N 
particles with arbitrary masses interacting by harmonic pair potentials with arbitrary coupling 
constants is exactly soluble. An explicit matrix KV is given whose eigenvalues and eigenvectors 
determine all the exact energies and corresponding eigenfunctions of the N -particle problem. 
The result is extended to include systems composed of an arbitrary number of groups of identical 
particles. 

I. INTRODUCTION 

We consider a system of N particles which interact by 
harmonic pair potentials and obey nonrelativistic quantum 
mechanics. The translation-invariant Hamiltonian H for 
this system may be written: 

N P; 2 1 (N )2 
H= L--- LP; 

;~I 2m; 2m ;~I 

(I) 
;J~ I 

by the matrix 

m m m 

0···0 -1 

B= o 10 .. 0 -1 

o 0 .. ·1 -1 

(2) 

where m = };;V~ I m; is the total mass and the coupling con
stants gij satisfy gij = gji ;;;.0. In earlier articles (Hall, 1-3 
Schwesinger4

•
5

) we have constructed exact solutions to 
Schrodinger's equation for this problem in cases where the 
number of distinct masses and coupling constants is not too 
large. In the present article we demonstrate that the general 
problem with positive or zero coupling constants (this as
sumption can be weakened, as we show in Sec. II) is always 
exactly soluble. The result is, of course, not surprising from 
the physical point of view. The mathematical difficulty is to 
diagonalize simultaneously both the potential and kinetic 
energy expressions in terms of a suitable set of translation
invariant relative coordinates. We shall do this by first ex
pressing H in terms of a simple set of relative coordinates and 
then showing how a new set can always be found which dia
gonalizes the general problem. In Sec. III we extend the re
sult of systems composed of groups of identical particles. 

The unprimed variables 0' and T represent, respectively, col
umn vectors of the relative coordinates and momenta, i.e., 
0' = (a2 '0'3' .... 'O'Nl and T = (T2 ,T3 , ... ,TNl. If by Mwe de
note the diagonal matrix [m;] ofthe masses, then the total 
kinetic energy may by written: 

II. THE MAIN RESULT 

We denote the column vectors of the original position 
and momentum coordinates by rand P respectively and we 
define new coordinates 0" = Br and momenta T' = (B - I)T P 

"'This work was supported in part by a Natural Sciences and Engineering 
Council Canada Grant No. A3438. 

K.E. = ! pTM - Ip = !(T,)TBM - IB TT', 

and, in view of Eq. (2), we have 

0 
m 

K.E. = !(T,)T 
0 

K 

0 

0 

T' (3) 

where the (N - 1) X (N - 1) matrix K is invertible and 
positive definite since M has these properties. The matrix K 
has the general form 
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( 1 1 ) -+-
m l mN mN m A, mN 

( 1 1 ) -+-
mN m 2 mN mN mN 

K= (4) 

m A, ( 
1 1 ) --+-

mN_I mN 

Thus the relative kinetic energy becomes 

Relative K.E. = !T7KT. (5) 

In term of the relative coordinates (T the potential energy operator in H may be written 

i.e., 

P.E.= I gij(Ui + 1 -Ui + I )2+ 
i<J<N 

P.E. = uTVu, 

where the positive definite matrix Vhas the general form 

V= 

(6) 

(7) 

( I gN- Ii) 
j/.N-I 

The positive definiteness of V (which is certainly guaranteed 
by our assumptiongij ;>0) is not required by our diagonaliza
tion proof: This property of V is necessary for a physically 
meaningful solution to the problem and, as we have seen in 
earlier examples (Ha1l3

), this latter condition may be satis
fied in special cases even when some of the gij are negative. 

Hence, from Eqs. (1), (5), and (6) we have 

(8) 

If we now choose a new set of relative coordinates by 
means of the invertible (N - 1) X (N - 1) matrix R, i.e., 

p = R -IU 

and (9) 

'IT = (R )TT, 

then the Hamiltonian may be written from Eqs.(8) and (9) in 
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the form 

H = 1'IT T(R IK - IR ) - I'IT + p JR TVRp. (10) 

Since K - I and V are both symmetric and positive definite, 
we know, for example from Noble (Ref. 6, Theorem 12.7, p. 
396), that a matrix R exists so that 

R TK IR =1 and R IVR =A, (11) 

where A = [A,1 is diagonal and A, ;>0. The exact eigenvalues 
of H are therefore given by 

E = i (l(a i + bi + ci) + 3jM ;12/v'2, (12) 
i -~ 2 

where ai,bi' and Ci are arbitrary positive or zero integers. 
. From (11) we see that the Ai are given by the (N - l)th 

degree polynomial equation 

IKV-AII =0. (13) 
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The columns x;(i = 2,3, ... ,N) of R are the eigenvectors 
of the matrix KV associated with the corresponding eigen
value Ai' i.e., 

KVx; = A;x;. (14) 

Thus if we find theA; from Eq. (13), we may then construct 
the matrix R with the vectors X; obtained from Eq. (14). The 
relative coordinates p are given in terms of the (N - 1) pair
distance coordinates a by Eq. 9, i.e., p = R - 1a. The exact 
eigenfunctions of H corresponding to the eigenvalues E [Eq. 
(I2)J are then the appropriate products of3(N - 1) Hermite 
functions in the 3(N - 1) variables (P2,P3, ... ,PN)' 

III. SYSTEMS COMPOSED OF GROUPS OF IDENTICAL 
PARTICLES 

We consider S groups of identical particles with Na 
particles of mass rna and a = 1,2, ... ,S. The translation-in
variant Hamiltonian H for the entire system of N 
= l:~ ~ 1 Na particles is as follows: 

H= ± {~ p7., + ~ ga(r;" -rjY} 
" ~ 1 ;" ~ 12m" ;" <j" 

(15) 

For each group a of identical particles we define (Na - 1) 
Jacobi orthogonal relative coordinates P;" (as in Ref. 3) with 
ia = 2,3, ...• N", a group center-of-mass coordinate 

R" = (l!Na)l:~"r; • and also the corresponding conjugate 
" " 

momenta 'If; and P a' By using the operator methods of 
Refs. 4 and 5 or by a direct calculation we find that Eq. (15) 
can be written in the following separated form: 

(16) 

where 
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and 

s 
M" = Nama' ha = L ga(3N(3' gaa = O. 

(3~1 

Since the H a are diagonal and since He has exactly the form 
of the Hamiltonian which we diagonalized in Sec. II. above. 
Eq. (16) provides the complete solution of the problem for S 
groups of identical particles. In Ref. 3 we solved the special 
case S = 2 but there is an error in Eqs. (3) and (7) of that 
reference: The inter-center-of-mass kinetic energy term 
(l/N)(N2/ml + N1/m2)'lf2 should be divided by 2; with this 
correction to the earlier work it becomes consistent with the 
general result, Eq. (16) above. For each a the variables Ra 
and P" are symmetric under the permutation of the individ
ual-particle indices of the corresponding set of Na identical 
particles so that the burden of spatial permutation symmetry 
is carried entirely by the eigenfunctions of Ha (for bosons 
and fermions the details are given in Refs. 3 and 4). 

IV. CONCLUSION 

We have transformed the translation-invariant Hamil
tonian for an arbitrary system of particles interacting by har
monic pair potentials into diagonal form. This provides ex
act solutions for a large collection of models suitable for 
molecular physics and for systems of quarks.7

,g These solu
tions also allow energy lower bounds (e.g., Ref. 9) for general 
interactions to be compared with the exact energies in the 
special case of harmonic potentials. 

ACKNOWLEDGMENT 

One of us (R.L.H.) would like to thank Professors E.J. 
Burge and H.R. Post for the facilities provided at Chelsea 
College, London, where some of this work was carried out. 

'R.L. Hall, Phys. Lett. A 65,85 (1978). 
'R.L. Hall, J. Phys. A: Math. Gen. 11, 1227 (1978). 
JR.L. Hall, J. Phys. A: Math. Gen. 11,1235 (1978). 
'B. Schwesinger, Z. Phys. A 282,173 (1977). 
'B. Schwesinger, Z. Phys. A 287, 373 (1978). 
'B. Noble, Applied Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J. 
1969). 

'R.P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3, 2706 (1971). 
'N. Isgur and G. Karl, Phys. Lett. B 74,353 (1978). 
'R.L. Hall, J. Math. Phys. 19, 1969 (1978). 

R.L. Hall and B. Schwesinger 2483 



                                                                                                                                    

The radial reduced Coulomb Green's function 
Bruce R. Johnson and Joseph O. Hirschfelder 
Theoretical Chemistry Institute and Department ojChemistry, University oj Wisconsin-Madison, Madison, Wisconsin 53706 

(Received 18 July 1979; accepted for publication 24 August 1979) 

The reduced Green's function, gnl(r,r'), of the radial hydrogenic Schrodinger equation is 
simplified for all values of n and I, I S n - 1, to a closed form appropriate for analytic treatments 
of Rayleigh-Schrodinger perturbation theory. Integral moments of the form fooodr' gnl(r ,r') 
(r ')k + 2exp( - Zr' In) are given. It is also shown how gnl is connected to gn.t+ I by the ladder 
operators of the factorization method. Recursion relations are derived between integrals that 
arise in perturbation theory. The above results are generalized to the case I 2 n, which occurs in 
the Green's functions required for the Rayleigh-Schrodinger perturbation treatment even 
though it does not arise for the eigenfunctions. As an example of the use of the reduced Green's 
functions, the first-order wave function and second-order energy corresponding to the spin-orbit 
interaction is evaluated for any bound state. 

I. INTRODUCTION 

A. Outline 

Rayleigh-Schrodinger perturbation theory (RSPT) for 
hydrogenic systems can easily be performed analytically by 
use of the reduced Coulomb Green's function (RCGF).H 
The three-dimensional RCGF can be expanded in terms of 
spherical harmonics and the radial RCGF's, gni(r,r'); gni' in 
contrast to the bound state radial wave functions, is defined 
for both /<;;,n - 1 and l>n. The expression for gnl(l<,n - 1) 
given by Sherstyuk4 contains a confluent hypergeomtric se
ries which we have summed to closed form, permitting us to 
present simple expressions for all of the radial RCGF's need
ed in bound-state RSPT, i.e., for both l<,n - 1 and />n. We 
have used these to calculate radial integrals of the form 

(1.1) 

for arbitrary I and n, k> - / - 2. These integrals may be of 
use in evaluating first-order wave functions. 

The ladder operators of the factorization method9 are 
shown to connect gni to gn,l ± 1 in a simple manner, and to 
generate differential recursion relations between integrals 
such as 

i
OC 

dr 'gnl(r,r ')(r Y + 2R nl , (r ') , 
o 

(1.2) 

where R n I' is a radial wa vefunction. A non differential recur
sion relation which should be useful in applications is also 
derived by a procedure previously used to relate radial ma
trix elements. 10 

In Sec. II we present a brief description of the radial 
RCGF's followed by a summary of the above-mentioned re
sults. For the benefit of the reader not concerned with deri
vations, these are delayed until the latter sections of the 
paper. 

Equation (2.11) is the usual eigenfunction expansion of 
gnl and demonstrates how, for both /<,n - 1 and l>n, gni is 
constructed from radial continuum functions labeled by the 
quantum number / and from the bound radial functions Rn'I' 
n'>/ + 1. The eigenfunction expansion shows simply how 
the case />n appears for the RCGF's. 

Equation (2. 15) is the closed form of the hypergeome
tric series appearing in Sherstyuk's work, while the proof is 
deferred to Sec. IV. Equations (2.13) and (2.18) are the rela
tively simple final forms of gnl for />n and / <,n - 1, 
respectively. 

The integral moments (1.1) are tabulated in Eqs. 
(2.23)-(2.28). No proof is given here. 

Equations (2.35) and (2.36) demonstrate how the same 
ladder operators that relate R nl to R n.l ± I may be used analo
gously for the radial RCGF's while Eqs. (2.39) and (2.40) 
give examples of the sort of differential recursion relations 
the ladder operators generate between integrals of the form 
(1.2). Derivations of those results can be found in Sec. V. 

Equation (2.49) is the nondifferential relation between 
these integrals, and in Sec. VI we show the steps leading up 
to it. We present in Sec. III an application of these results in 
calculating perturbed wave functions, adding spin to the hy
drogenic model and taking as our perturbation the spin
orbit interaction. Finally, in Appendix B we give an alterna
tive means of obtaining the RCGF's considered by 
Sherstyuk. 

B. Relationship of the present treatment to previous 
research 

The function gnl for l<,n - 1 has been evaluated in 
closed form previously in special cases by Hameka1 (n = 1), 
HostIer' (l = 0, n arbitrary), and Laurenzi and Flamberg11 

(n = 1,2,3). The latter authors managed to sum Sherstyuk's 
hypergeometric series for the first few quantum numbers, 
leading us to consider the general case. Their work has pin
pointed one of the difficulties that still exists in evaluating 
integrals over gnl' however: A large amount of algebra is 
involved which, while straightforward, is also tedious. The 
integrals and recursion relations we present for both /<,n - 1 
and />n are efforts to ameliorate this situation. 

It should be noted that gnJ has been given before as an 
infinite expansion in the Sturmian representation. l2

•
n These 

forms are actually easier to use for some calculationsl2
-

15 and 
have the merit of unifying the two cases /<,n - 1 and />n. In 
general, however, it is desirable to have gnl in closed form. 

Throughout the paper, we have limited our scope to 
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single integrals that would be encountered in finding first
order wave functions for perturbing potentials in which the 
radial dependence consists of positive or negative powers of 
r. [The perturbation r kexp( - /3r) has been treated by Sher
styuk. "] The simple recursion relations between these inte
grals suggest that a more detailed study may be warranted, 
especially since the hydrogenic system has proven such a 
valuable testing ground for various model theories. We ex
pect that the results given here can be extended to use in 
higher order calculations. It also seems likely that the treat
ments ofSecs. V and VI (and Appendix B) can be made for 
other types of physical systems. 

II. RESULTS 

A. Review and description of the Green's functions 

The three-dimensional Sch6dinger equation for a hy
drogenic ion with nuclear charge Z is16 

(2.1) 

The bound states of this equation are described by the energy 
eigenvalues En = - (Z2/2n2), n = 1,2, ... , and the orthon
ormal eigenfunctions (l = O,l, ... ,n - 1; 
m= -1,-1+1, ... ,1-1,/) 

tPlllm(r) = RIII(r) Ylm (e,cp ), 

where 

(2.2) 

R (r) = (zJ(n -1- I)! ]1/22 xIL 21+ I (x)e-X/2 
'11 (n+/)! n2 n-I-I 

(2.3) 
and 

2Zr n -.1- I ( n + 1 ) ( _ X)k 
X = -- L 21 + I (x) " 

n ' " I I = kL..O n - 1- 1 - k ~. 

In the above, L ~I +/_ I is an associated Laguerre polynomi
al" and Y'm is a spherical harmonic. The complete set of 
states is well known to contain continuum states for which 
E>0.18 

The Green's function G (r,r ';E) associated with Eq. 
(2.1) satisfies (for E not an eigenvalue) 

[ - 1\.72 
- ~ - E ]G(r,r';E) = - 8(r - r'). (2.4) 

The eigenfunction expansion of G is given by19 

G(r,r';E)= S nil ± tPn'lm(r)tP~'lm(r') 
no~II~Om~_1 E-En' 
'" I 

= I I Y'm (e,cp ) Y '/:" (e ',cp ') 
1= 0 In - I 

x S 
n'"co! + 1 

'" I 

RoAr)R ~I(r ') 

E-En 

= I I Y,m(B,CP)Yim(B',cp') 
I=Om=--{ 

(2.5) 

The radial Coulomb Green's function gl satisfies the 
inhomogeneous equation 

[HI - E ]gl(r,r ';E) = _ 6(r - r ') , 
rr' 

(2.6) 
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where 

HI = - J.. ~ r + I (l + 1) 
2r or2 2r-

Z 
(2.7) 

r 

Combined with regularity conditions as r or r ' tend to zero 
or infinity, gl is given by 19.20 

with 

p = 2Zr/v, p'=2Zr'/v, (2.9) 

and 

v=~ Z2 

2E 
(2.10) 

~ v.1 + 1/2 and Wv.l + 1/2 are Whittaker functions,21 
r (l + 1 - v) is the gamma function, andp < (p > ) is the less
er (greater) ofp andp'. 

For applications in bound state RSPT,22 we actually de
sire the RCGF, given by 

n'=l-Il 
oc I 

= I I Y,m(B,CP)Yim(B',cp') 
I-=-O m = -I 

x S 
n':=-- J + 1 E" -Ell' 

= I Y,m(B,CP)Yim(B',cp')gn,(r,r') , (2.11) 
I.m 

where gill (r,r ') is the radial RCGF, orthogonal toR",. Since 
the summation over n' in gnl starts at n' = 1+ 1, there are 
two distinct cases: For I<n - 1, the term with n' = n must 
be explicitly excluded and, for I)n, no such term would arise 
anyway, making the restriction n'=I=-n superfluous. 

Thus, Gn and gnl may be obtained from G and gl' re
spectively, by setting E = En, the energy of the nth bound 
level, after removing any pole terms. Hostler3 has given a 
prescription for this process and Go (r,r ') has been found in 
closed form. <.6.' For the radial functions, this prescription 
reads as 

gill (r,r ') = [:e (E - En)g/(r,r ';E)] = 

E E" 

= ~ [a(1~v) (~ - ~2~{r,r'; - ~~)L~n 
(2.12) 

It can be easily verified from the series expansion of gnl that 
Eq. (2.12) is valid for both of the cases l<n - 1 and I)n, even 
though we can obtain g nl in closed form in the second case by 
simply setting v = n. 1 In this case,II.23 
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, -. 

gnl(r,r ') = limg,(r,r '; _ Z2) = 
,,_n 2v 

4Z (1- n)! 
- - vIIn.l+ 112 (X < )Wn.l+ 1/2 (X> ) 

n X<X> 

= ( _ )' + I - n 4Z (I _ n )!(l + n )!(XX') - I - Ie - (x + x')/2 ['f (21 - i) Xi> ] 
n i=O I-n 11 

X [ex. ,fn (21- J) ( - x< Y _ 'in (21- k) x~ ], 
j=O l+n j1 k=O I-n k! 

(2.13) 

where 

x = 2Zrln, x' = 2Zr 'ln . 

For k,n - 1, the details are more complex. Using Eq. (2.12), Sherstyuk4 reduced gnl to the form 24 

gill (r,r ') = 4Z P; (xx')'e - (x + X')/2{L ; (x)L ; (x') [IOgx + x +2 x' - if!(p + 1) - 2s
2
+ 3] + ~ L; ~ II (x)L ; (x') 

n ~ n n n 

+ ~L~~II(X')L;(X)+L;(x<)[pfl Akx: - t (+q k) (k- ~)!] 
n k=O k=l~ x> 

+L~(x»f B k< +L~(x» (-X<Y'+I 2F2(1,I;q+2,P+2;X<)}. (2.14) 
k = I' (p + 1)!(q + 1) 

In this expression we use the definitions25 

p = n - 1 - 1, s = 21 + 1, q = n + I, Ak = (-r ( ~ J f Y + S , B k = (-r ( ~ kYf I _1_ .. 
k . P j = k + I J{] + s) k . P j = 0 P - J 

The function I/J(p + 1) is the logarithmic derivative of the gamma funciton,26 

I/J(p + 1) = - r + f ~, r = 0.57721... (Euler's constant), 
k = I k 

and the 2 F2 function is a confluent hypergeometric series. 27 

As noted in the introduction, Laurenzi and Flamberg11 have evaluated this series in the cases n = 1,2, and 3. Proceeding 
along their lines, we found that this is possible for the general case (see Sec. IV). In the notation ofEq. (2.14), we obtain 

( - xY' + 1 [ s (q - k) (k - 1)' ] -~-'---- 2F20,1;q + 2,p + 2;x) = eX L . + cPnl(x) 
(p + 1 )!(q + I) k= I P Xk 

_ f ~ q ) (k -k I)! ~ --'-----'- + L ; (x)[logx - Ei(x) -I/J(q + 1)] 
k= I + k X 

p-I ~ 

+ L Ak Xk - L Bkx
k

, (2.15) 
k=O k=1 

where Ei(x) is the exponential integraP8 and 

cPnl(x)= f (-y< L;~1(x)eA_I(-x)= _P:f(-x)jP-i-
J ~ (q-I~k) 

A=I A. j=O j1 k=O k+J+I s+1 

t (-.x)j ( q .) t (k - I)! 
j = I J! P - J k = I Xk 

(2.16) 

Here the function em(y) is the truncated exponential series 

(2.17) 

Now inserting this result into Eq. (2.14) gives us an expression for the radial RCGF when l<,n - 1 that is in terms of 
simple functions: 

g"l(r,r ')= 4Z P: (xx')'e-(x+x')/2{L~(X)L;(X') 
n q. 

X [IOgx + logx' + x + x' -I/J(p + 1) -I/J(q + 1) _ 2s + 3 - Ei(x <)] 
2n 2n 

+L~(X)[~L~~II(X')+Pf Ak(x,)k- t ( q )(k~ !)!] 
n k= 0 k = I ~ + k (x ) 

+L~(X')[~L~~II(X)+p.fAkXk- t ( q )(k-kl)!] 
n k=O k=1 ~+k x 

+L;(x»eX [t (q-k) (k-k
1

)! +cPnl(x<)]}. 
k= I P X 
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The Green's functions of Eq. (2.13) satisfy the 
equation!! 

powers of r " the above integral consists of a linear combina
tion of the integrals 

8(r - r ') 

rr' 
(2.19) [7.,(x) = roc dx';g nl(X,X')(x')k + 2e - x'/2 

Jo 
while those of Eq. (2.18) satisfy = (2:r + 31"" dr 'g,Ar,r ')(r '/ + 2e - Zr 'In, 

(2,21) tH, - E" ]g",(r,r ') = Rn,(r ')Rn,(r) _ 8(r - r ') . 
rr' 

(2.20) 
where 

It is convenient here and later to define Rn' by Eq. (2.3) for 
/<,n - 1 and R n, = 0 for t;;,n. Then both forms ofgn, satisfy 
Eq. (2.20).29 

;g III (x,x') = gnl(r,r ') . (2.22) 

We prefer here to work with the scaled variables x = 2Zr I n 
and x' = 2Zr 'In for notational simplicity. 

B. Integral moments of 9nJr,r ') 
It should be mentioned that, for t;;,n, the indefinite inte

grals implied in Eq. (2.21) have already been considered by 
Buchholz. JO Within (degenerate) RSPT, one encounters integrals of 

the form 

(X dr '(r ')2gn,(r,r ')fer ')RII" (r ') . 
Jo 

In certain select cases, \2-!5 the Sturmian representation of gnl 
can be used to good advantage in evaluating these integrals. 
In other cases it is easier to use Eqs. (2.13) and (2.18). For the 
situation in which/is a combination of powers or inverse 

As pointed out in Ref. 11, a good deal of algebra is 
involved here; the details of integration over the functions in 
Eqs. (2.13) and (2.18) and of concomitant reduction to more 
compact form are fairly lengthy and are given elsewhere.]! 
As in the evaluation of radial matrix elements, we find that 
the integral [~,(x) is convergent for k> - 1 - 2, although it 
must be treated as a principle value integral for certain 
ranges of k. The results break into six classes as follows: 

Case 1: I>n, k>l- 1: 

[~,(x) = _ 4: (1- n)!(l + n)!(k + 1_l){k; I~ 2)x-I_Ie_Xl2k+±+2 (i -1- n -1) ~i; 
+ 1~2141 I-n d 

(2.23) 

Case 2: l>n, n - 2<,k<,l- 2: 

[k(X)=(_)k+n 4Z (l-n)!(l+n)! (k+I+2) -I-I -X/2{1 l~nxi(2/-i) x' l-n(-x)'(21-i) 
"' X e ogx £.. - - e EI( - x) ~ --

n (I - 2 - k)! 1+ n i ~ 0 i! 1- n i~O i! / + n 

_ If' ~' (21 - i)¢(i + 1) + ,-f- 1 ~i i (- )J( 2/ - i .) 
,-- () t. 1 - n i ~ I i! j ~ I ;1 1- n - J 

I +" Xi (21 - i) k + 2 + I ( )i - . L 1 I _ n [¢(21 + 1 - i) - ¢(l + n + 1 - i)] + L ~ ( - )' 
I I 11 1. i= 1+ n + 1 I! 

n (21- i)!(i - 1- n - I)! } . 

(/- n)! ' 
(2.24) 

Case 3: l;;,n, -I - 2<,k<,n - 3: 

[k (x) = _ 4Z (1- n)!(k + 1+ 2)!(n - 3 - k)! x-I-Ie xl2 '~' Xi (2/- i). 
'II . n (I - 2 - k )'. £.. I ' l~k+/+3i! -n 

(2.25) 

Case 4: l<,n - 1, n - 2<,k: 

[~Jx)=(_)n ,_, 4Z (n-I-l)!(k+/+2)! x'e-xI2((k+l-l\{L;'/+,I_l(X)[~ + k-2-3/ 
n (n+l)! n-I-l} 2n 2n +r 

] 
X n-I 2( X)i( n+/ ) 

+¢(k+3-n) +-L;"~/_2(X)- L --=.-- 1 . [r+¢(n-I-i)] 
n 1=0 /! n - - 1 -/ 

+ ( _ )" - ,k 'i -, Xi (i - n + l)!(n + 1 )! } _ (k + I -l\ k + I + 3 L 2' 4 I (»). 
i ~ II _, i! (21 + 1 + i)! n - I - 2J 2n " - , I X , 

(2.26) 

Case 5: 1< n - 1, 1- 1 <,k<,n - 3: 

[~/(X)= 4Z(n-l-l)!xle_xI2[<_)k+I_/(k+l+2)!(n-3-k)!(k+l-1)! k+±-/(-X)'( n+l ) 
n (n+/)! (n-I-l)! ;=0 i! n-I-l-i 

+ ( _ )'1 - '8 . (n + I)! L 21 + I ()]. (2.27) k,n - 3 2n n - 1- 1 X , 
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Case 6: I<.n - 1, - 1 - 2<.k<.1 - 2: 

I k()- 4Z (n-I-l)!(k+I+2)! I -x/2 
nl X - - xe 

n (n + I)! 

X((:=~=~){L~/!/_I(X)[IO~+ ;" +~n-2-k)+ k-:~-2J 
+ ~L~/!/_2(X)_I-±-k( n+1 .)(i-l)! 

n ;=1 n-I-l+1 x' 

- n J: 1 (~,xYc _ ~ ~ ~ _ J[~i + 1) + ~i + 21 + 2)]} + (: = ~:=~) k +:n + 3 L ~/!/_ 1 (X»). (2.28) 

As a double check on Eqs. (2.23)-(2.28), we note that a comparison ofEqs. (2.20) and (2.21) gives 

[HI - En ]I~I = (2:r + 3Loo dr' [H, - En ]gnl(r,r ')(r ')k +2e - Zr'/n 

= e:r + 3Loo dr 'fRn, (r)Rn' (r ') - D(rr~,r ') ](r't + 2e - Zr'/n 

= c:r+ 3[Rnl (r) Loo dr 'Rnl(r ')(r Y+ 2e- Zr '/n _ ~e-zr/n] 

= ( _ y - 1- I(k + 1 + 2)!(k + I -1\ (n - 1 - I)!Z) )112 ~ Rnk) _ (2Z)3 xke - x/2 . (2.29) 
n-I-1) (n+/)! n2 n 

Using the facts that Rn' = 0 for cases (1)-(3) and is given by Eq. (2.3) for cases (4)-(6), and using the identity)2 

(2.30) 

we have been able to prove that each of the above cases obeys Eq. (2.29). It has also been possible to check the orthogonality of 
gnl and Rnl for I<.n - I by use of the results of cases (4) and (5). Cases (1), (4), and (5) agree with the independent derivation by 
Laurenzi,)) and cases (1) and (4) reduce (up to a multiplicative factor) to the results of Manakov, Preobrazhenskii, and 
Rapoport1S and McDowell.)4 

c. Ladder operator recursion relations 

For I<.n - 1, the ladder operators described by Infeld and HuW can generate Rn,l ± 1 from R nl . We define these (unnor
malized) operators in a slightly different way from their work, however. The most convenient definitions for use here are 

YnHr)=n[l- 1(/+1) + (/+I)~J, (2.31) 
Zr Z dr 

2' nl (r) = n[ 1 _ 1 (I; 1) _ ~ ~] , 

in terms of which 

2'S(r)Rnl (r) = - v' n2 - (I + IfRnJ+ 1 (r), 
.A_ ... / 22 .Y nl (r)Rn,(r) = - V n -I Rn.l_ 1 (r), 1 =f0 . 

In Sec. IV it is shown that, expressing the radial RCGF's in Eq. (2.18) in terms of r < and r> , if 1 =fn - 1, then 

gn.l+ 1 = [n 2 - (I + Ifl-1
[ 2'nt(r»2' nt(r < )gnl - 2n2~; If Rn.l+ 1 (r> )Rn.l+ 1 (r <)] , 

and, if 1 =f0 or n, then 

.A.A 2n2J2 ] 
g",l- 1 = (n 2 - /2yl [.Y nl (r> ).Y nl (r <: )gnl - ---z-2 Rn.l- 1 (r> )Rn.l- 1 (r <:) . 

Making the abbreviations 

(n/l/(r ')In'I') = IO dr '(r ')2gn/ (r,r '}fer ')Rn,['(r') , 

(n/l/(r ')In'/') = 100 

dr '(r ')2Rnl(r ')fer ')Rn,[,(r '), 

it is fairly easy to show that Eqs. (2.35) and (2.36) lead to recursion relations such as 
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(2.34) 

(2.35) 
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(2.37) 
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A. 

(a) I =/=0=/=1', I =/=n = n': (n/l(r't Inl') = if ~:I-I ~r) [ _ V n2 _ (1')2 -II, (n,/- II(r Yin,!' - 1) 
n -I 

+ ;, (I' - 1)(n,/- 1 I (r't Inl') + ~ (I' -1- k )(n,!- 1 I (r')k - Ilnl') ] 

+ 2n
2
[2 [~Rnl.(r) _ (n/l(r')k Inl')Rnl(r)]; (2.39) 

Z2(n2 _/2) 

and 
A. 

(b) I =/=n - 1, n = n': (n/l(rY Inl') = if ;;:1+ I (r) [ - ~ V n2 - (I' + I)2(n,1 + 1 I (r')k In,/' + 1) 
n2 

- (I + 1)2 I' + 1 

+ n~/:;:)(n'!+II(rYlnl,)+n(/;I)(/'-I-k)(n,/+II(r'l-llnI')] 

+ 2n
2
(1 + If [~Rndr) _ (n/l(rY Inl ')Rnl(r)] . (2.40) 

Z2[n 2 - (l + 1)2] 

The situation for t~n is even simpler: The corresponding equations are merely given by Eqs. (2.31)-(2.40) with Rnl = 0 
wherever it appears. 

Other relations of this sort can be developed without any great difficulty. These may simplify calculations in applications 
where single integrals over gnl are to be evaluated. In addition, these can lead to recursion relations between double integrals, 
such as are needed in the calculation of second-order energies. We do not pursue this point further, but instead pass on to a 
non differential recursion relation which is even easier to use. 

D. Hypervlrlal recursion relations 

In Sec. V we show how a procedurelo related to the method ofhypervirialsls
•
l6 produces very easily a recursion relation 

between integrals of the form (n/l(r') kin'/') where only the value of k changes. The result is, for I<n - 1 and k> -I-I', 
2 A. 

ak+z(n/ l(r'l+2In'I') + L ak_in/l(r,)k-jln'I') +bkRnk) + Ck(r)Rn.I.(r) =0, (2.41) 
j~O 

where 

kZ
4 [1 1 ]2 

ak + 2 = -2- (n')2 - nZ ' (2.42) 

ak = (k + I)Zz {_ k(k +2)[..l + _1_] + [..l __ 1_] [l(1 + 1) -/'(/' + I)]} , (2.43) 
2 n2 (n')2 n2 (n')2 

ak _ I = Zk (k + 2)(2k + 1), (2.44) 

ak_ Z= k;2 [k 2_(/_I')2][k 2_(/+I'+IY] , (2.45) 

bk = ZZk [_1_ - ..l] (n/l(r')k+ 2In'I') + (k + I)[k (k + 2) + 1'(1' + 1) -I (I + 1)] (n/l(rY In'l '), (2.46) 
(n')2 n2 

Ck(r)= kZ2[..l _ _ I_]~+2+ (k+2)[/(/+I)-I'(/'+I)_k(k_I)]~+k(k+2)~+I~. (2.47) 
2 n2 (n'Y 2 ar 

Originally, the method was used by Epstein, Epstein, and KennedylO to obtain the recursion relation between radial 
matrix elements (see also Refs. 36 and 37): 

2 

0=ak+ z(n / l(r,)k+2In'I') + L ak_j(n/l(r,)k-jln'I') , (2.48) 
j~O 

where the coefficients are the same as in Eqs. (2.42)-(2.45). This similarity in form is shown to arise from the fact that Eq. 
(2.20) is an inhomogeneous version of the homogeneous equation satisfied by the radial wave functions, but is nonetheless 
striking since Eq. (2.48) deals with numbers while Eq. (2.41) deals with functions of r. 

We are primarily interested in the case n = n', for which we obtain 

- k (k + l)(k + 2)Z 2 (n/l(rY Inl') + Zk (k + 2)(2k + l)(n/l(r,)k - lin/') 
n2 

2489 

+ k + 2 [k 2 _ (l_/,Y][k2 _ (I + I' + 1)2](n/l (rY- 2Inl') 
4 

+ (k + I)[k (k + 2) + /'(l' + I) -I (I + l)](n/l(r')k Inl') 

+(k+2)[ 1(/+ 1)-I'(/,: I)-k(k-I) ~+k~+1 :r]Rnl.(r) =0. 
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Further specializing to the case I = 1', canceling an overall factor of k (k + 2), 

Z2 k 
- (k + 1)7 (nll(r')' In/) + Z (2k + 1)(nll(r')k - 'In!) + 4[k 2 - (21 + 1)2](nll(r')k -- 21n!) 

+ [(k+ 1)(nll(rYln/) _ k~ 1 ~+rk+'!]Rnt(r)=o. (2.50) 

Note that, as with calculations of radial matrix elements, 
these recursion relations simplify for particular values of 
k. '0.37 For example, setting k = 0 in Eqs. (2.49) and (2.50) 
gives us, respectively, 

I (l + 1) -/ '(I' + 1) (nll(r') - 21nl') _ (nllnl')Rnt(r) 

+ Rnt,(r) = 0 (2.51) 

andJ8 

(2.52) 

Thus, we have two sets of integrals "for free", i.e" without 
recourse to any actual integrations over gnt. In Eq, (2.52) we 
have used the fact that (n/lnl) = O. We now have at our 
disposal the means to recursively calculate (nll(r'tlnl) for 
k = 1,2,3, .... However, insertion of k = - 1 into Eq. (2.50) 
shows us that this recursion relation does not directly con
nect (n/l(r't'lnl) to integrals with more negative k, 

For! =f I', using Eq. (2,51) as a starting point, Eq, (2.49) 
allow us to easily evaluate (n/l(r')klnl') for k = - 2, 
- 3, ... , -1/-1'1 - I, but not further. Also, wedonotknow 

enough from these simple considerations to obtain the inte
grals with k) - 1, 

Any particular set of integrals needed to start the recur
sion process, however, can be constructed from the integrals 
given in Sec. II B. It is important not to confuse the param
eter k from that section with k as used here. As a matter of 
fact, the relation between the integrals here and the I ~t'S isJ9 

n-I'-1 (_ y 
X L -,,-

k=O I. 

(n -I' - 1)!Z3 

(n+I')! 

X( n,+I' .)I~/l'+i. (2.53) 
n-I -1-/ 

We will use Eq, (2.53) in Sec, III, where we calculate 
(n/l(r'nnl )and(n/l(r'nnl ).Incertaincases,asmentioned 
before, it may be easier to use the Sturmian representation, 
Recursion relations such as in Eqs, (2.39) and (2.40) may 
also be of help. 

Although the preceding has been based on the assump
tion that I~n - 1, the same results hold for I)n by again 
setting Rnl = O. Of course, this reduces Eqs, (2.50) and 
(2.52) to trivial statements, 

There are other features of interest in these recursion 
relations, which should be explored in subsequent research, 
There appears to be a great deal of structure in the integrals 
considered here, very similar to that discussed in Ref. 37 for 
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radial matrix elements, and a more complete investigation of 
this structure would be useful. 

III. THE SPIN-oRBIT PERTURBATION 

In this section we modify the RCGF to include spin, 
allowing the calculation of the first-order wave function and 
the second-order energy corresponding to the spin--orbit in
teraction in a hydrogenic ion, 

A. Zeroth-order basis and first-order energy (Refs. 40 
and 41) 

Our Hamiltonian is taken as 

H=Ho +H1 , 

where 

and 

l·s 
H, =C-, r 

with C a constant. 
As our primitive basis, we take 

¢nlm,sm, (r) = Rnl(r) Y tm , (B,rp )Isms) . 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Here, Rnt(r) is as defined in Eq. (2.3), Y tm , is chosen 
with the Condon and Shortley phase, and the spin functions 
are (s = !) 

I ~ +) = (~), 1+ - ~) = (~) . (3.5) 

Coupling I and s, we obtain J = I + s and the correct 
zeroth-order basis 

(0) () 
Xnlsjtn, r = 

m"tn, 

m,+ m, = tn, 

= Rnl(r)c:Y ISjm,(B,rp) , (3.6) 

where (Imlsm s I/sjm) is a Clebsch-Gordon coefficient and 

I (V I ± mj + 1 Y l •mj - 1 ) 
c:Y lsjm (B,rp) = y' . 

, y' 21 + I ± I ± mj + ! Yt,m, + 1 

(3.7) 

For convenience, we will drop the subscripts on c:Y and X(O). 

We will also strictly neglect the situation I = 0, for which we 
anticipate that the spin--orbit contribution to the energy lev
els will be zero. 41 Using the orthonormality of the X(O)'s and 
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the identity Thus, the first-order wave function is given by (/#0) 

l.s~ = j(j + 1) -/ (/ + 1) - s(s + 1) ~ , 
2 

(3.8) 

we obtain the well-known result 

x(l)(r) = f dr'G n (r,r')HliO)(r) 

= CAjis ~(O,IP )(n/l(r')-llnl) , (3.12) 

with 

E(I) = 1'" x(OltHlx(O)dr 

= C1j1s fo'" dr rRnl(r)rlRnk) 

= cx (2Z)3(2/- I)! 1*0 
lis n (21 + 2)! ' , 

(3.9) 

Al = j(j+ 1)-/(/+ 1)-S(5+ 1). (3.10) 
}S 2 

where we have used Eq. (2.11). 
The second-order energy is then given by 

E(2) = f drX(O)tHIX(I) 

= C 2A ~s fo'" dr rRnl(r)rl(n/l(r'nnl) . (3.13) 

C. Evaulation of X'l) and 8 2) 

B. The spin-dependent RCGF 
The results of Sec. II D allow us to calculate all of the 

integrals (nll(rYlnl) for k> - 1, but not for k < - 1, so we 
simultaneously calculate the integrals for k = - 2 and Laurenzi42 has shown tht the three-dimensional spin

dependent RCGF, Gn (r,r') is quite simply related to the 
spin-independent RCGF by 

k = - 3, providing the beginning of the downward recur
sive process. 

, , (1 0) Gn(r,r)= Gn(r,r) 0 1 . (3.11) 
I 

From Eq. (2.53), using the notationp = n -/- 1, 
S = 21 + 1, and q = n + I, 

(3.14) 

Referring to Eqs. (2.27) and (2.28), we have 

(a) l.;;;k.;;;n-/-l=p: I~12+k= 4ZP!xle-X12[(_)k+1 (k+s-l)!(p-k)!(k-lW!1 (-xY'( q ) 
n q! p!!1 = ° J-l! P - J-l 

+ ( - r + l!5k.p i~ L ~(x)], (3.15) 

(b) k = 0: I~12= 4Z P!(S-I)!x1e- x12 {LS(X)[IOgx+ ~ +tft( +1)- S+3] 
n q! P 2n p 2n 

+ ~L~~ \ (x) - f (- ;Y' ( q )[tft{J-l + 1) + tft(s + J-l + 1)] + (1 - !5P.o)_s L ~(X)} . 
n !1 = 0 J-l. P - J-l 2n 

(3.16) 

So, Eq. (3.14) becomes 

(nll(r't2 Inl) = _1 ~ plZ3 {(q) [Eq.(3.16)] + f (- )k ( q k) [Eq.(3.I5)] J 
nZ q! \P k = I k ! P -

= ~ p! ~p!Z3 xle-X12(s _ Ilq){Ls (x) [IOgx + ~ + tft(p + 1) _ 5 + 3] 
n2 q! q! \P P 2n 2n 

+ ~L;~ II (x) - f (- ;Y' ( q )[tft{J-l + 1) + tft(s + J-l + 1)] + (l - !5p.o)_5_ L ~(X)} 
n p = 0 J-l. \P - J-l 2n 

- q; i 1 kf' (-~Y'( q ) _ q! _1_ (1 - !5
p
,(J)L ~(X»). 

p. k = I k (k + s) !1 = ° J-l. \P -/1 p! 2n 
(3.17) 

We can simplify the double summation by interchanging the order and eXPllnding in partial fractions: 

i 1 k - I ( - xY' ( q ) P - I ( - xY' ( q ) 1 f (1 1) 
k=1 k(k+s) !1~O ~\P-/1 = !1~O ~ P-/1 -; k=!1+1 k - k+s 

= .!.Pf (- xY'( q )[tft(p + 1) - tft{J-l + 1) - tft(q + 1) + tft(s + J-l + 1)] . 
S !1 = 0 /11 \P -/1 

(3.18) 
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4 ~ !Z3 (nl/(r't2/n/) = - P--x'e -x/2 

sn2 q! 

X{L~(X)(IOgx+ ~ + t/J(q + 1)- S+3)+ !...L~~ll(X)-2t (-XY'( q )t/J(S+Jl+l)}. 
2n 2n n I' ~ 0 Jll P - Jl 

Now, for 1=1=0, we find from Eq. (2.31)-(2.34) that 

1 4Z 2ZYp(q+1)R + 
-R"I= R"I+ (1) n,/+I 
r (s - 1 )(s + I) ns s + 

yielding 

4Z (nll(r')-Zlni) 
(s - 1)(s + 1) ----

2ZY q(p + 1) 

ns(s - 1) 
R".I __ 1 , 

+ 2ZY p(q + 1) (n11(r't2In,1 + 1) + 2ZY q(p + 1) (n11(r't2In'/ - 1) . 
ns(s + 1) ns(s - 1) 

Equation (2.51) gives us the last two integrals immediately, so we have ultimately (l=I=O) 

(nll(r')-Jlnl) 

16Z fP!i3 I - x/2 

= n2(s-l)s(s+ 1) V 7 xe 

{L S ( )[1 x .1.( 1) s + 3 p(q + 1)(s - 1) q(p + 1)(s + 1) ] X x ogx + - + 'f' q + - -- + - ~o........c--,,-,---'--'"-
p 2n 2n 2n2(s + 1) 2n2(s - 1) 

(3.19) 

(3.20) 

(3.21) 

+ !...L~~ll(X)-2t (-xY'( q )t/J(s+Jl+l)+ (s-l) xL~~~(x)- q(p+ 1)(s+ 1) ~L~~~(X)}. 
n I' = 0 JlI \P - Jl 2n(s + 1) 2n(s - 1) x 

(3.22) 

Inserting this into Eq. (3.12) then provides us with the complete first-order wave function. Using Eq. (3.22), we can evaluate 
the radial integral 

(OOO dr rRnlr - 3(nll(r'tJlnl) = _ ___ 64_Z_4 __ [n2(_I_ + ~ + _1_) 
Jo n5(s_I)2s2(s+l? s-l s s+1 

+ ~(2q + 1) + ~(2pq + q +p + 2)(_1_ + _1_)] 
4 8 s-2 s+2 

Z4 {n2( 1 1 1 ) 
- n5/2(l + 4)2(1 + 1)2 2 T + / + ~ + T+T 
+ ~(2n + 2/ + 1) + _9_[2n2 

- 21(l + I) + 1](_1_ + 
4 16 1- ~ 

(3.23) 

, 
IV. EVALUATION OF 2Fz<1,1;q + 2,p + 2,'x) Coupled with Eq. (3.13), we now haveE (2) for any state 

with 1=1=0. Although E (3) is obtainable from knowledge of 
the first-order wave function, it is unimportant for purposes 
of our example. The only word of caution we wish to make 
regards the anomalous magnetic moment of the electron. To 
first order in the energy, the quantum electrodynamic effects 
can be approximated by taking C to be 

This section is devoted to the proof of Eq. (2.15). As 
Laurenzi and Flambergll point out, only a few ofthese func
tions are known in closed form, so we go into some detail for 
the general case. This section may be skipped without loss of 
continuity. 

Za2 

C= -g, (3.24) 
4 

where a is Sommerfeld's fine structure constant and 
g = 2.0046 ... However, since the differenceg - 2 is already a 
perturbation correction, it is not meant to simply be used in 
higher order.41 

This example has hopefully illustrated the ease with 
which RSPT can be performed (even with the inclusion of 
spin) for any of the hydrogenic bound states. As far as we 
know, the results of this subsection are completely new. 
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A. The summation procedure 

The function 2 F2 (l,l;q + 2,p + 2;x) is a specific case of 
the confluent hypergeometric series27 

where 

(V)k = r(v+k) ,(I)k =kl. 
rev) 
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We can recast the function we wish to evaluate as a multiple 
integration over the function.£(x): 

~-~W (4.3) J:(x) = . , } xJ + I 

where e (x) is the truncated exponential series defined in Eq. 
} . 

(2.17). Instead of 2F2 (1,I;q + 2,p + 2;x) itself, we wIll con-
sider the equivalent evaluation of 

x p + I 

il:+ 1 = 2F2(1,I;q+2,p+2;x) 
(p + 1)!(q + 1) 

00 k! X p + l + k 

-qlI ----------------
- ·k~o(q+l+k)!(p+l+k)! 

= q!f dx .. ·f dxlq(x). (4.4) 

p + 1 integrations 

The following definitions are needed: 

.YJ(x) = ( - /f (q -:-~ ~ k)k 'fk(X), 
k ~O } 

(4.5) 

.'7J(x) = ( - )H IL J ~ i - i(x)[Ei(x) - logx + t(J(q + 1) 1 , 
(4.6) 

UUJ+ I (x) = (- )J+ I{~)[r + t(J(j + 1)1 

+ f k
1 

(. ~ k)} , 
k ~ I J 

(4.7) 

. ~ (_X)k ( q ) 
rJ+ I (x) = (-)Jk-?I kk! J-k ' (4.8) 

(4.9) 

and 

(4.10) 

Also, for an arbitrary function t(J(x), we denote multiple inte
gration by a parenthesized left superscript 

(')t(J(x) = f dx .. ·f dx t(J(x), r integrations (4.11) 

with (O)t(J(x) = t(J(x) . 
With these definitions, we will prove shortly that 

il'f(x) = Y1(x) + .'71(x) , (4.12) 

and that 

f: dx [YJ(x) + .'7J(x)] 

= Y'J+ I (x) + .'7J+ 1 (x) + UUJ+ I (x) 

+rJ+I(x)+JYJ+I(x). (4.13) 

Thus, we find the pattern 

ili =Lx dxil'f 

= Yi +.'7i + (O)UUi + (O)ri + (O)JYi, (4.14) 

ilj = f dxili 

= Yj +.'7j + (O)UUj + (O)rj + (O)JYj + (\)UUi 

+ (l)ri + (l)rri, (4.15) 
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or, in general, 

il ~ + I = y~ + I + y~ + I 

p-I 

+ I «r) UU: + I _, + (,) r: + I _ , (4.16) 
r=O 

+ (')rr:+ 1-,). 

We now turn to the proofofEqs. (4.12) and (4.13), after 
which we shall simplify Eq. (4.16). 

B. Verification of Eqs. (4.12) and (4.13) 

Using the well-known identity" 

f dxlo(x) = Ei(x) -logx - r, 
and the obvious identity 

'£_I(x)=x- i :x yj+I.£(X)' 

we find by integration by parts, then iterating, 

dx~(x) = - ~/q(x) + - ~ _ I (x) Lx 1 LX 
o q q 0 

-x i Ik(X) (k -I)! 
k = I q! 

+ J..- [Ei(x) -logx - rJ 
q! 

= - i [lk_I(X) - 1,) (k -, I)! 
k=1 k. ~ 

+ J..- [Ei(x) -logx - r1 
q! 

(4.17) 

(4.18) 

- J..- i k !Ik (x) + J..- [Ei(x) - logx + t(J(q + 1) 1 . 
q!bO q! 

(4.19) 

Reference to Eqs. (4.4)-(4.6) then shows that this is equiv
alent to Eq. (4.12). 

Turning to the proof ofEq. (4.13), Eq. (4.5) is integrat
ed once and compared to Eqs. (4.4) and (4.19) to yield 

(4.20) 

In the first two terms we replace k by q - j - k and use Eq. 
(A 1) to obtain 

qfJ (q -:-~ - k) = (q - ~ - 1) , 
k=i+ I } 1 } 

(4.21) 

qf (q-:-l-k)=(~). 
k=O J-l .; 

(4.22) 

Use ofEqs. (4.21) and (A2) transforms the last term into 
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( _ /f (q -. 1 - k) ± ~ 
k=1 j-l ;=1 I 

Thus, 

q~/ 1 q-j(q-l-k) = ( - )l £.J --;- L . 
i=l I k=i J-l 

f dxYJ(x) = YJ+ I (x) + (- Y~)[Ei(x) - r -logx 

= ( - /fj ~ (q ~ i) = (~) [¢(q + 1) - ¢U + 1)] . 
+ ¢(q + 1) - ¢(j + 1)] . (4.24) 

i= I I j ':! 
(4.23) 

Now we integrate Eq. (4.6) with the help of Eqs. (A3)
(AS): 

fX dxYJ(x) = ( - y+ I¢(q + 1)[(~) _ L Y-j(X)] + (_ y+ /!I (- t(. q ) 
Jo ':! k = 0 k 1 ':! - 1 - k 

{ 

Xk + I Xk + I ( _ )kk , } 
X --[Ei(x)-logx] + + '[I-ek (-x)eX

] 

k + 1 (k + 1)2 (k + 1) 

= (- Y[L Y-j(x) - ~)J[Ei(X) -logx + ¢(q + 1)] 

+ ( _ Y + I t J.-(. q ) + ( _ y.t (- X )k (. q ) 
k = I k I} - k k = I kk ! I} - k 

. j-I 1 ( q ) 
+ ( - yexk~o k + 1 J _ 1 _ k ek ( - x) . (4.25) 

Adding Eqs. (4.24) and (4.25), and noting the definitions in Eqs. (4.7)-(4.9), we arrive at Eq. (4.13). 

C. Simplification of Eq. (4.16) 

Inserting the explicit form offk (x) into Eq. (4.5) for Y~ + I' doing a little series manipulation, and using Eq. (A6), 

yq I = ( - Y' + I [ex q - f- I (q - 1 - k) ~ _ q - .(-.. - I ( q ) ~ ] 
p + k = 0 P Xk + I k?O p + k + 1 Xk + I 

= ( - Y' + 1 [ex t (q - k) (k -k 1)1 - t ( q ) (k -k 1)1 ] (s = q _ p). 
k=1 P X k=1 p+k x 

The third term in Eq. (4.16) is easily reduced to 

The fourth term, after manipulating some more series, is 

p-I r p-IP-r(_x)k+r( q) .(-..(_X)k~q)k 1 L () r~ + I - r = ( - f L L ,_ _ = ( - f 2.. --, - _ L --;-. 
r=O r=O k=1 k(k+r). p k r k=1 k. k j=1 J 

For the fifth term in Eq. (4.16), we need to know (r)h k • This is 

(r)hk(x) = eX ± (k + r - J) ( - xY _ rII (k + r - j) Xl . 

j~O r i j=O k i 
Although this can be proven directly, it is very simple instead to show that Eq (4.29) satisfies 

(i) (O)hk(x) = e-'e
k

( - x), 

and 

(ii) ~(ir)hk(X)]=(r-l)hk(X), r>l, 
dx 

(iii) (r)h k (0) = 0, r> 1. 

Thus, 

PII (r)5W-;f l _r =Pfl c-)p-rP-i-
I
_ 1-( q )(r)hk(x) 

r~O r=O k=O k+l p-r-l-k 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

= PII _1 P-±- k c _ y_ r{ q )[ex ± (k + r - j) (- xy _ rII (k + r - j) ~j ] 

k=ok+l r=O \p-r-l-k j=O r i j=O k Jl 
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=P~l (_y [~± (_XYP-±-k(_y( q )(k+r- j ) 
k£:O k+1 )=0 j! r=O \p-r-1-k r 

_P-t-k P-±-k( _ ~ _ )(k+r-j\]. 
)=0 r=J+l P r 1 k k) 

(4.33) 

Now, by some changes of variable and utilization ofEq. (A6), this is transformed into 

P - I P - I (- xY'P - 1-) 1 (q - 1 - k) 
'" (r) 7I"""q - ( _ yex '" __ '" 
r~O P + I - r - )~O J1 k£:O k + j + 1 s + j 

p-l 1 P-2-k(_XY [( q ) (q-1-k)] 
+ ( - y k.?O k + 1 )~O ~ \P - 1 - k - j - p - 1 - k - j . 

(4.34) 

The sum over j in the second term can be extended to p - 1 - k without any effect. The second term then becomes, after some 
more manipulation and use of Eq. (A2), 

(-y[P:f_1_L~-:II-:~(X)-P:f (~,xY( q.) i ~]. 
k ~ 0 k + 1 ) = 0 J. P - J k = s+ J + I k 

Turning to the first term ofEq. (4.34), we define 

P-l(_XYP-I-J 1 (q-l-k) 
(/J"I(X) = - I -- I. .' 

)=0 ;1 k=O k+J+l S+J 
(4.35) 

The motivation for this definition is that, for / = 0, this function reduces exactly to the function denoted by a script 0 in 
Hostler's work. 8 By calculations analogous to his, (/J n./ may be put in other forms as well, each unfortunately involving a 
double summation: 

(/J (x) = p~l ( - t L s +k (x)e ( _ x) = ~ (- xY ( q ) ~ (k - 1)! . 
nl ~ kIP - k k - I L· I . L k k=l . J=l J. P-J k=l x 

(4.36) 

Thus, Eq. (4.34) is reduced to 

PII (r)7I""";+ l-r = (- y + I eX(/J" I (x) + (-lII _l_L~-: ll-:~(X) + (- y+ I PII (~xY ( q.) i ~. 
r=O k=ok+l )=0 J! P-J k=s+)+l k 

(4.37) 

Notice that the second term exactly cancels with the second term in Eq. (4.27). 

Collecting the preceding results and inserting them into Eq. (4.16), 

n;+I(X)=(-Y+l{eX[(/Jnl(X)+ i (q-k)(k-k l )!]_ i ( q )(k-k
l

)! 
k=l P x k=IP+k x 

- L ~(x)[Ei(X) -logx + ¢(q + 1)1 + PII (- X)k( q) i ~ + PII (- X)k( q )PIk ~ 
k=O k! p-k J=s+k+l J k=O k! p-k )=1 J 

_ i (_~)k( ~ ) ± ~}. (4.38) 
k=l k. \p kJ=IJ 

After some minor adjustments, noting the definition of n; + I in Eq. (4.4), we finally arrive at Eq. (2.15). 

v. RECURSION RELATIONS FOR gn/r,r1 
In their article on the factorization method, Infeld and Hull9 have shown how ladder operators, essentially those given in 

Eqs. (2.31) and (2.32), connect the quadratically integrable solutions of the radial hydrogenic equation. These first-order 
differential operators (first found by Hartree45

) transform Rn' into R"" ± I • 

It is possible to "extend" these operators to energies that are not eigenvalues for application to the inhomogeneous 
equation satisfied by the radial Green's function gl (r,r';E). The Whittaker functions in Eq. (2.8) satisfy the relations46 

[ 
2(/ + 1)2 d ] 

v - p + 2(/ + 1) dp W".I + ! (p) = (v - / - 1) W",I + 3/2 (p) , (5.1) 

(5.2) 

(5.3) 

(5.4) 
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With these in hand, we define the operators 

!fyj(r)=v[l- 1(/+ 1) + (1+ 1)!-.-] (5.5) 
, Zr Z ar' 

!f yJ(r) = v[ 1 _ 1 (I + 1) - ~!-.-] . (5.6) 
Zr Z ar 

Using the notation ofEqs. (2.8) and (2.9), Eqs. (5,1)-(5.4) 
lead to 

"'+ 1 1 
'?v,l(r> ~ Wv,l+i(P» = (v-I-l~ 

P> P> 
X Wv,I+3/2(P», (5.7) 

'" _ 1 1 
.? v,l (r > ) - Wv,l + ! (p > ) = (v + I) - Wv,l - i (P > ) , 

P> P> 
(5,8) 

'" 1 1 .? v:I (r < ) - JI v,l + ! (p < ) = [(l + 1)2 - vl]-
P< P< 

XJl v,I+3/2(P<), (5.9) 

"'_ 1 1 
.? v,/ (r < ) - JI v,/ + ! (p < ) = - - JI v,/ - 3/2 (p < ) • 

P< P< 
(5.10) 

Combining Eqs. (2.8) and (5.7)-(5.10), we immediately 
obtain 

gl+l(r,r',- ~;)= [v-(/+ 1)2]-I!fv:I(r» 

(5.11) 

(5.12) 

In the following, we will be interested in the passage to 
the limit v_n = 1,2,3 ... In this limit, P s -xs = (2Z In)r s ' 
and the Whittaker functions become, for I<.n - 1, using Eq. 
(2.3),47 

// () (n -1- I)! Xl+ le- x <12L 21+ I (x ) 
va n,l + 1 X < = 1 , (n + I)! < n - - I < 

= n (n - 1 - I)! r R (r ) (5.13) 
Z (n + I)! < nl < , 

Wn,/+ i(x» 
= (_ )n-I-l(n -1- 1)!xI + le- x >/2L 21+ I (x ) 

> n-/-l> 

=(_y-I-ln /(n-I-l)!(n+/)! R ( ) 'J Z r> nl r> . 

(5,14) 

. '" '" At the same time, .? 0(r) goes smoothly into .? n~/(r), de-
fined in Eqs. (2.31) and (2.32). 

Inserting, respectively, Eqs. (5.11) and (5.12) into Eq. 
(2.12), we obtain 

gn'/ + I (r,r') 

= - -- - - - [v-(/+ 1)2]-1 n{ a (1 1) 
2 a(l/v) v n2 
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and 
'" '" 

gn,l- I (r,r') = 
.? nJ(r > ).? n-:I(r < ){ n2/2 

2 12 gn'/ + 2 2 n - n -I 

Xlim((~ - ~ \nl]}' n=/-I =/-0. 
v~n V n2f 

(5.16) 

The remaining limit term in the above is simply ( - 2/Z 2) 
times the residue of gl at E = En' i.e., 

(5.17) 

Z2[n2 _ (/ + In Rn,,+ I (r» (5,18) 

X R n,/ + I (r < ), 

Z 2(n2 _ 12) Rn,/ - I (r> )Rn'/ - I (r < ). 

(5.19) 

For purposes of these operations,gnl is considered as a func
tion of r < and r> . Following Hostler,8 we write rand r in > < 

terms of the Heaviside theta function 

8(y)={1, y>O, 
0, y<O. 

d8(y)ldy = o(y) , 

r> = 8(r - r')r + 8(r' - r)r', 

B.A. Johnson and J.O. Hirschfelder 
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2496 



                                                                                                                                    

r < = () (r - r')r' + () (r' - r)r, (5.23) r= r': 

ar> jar = () (r - r'), ar < jar = () (r' - r) . (5.24) (5.27) 
Then, Eq. (2.20) separates into the three relations 

r>r': 

[ 
_ _ 1_Lr + 1(/+ 1) - ~ + £]gnl 

Formally, useofEqs. (5.22) - (5.24) also relates the lad
der operators as 

2r> ar> > 2r> r> 2n2 
A. A. 

.!/ n~1 (r > ).!/ n~k < ) 

= Rnl(r < )Rn,(r> ) ; (5.25) 
"" "" A. A 

= () (r - r').!/ n~ (r).!/ n~ (r') + () (r' - r).!/ n~ (r').!/ n~ (r) . 
(5.28) 

[ 
_ _ 1_Lr + 1(/+ 1) _ ~ + Z2 ]gnl 

2r < ar< < 2r< r < 2n2 

Now, assumingf(r') to be a continuous function, we 
define the integral (O=#=I=n) 

= Rn,(r < )Rn,(r> ) ; (5.26) f = 100 

dr'(r')2j(r')gnk,r'). (5.29) 

By Eq. (5.18) this is 

f = foo dr'(r,)21'(r') [ Y n:/- I (r> )Y nj - I (r < ) _ (r r') _ 2n
2
[2 R (r)R (r')] 

)0 J n2 _[2 gn,l I' Z2(n2 _/2) nl nl 

fOO A. A. A. A. 

= (n 2 - 12) - 1)0 dr'(r')2j(r') [() (r - r').!/ nj _ 1 (r).!/ n:/- I (r') + () (r' - r).!/ n:/- I (r').!/ n:/- 1 (r) ]gn,l- 1 (r,r') 

_ 2n
2
/

2 
foo dr'(r')2j(r')R nk')Rnl (r) 

Z 2(n 2 - [2) )0 

= (n 2 - [2) - 1 [ [ dr'(rYf(r')Y n:/- I (r)Y nj _ I (r')gn,l_ I (r,r') 

+ foo dr'(r')2j(r')Y nj- I (r')Y nj-I (r)gn,l_1 (r,r') - 2n2[2z - 2Rnl (r) 100 

dr'(r')2j(r')Rn/(r')]' (5.30) 

A. 

Pulling .!/ n:1 _ I (r) out of the integrals, taking note of the integration limits, 

f = (n 2 - [2) - I[Y n:/- I (r) foo dr'(r')2f(r')Y n:/- I (r')gn.l _ I (r,r') - nzl l~mf(r')(r')2 Y n:/- 1 (r')gnJ _ I (r,r') 1 r~ 
r <r 

+ nl limf(r')(r')2 Y n:/- I (r')gn.l_ 1 (r,r') - 2 n
2
/2

2 
Rnl(r) foo dr'(r')2f (r')R n/(r')]' (5.31) 

Z r~r Z )0 
r' > r 

'" Since gn,is continuous at r = r', the limit terms are only nonzero because of the factor (nl /Z)(a/ar') in .!/ n:/- I (r'); so 

- !!....limf(r')(rY Y n:/-1 (r')gn,l_1 (r,r') + !!....limf(r')(r')2Ynj_1 (r')gn,l_1 (r,r') 
Z r'~r Z r'~r 

r' < r 

= n
2
1
2

2 
f(r)r[(~ _ ~ \t7n,I_I] = 2n2~2 f(r) 

Z ar> ar < f r = r Z 
(5.32) 

by Eq. (5,27). 
Thus, for 0#1 #n, 

f = 100 

dr'(r'ff(r')gn,(r,r') 

= (n2 - /2) - 1 Y n:/- 1 (r) 100 

dr'(r')2f(r')Y nj _ 1 (r')gn,l_ 1 (r,r') 

+ 2n
2
/

2 
[f(r) _ Rn,(r) fOO dr'(r')2f(r')R nk')], 

Z~n2-/~ k (5.33) 

Proceeding along similar lines we find that for 1 # n - 1, 

f = [n2 - (I + V] - 1 Y n-;-I + 1 (r) 100 

dr'(r')2j(r')Y nJ + 1 (r')gn,1 + 1 (r,r') 

+ Z2t;2~ Tz ~21)2] V(r) - Rn/(r) i oo 
dr'(r')2j(r')R nk')]. (5.34) 
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Equations (2.39) and (2.40) are obtained from Eqs. (5.33) and (5.34) very easily by setting/(r') = (r')'R"I' (r'), integrating 
by parts, and using simple identities such as 

,!P' (r')= nl[~ _ 1'(/+1) _ ~~]= ~J} ,(r') n(/'-/) nl(/'-/) 
".1 I' I Zr' Z Jr' I' ",I + I' + Zr' . (5,35) 

For I>n, it is unnecessary to repeat the derivations of this section: Excluding Eqs. (5.13) and (5.14), aII of the results of 
this section carryover by setting R"I = O. For example, Eq. (5.17) is then merely the statement thatgl(r,r';E) does not have a 
pole at E = En' a fact already discussed in Sec. II.A. 

VI. HYPERVIRIAL RECURSION RELATIONS FOR (nl/(r,)k/n ,!,) 

Following arguments parallel to those in Ref. 10, we consider integrals involving g "I (r,r'), R n' I' (r'), and the quantity HI W 
- WHI,. HI is defined in Eg. (2.7) and W(r', P,,) is a function of r' and the radial "momentum" operator P" 

- (i/r')(J/Jr')r'. 
Expressing HI and HI' in terms of the variable r', we have that 

[HI - E" ]R"I(r') = 0, 

Since n, n', I and I' do not change in the following, we abbreviate the notation as 

U(r',p,,» = (nl V(r',PI')ln'I') , 

(/(r', P,,» = (nl VCr', P,,) In' /') , 

where the right-hand sides of these are defined in Egs. (2.37) and (2.38), respectively. 
Now, for a reasonable function W, we can utilize Eqs. (6.1) and (2.20) and integration by parts to get 

(HIW- WHI ) = [En -E",](W) + (W)R,Ar)- W(r,p,)R"'I,(r). 

For the particular choice W(r') = (r')\ 

HW WH --'k (')k 1 k(k-l)+/(I+I)-I'(/'+I) (')' 2 
I - I' - 1 P" r + 2 r 

Equating the two forms of (HI W - WHI,) arising from Eqs. (6.4) and (6.5), we get 

_ ik(p,,(r'l I) = [E" _ En' ]((rY) _ k(k - 1) + 1(1 + 1) -1'(/' + 1) «,)1. 2) 
2 

+ <crY )R"k) - rkR,,'I' (r). 

For the second choice W (r', P,' ) = P,' (r')k I I, 

(6.1) 

(2.20) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

HI W - WH" = _ i(k + l)p;,(r')' + k (k + 1) + 1(/ + 1) -1'(1' + 1) p,,(rY -I _ i/(l + 1)(r')1. ··2 + iZ(r')' 1 

2 
(6.7) 

Further, in the integration ofEg. (6.7) we can integrate by parts for the term inp;, and then use Eg. (2.20) and the fact that 

2, =2[H _ 1(1+ 1) + Z] (6.8) 
P I I 2(r')2 r' 

to obtain 

(H, W - WH,,) = - 2iE" (k + 1)«r,)k) + i(k + 1)1 (/ + 1)«r')k - 2) - 2iZ (k + 1)«,l I) - 2i(k + 1)«r')k )R"k) 

2'(k l)kR () k(k+l)+I(l+I)-I'(/'+I)«(p ')k I) + 1 + r ,,'I' r + I,r 
2 

_ il (I + 1)(r')k - 2) + iZ «r,)k I). (6.9) 

This choice of W is then inserted into Eq. (6.4), and (H, W - WHI,) eliminated between Eqs. (6.4) and (6.9), to give a 
recursion relation involvingp" and powers ofr'. Elimination of integrals with derivatives sandwiched betweeng", and R"I' is 
accomplished by Eq. (6.6).48 The result of the uninteresting algebra is 

O=k(E" _E,,)2«r,)k+2) + [k(k+ 1)(k+2)(E" +E",)+(k+ 1)(E", -E,,)[/(/+ 1)-1'(1'+ 1)]J(r')k) 

+ Zk(k + 2)(2k + 1)«r')k-l) + k + 2 [ _ 4k 2/(1 + 1) 
4 

+ [k(k + 1) + /(1 + 1) -1'(/' + 1)] [k(k - 1) + 1(1 + 1) -1'(1' + 1)]l«r,)k-2) 

+ {k(E" - E",)«r')' I 2) _ ik(k + 2)(p,,(r,)k+ I) 
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+ (k + 2)[2k(k + 1) _ k(k + 1) + 1(1 ~ 1) - 1'(/' + 1) ]} Rn1(r) 

+ {k(En, - En),;c+2 + ik(k + 2)p/+ 1+ (k + 2)[ k(k + 1) + 1(1 ~ 1) -1'(/' + 1) _ 2k(k + 1)],;c }Rn'l,(r), 

(6,10) 

From Ref. 10, the matrix element analog ofEq. (6.6), 

_ ik <Pr'(r')k - I) = (En _ En' )«r't) _ k (k - 1) + I (I + 1) - 1'(/' + 1) «r')k - 2) , (6.11) 
2 

permits a simplification of the coefficient of Rn/(r). After a little more algebraic manipulation, we end up with Eq. (2.41), 
Although we have not done so, it is also possible to simplify radial derivatives of Rn'I' (r) by use of Eqs, (2.33) and (2.34), 
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APPENDIX A 

In this Appendix, identities and integrals are listed as 
needed: 

i (k+m)=(n+m+ 1) (Ref. 49), 
k=O k m + 1 

q-J I (q-k) (q) L - . = . [tP(q+I)-tPU+I)] 
k= I k J J 

Lx Xk+1 Xk+1 
dxx k logx = --logx - , k;pO, 

o k + 1 (k + 1/ 

(AI) 

(Ref. 50), 

(A2) 

(A3) 

(A4) 

LX dxL J !11 - j(x) = (; ) - L J - J(x) (Ref. 51), (AS) 

i ( - )J(a + ~)(j +. k) = (a + n - 1 - k) (Ref. 52). 
J=O n - J J n 

(A6) 

[Equations (A3) and (A4) easily follow by integration by 
parts.] 

APPENDIX B. DIRECT EVALUATION OF gn,n_1(r,r? 

In this Appendix, we use the results of Sec. V to show 
how the function gn/(r,r') can be obtained in closed form for 
l<;.n - 1, onceg,(r,r';E) has been obtained. This treatment is 
similar in spirit ot the method used by WhiteSJ to quickly 

2499 J. Math. Phys" Vol. 20, No. 12, December 1979 

evaluate G1 (r,r';E), For the radial wave functions R nl , 

I = n - I is considered the top of the ladder in I, with 
/'-. 

.2" '~n _ 1 (r)Rn,n _ 1 (r) = O. (B 1) 

For I = n - 1, Eq. (4.11) becomes 

( , Z2) 
gn r,r; - 2v 

(v - n2) - 1 2> v~n _ 1 (r> )2> \~n _ 1 (r < )gn _ 1 (r,r'; - :~)-
(B2) 

Multiplying both sides by (v - n2
) and inserting both sides 

into the derivative operation in Eq. (2.12), 

~ [_a_(V _ n2)(J.. _ J.. \ .. ] 
2 a(lIv) v n2;on v= n 

= ; [a(~v) (~ - :2)2' \~n -- 1 (r> ) 

X 2' v~n - 1 (r < )gn - 1 L = n . (B3) 

Since gn (r,r'; - Z 2/2V) does not have a pole at v = n, 
the left-hand side is zero: 

/'-. /'-. 

o = .2" n-:n - 1 (r> ).2" n~n _ 1 (r <) [_a_ (~ 
2n a(lIv) v 

- ~ )v2gn -I] 
n v= n 

/'-. /'-. 

.2" n~n _ 1 (r> ).2" n~n _ 1 (r <) {n2[ _a_ (~ 
2n a(lIv) v2 

- ~ \"n - I] _ - 2[( _~ - ~ )v3gn _ I] } 
n;o V-11 V n \.'=11 

= 2> n+n _ 1 (r> )2> n-:n _ 1 (r < )[ gn,n _ 1 (r,r') 

2n
2 

] + Z 2 Rn,n - 1 (r < )Rn,n _ I (r> ) 
/'-. /'-. 

= .2" n:n _ 1 (r> ).2" n~n _ 1 (r> )gn,n _ 1 (r,r') (B4) 

by Eq. (BI). 
For simplicity, we now switch to the variables x and 

x> ' Recalling that [!J n.n _ I (x < ,x> ) = gn,n _ I (r < ,r > ~ we 
assume that 

[!J n,n _ 1 (x < ,x> ) = (x < x> y - Ie - (x + x )/Y(x < ,x> ), 

(B5) 
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so that Eq. (B4) becomes 

o = [n - 2n(n - 1) + 2n ~ ] [n _ 
x> ax> 

2n(n - 1) 

x 

+ 2n a: ] 9J 1'.1' ... 1 (x < ,x, ) 

= (x < x _.)1' Ie' \x -1 x )11 ~ ~f( ) 
a a x<,x,. 

Xc. x._ 
(B6) 

This implies thatf(x < ,x> ) is sum separable: 

f(x, ,x., ) = r(x> ) + If! (x < ). (B7) 

Equations (5.25) - (5.27) give us three equations for f 

[ - ~ ~ + (~ - ~) ~ )rex < ,x '. ) 
2 ax2

, 2 x> ax> ,. 

Z 
(B8) = 

n2(2n - I)! ' 

[ - ~ L + (~ - ~) ~ ]r(x. ,x> ) 
2 ax2

, Z x " ax < . 

Z 
(B9) 

[(~ - ~ )rex. ,x»] = _4Z_ x ' 2nex. 

ax_ ax. x ~ x' n 
(B10) 

We now shift all of the asymmetry into If! (x < ), i.e., 

If!(x)=T(x .. )+A(x<). (B11) 

Then Eqs. (B8) - (B 10) tell us that 

[ -+ :x; + ( + -; )~ ]r(x) = -n-2(-Z-nZ-_-I)-! ' 

[ 1 d 2 (1 n ) d J - - - + - - - - A (x) = 0, 
2 dx2 2 x dx 

a 
-A(X)= 
ax 

4Z -x 2"ex • 

n 

(B23), we obtain 

(BI2) 

(BI3) 

(BI4) 

I 

Equation (BI4) may be integrated immediately to 
obtain 

4Z [21' 1 (k - I)! .] 
A (x) = (2 _ 1)' eX L k - Et(x) + const., 

n n . k· 1 x 
(B 15) 

which satisfies both Eqs. (BI3) and (BI4). Now let 

d 
x(x) = - rex). (B16) 

dx 

Equation (B12) becomes 

[- ~~ +(~ _ ~)]x(X)= _Z_ 
2 dx 2 x n2(2n - I)! 

Then letting 

x(x) = x 2l1ex.:1 (x), 

we get 

~.:1 (x) = _ 2Z x2"e x 

dx n2(2n - I)! 

or (A = constant) 

4Z 
.:1 (x) = -e2n (x)e' + A. 

n 

Thus, 

vex) = 4Z x 7" () A A • e2n x + x 
n 

(BI7) 

(BI8) 

(BI9) 

(B20) 

(B21) 

r(x) = j'X( y)dy + const. (B22) 

From Eq. (B21) we see that r(x .. ) will blow up as x . ~co 
unless A = O. Thus, 

4Z [x rex) = - + 10gx 
n(2n - I)! 2n 

2/1 I (2n-I)!x k ] - L + const. 
I. 1 k (2n - 1 - k )! 

(B23) 

Compiling the results of Eqs. (B5), (B7), (Bll), (Bl5), and 

gil,,, . 1 (r < ,r> ) = 9J n.n _ 1 (x <: ,x > .. ) = 4Z (x . X )"' Ie . (x I x )lZ[ X < + x'" + logx + logx 
n(2n - 1)1 ' '" 2n < > 

21' . I (2n - 1)1 21" 1 (k - 1)1 J - L . (x ~ k + X ~ k) + const. + eX I. .' - Ei(x ) . 
k ~ 1 k (2n - 1 - k)!" k .•. 1 x: < 

(B24) 

The constant term is then uniquely determined by the orthogonality condition between g,Ar,r') and R,Ar'), turning out to be 
y - 2 - t/J(2n + I). 
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Does there exist a scattering theory for time automorphism groups of C*
algebras corresponding to two-body interactions?8) 

H. Narnhofer 
Institutfiir Theoretische Physik, UnilJersitiit Wien, Austria 

(Received 13 June 1979; accepted for publication 22 August 1979) 

It is shown that at least on the level of perturbation theory there does not exist a scattering 
automorphism between free time evolution and time evolution corresponding to two-body 
interaction for the C *-algebra offermions on a lattice system. 

1. INTRODUCTION 

In a few particle systems scattering theory is a useful 
tool to describe the behavior of particles since it tells us that 
the motion can be transformed into the free motion and espe
cially the number of constants of the motion is unchanged (at 
least in the relevant channel). In Ref. I the method of scatter
ing theory was first transposeQ. to automorphism groups on 
C * algebras. Especially, the idea of a intertwining automor
phism was introduced, combining two automorphism 
groups by 

7, = r7~r -I. 
For instance, the existence of 

lim 7, rO_ ,A = r ± A , 
t-~-±oc 

would lead to such an intertwining automorphism. Such an 
automorphism would imply the following: (a) If r~ is asymp
totically Abelian, so is 7, . (b) If W O is 7~ (extremal) invariant, 
then WO 0 r - I is 7, (extremal) invariant. (c) If W O is r~ 
- KMS, then w 0 r - I is 7, - KMS. (d) If d; is an auto

morphism group that commutes with r~ , then r (J'~ r - I 

commutes with r, . This last property can be understood as 
corresponding to the statement in few particle physics on the 
constants of motion. I.] 

So it occurs that the existence of such an intertwining 
automorphism is in contradiction to the hope of the physicist 
that ergodic properties are improved by the interaction of 
particles. In this note we do not pretend to show that such an 
intertwining automorphism between free time evolution and 
time evolution corresponding to two body interactions does 
not exist. However, we will show that at least it cannot be 
obtained on the level of perturbation theory because we are 
led to divergences. That perturbations offourth power in the 
field operators are already drastic is nothing new. In fact, 
already in this order the condition of dynamical stability 
implied the KMS condition for free particles.4

•
5 Here local 

perturbations were considered whereas we take only global 
perturbations into account. Another example where diver
gences occur in perturbation theory, already for the six-

,lWork supported in part by "Fonds zur Forderung der wissenschaftlichen 
Forschung in Osterreich," Project nr. 3569. 

point functions (in dimension I and 2, otherwise higher or
der has to be taken into account) is the attempt to generalize 
the Boltzmann equation for higher densities. 6 Our approach 
differs insofar as Ref. 6 treats the classical problem and con
siders states and the limit t -+ 00, whereas we stay on the 
algebraic level and use the stationary approach. 

2. THE MODEL AND THE RESULT 

In order that everything is well defined we restrict our
selves on the Fermi lattice system, e.g., we consider the C * 
algebra built by creation and annihilation operators ax+ , 

and a y' respectively, satisfying 

[a x+ ,a y ] + = t>xy , 

[a x,a y ] + = 0, X, Y in a r dimensional lattice . 

The free time evolution reads 

7~a(f) = a(e/hl!) 

and corresponds to a derivation 

x. y 

whereas the time evolution r; with interaction results from 
the derivation 

(t>o + ;It>v )[a(f) 1 = I h (x - y}[ax+ ax+ ,a(f) l-
x.y 

X [ax~ax:aYlay"a(f)L 
= [Ho,a(f)]_ +;l [V,a(f)L , 

such that 7, commutes with space translations. v has to have 
decreasing properties, such that the domain of t>v contains 
the strictly local operators (t>v is approximately inner). 6 Due 
to the anticommutation relations and the se1f-adjointness of 
V we can assume 

V(XI -X2 ,XZ - YI,YI - Yz) 

= - v(x I -Xl,X I - Yl,Yz - YI) 

= v(xz - XI ,XI - Yl,Yz - YI)' etc. 

or for the Fourier transformation 

iJ(PI ,PZ,p) 

= iJ(P3,PZ,PI)* = - iJ(PI'PZ'PZ - P3) 

= -iJ(pz - PI'PZ'P), 
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Our result reads as follows: 
Theorem: There does not exist a family intertwining 

automorphisms r A of A, such that (a) for A < Ao , 

-r1 =rAT~ r- I 

or equivalently 

f>o + A f> v = r A f>o r A- I • 

(b) r A is continuous in the sense that 

lim II r A A - A II = 0, V A . 
A-O 

Under these assumptions we can write r A = e" eO) , where 
E( A ) is a A dependent derivation, and can be written as € I 
+ 0 (1). (c) EI satisfies: uAAA C ~(€I) . 

Remark: In two body systems Moeller operators are 
known to satisfy the corresponding continuity conditions (in 
fact, they are usually analytic in A ), where the domain on 
which differentiation is possible is given as the domain of 
Ho , even if scattering theory in the strict Sense does not 
work, but one has to consider modified Moeller operators. 
Therefore, the above assumptions seem reasonable. 

The chosen domain for the derivation guarantees that 
for given A E .9/ A , E I (A ) can be written as [Ref. 7, Eqs. 
(3.2.52)] 

E J (A) = E\n)(A) = i[E\n),A ] , 

with A E .9/,1 , E\"l E .9/,1" ,An ::J A and sufficiently large. 
Since 7[ and f>v are invariant under space translations, also 
EJ had to be invariant. It has to satisfy 

8 v = [E J ,80 ] • 

It follows that E I corresponds to a (formal) operator 

which satisfies 

i[EJ,Ho] = V. 

Due to the anticommutation relations and self-adjointness, g 
is restricted by 

g(PI ,P2 ,p) = - g(pz - PI ,PZ,p}) 

= -g(PI'Pz,pz - P3)=g(P3,PZ,PI)*' 

A straightforward calculation leads to the equality 

g(PJ, pz, P3) 

h(PI)+h(pz - PJ)-h(P3)-h(pz - P3) 

This expression corresponds to the first term in expansion in 
powers of A of the Moeller operator 

n '= lim i f' i Hot ' Ve - tHot' dt ' 
t ~:X: Jo 

= lim fdE I . V8(Ho - E) 
<10 Ho -E+IE 

and this already tells us that we have to wonder whether we 
can make the singularity in g meaningful, namely, with the 
help of a D-type distribution. We will show that this is impos
sible. Take the observable a/ . Then 
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[EI,a/ ] 

= 2 f d PI d P2 d P3g(PI ,Pz ,P3)a ;,a;2 - PIa p, - p, • 

To show that this is unbounded we estimate lIl:f(x J , 

Xz, YI )ax~ ax: a y,11 . To do this we consider the expectation 
value in the trace state. That we have to turn to another 
representation than the Fock representation is not surprising 
since the lack of scattering theory should be caused by the 
existence of infinitely many particles. This trace state, being 
the quasifree state with two point function 

w(ax+ a Y) = -!8xy , 

can be considered as Fock state over a C * algebra, construct
ed by creation and annihilation operators a x+ , (J; ,ax, 
(J Y satisfying8 

ax = 2 - 112 [17'(ax) - 1T(b x+)] , 

1T (ax) = 2 - 1/2(ax + (J /), 

/3y = 2 -IIZ[1T(an + 1T(b y)], 
1T' (b x+) = 2 - 112( - ax + !3 x+) , 

where 1T' (b x+) 1T' (b y) belongs to the commutant 1T'(.9/)'. 
Therefore, 

1T' (a + a + a ) = 2 - 3!Za + a + (J + 
Xl X 2 Yl XI X 2 Y. 

+ terms containing annihilation 
operators. 

Taking the expectation value with the a- (J vacuum and as
sumingf(x i ,Xz 'YI)= -f(xz ,xl,YI),weobtain 

The denominator of g vanishes on a hyperplane in the 3r 
dimensional space; therefore, g does not belong to L Z and the 
EI a/ is not a quasilocal operator. 

The same ideas can be used to state the next theorem. 

Theorem: Let Do be a derivation implementing an auto
morphism group that commutes with Do . Then there does 
not exist a family of derivations 8 (A ) satisfying the following: 

(a) [b(A Mo + A8v ] = 0; 
(b) b(A) is differentiable on u A .9/ A • 

Evidently, if we had found a family r A , this would define 

such a family, namely, 8). = r A Do y).- I. On the other 
hand, this result is stronger. It is interesting also from an
other point of view, considering the T~ invariant states: If 

such a state Wo is cyclic and separating, it is KMS with re

spect to some T~ • If we could perturb Wo in such a way that 
it stays cyclic and separating and the corresponding KMS 
automorphism would be an automorphism group not only of 
the von Neumann algebra but of the C * algebra itself, we 

would have already a family of D). . Therefore, our result is a 
strong hint that perturbation theory is only possible for 
KMS states and not for general invariant states. (For local 
perturbation this is the equivalence of dynamical stability 
and the KMS condition which is already shown under ap
propriate assumptions. 5

•
7

•
9 
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The proof is the same as before: We know that 8; is 
quasi free; therefore, the considered commutators are of the 
same type. Writing 

8(A) = Do + AD t + O(A), 

we have 

[DO ,Dv ] = [Do ,D t ] 

such that Dt corresponds to a g 
g(PI,PZ,PJ)= !v(Pt,Pz,PJ)[h(pt)+h(P2 - Pt) 

-h(P2 - pJ)-h(pJ)])/[h(PI) 

+h(P2 - PI)-h(P2 - PJ)-h(P3)]' 

Again the denominator vanishes on a hyperplane that does 
not coincide with the hyperplane of zeros of the nominator. 
Therefore, by the same argument as for EI , DI is not well 
defined. 

3. SCATTERING THEORY IN REPRESENTATIONS 

The question arises whether scattering theory might 
not work in a weaker sense. Instead of considering norm 
convergence we might consider strong convergence in repre
sentations. To make this meaningful we have to consider 
representations where both r~ and r: are unitarily imple
mented. This is not the case in general. The exceptions 
follow. 

A. The Fock representation 

Since both r? and r: commute with the gauge transfor
mation, i.e., the number of particles does not change, the 
question whether scattering theory exists or not for the von 
Neumann algebra, i.e., if 

st lim eiHte -- iH"t = fl + , 
t ... 1- ::>0 -

st lim eill
", e - iHt = f1 ~ , 

exists, can be solved on the n-particle level. This is already a 
hard and in general unsolved problem in few particle phys
ics. However, for continuous systems with usual free time 
evolution and two body interactions, decreasing sufficiently 
fast for large distances, it was shown in Ref. 10 that generi
cally scattering theory exists for f1 particles, n arbitrary. 
Therefore, the existence of an intertwining automorphism 
on the weak closure of the C * algebra in the Fock representa
tion seems to be a good conjecture, at least for small 
perturbations. 

It seems worthwhile to consider what the difference is 
between the representation and results on the C * algebra: 
Accordingly, our EI should be a properly defined, though 
unbounded operator in this representation. In fact, 

limfdptdP2dP3 
(; I 0 

x _ _ V(PI~2P]) _ 

h(p,)+h(pz - Pt)-h(P2 - P3)-h(p])±iE 
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is a well defined vector of finite norm for a dense set of I· 
because the singularity is integrated Over before 112 is pe;-' 
formed. Also, higher derivations remain harmless. Consid
er, for example, E2 defined by 

[E2 ,Do] = -! kl ,kl ,Do]] . 

The part corresponding to three creation and annihilation 
operators defined by 

[E26.Hn] = ~ :[V,E, ) 
corresponds to a 

d(PI,P2,P4 - P3 + P2,P4,PS) 

= !2[V(PI ,PZ,P3)g(P3 ,P4,PS) - g(PI ,Pl,P3) 

X U(P3,P4,PS»)J[h(PI)+h(P2 - PI) 

+h(P4 - P3)-h(P2 - P3)-h(P4 - Ps) 

-h(ps)] 

Evidently, the singularity now seems worse, but its action on 
a vector corresponds to two convolutions and again the sin
gularity becomes harmless. 

B. The trace state 

The state is obtained as w(A ) = limA .~ 00 Tr,;- J A I 
Tr Jr J 1. Therefore, it can be considered as an equilibrium 
state at infinite temperature for any approximately inner 
time evolution. The corresponding von Neumann algebra is 
of type III . 

The free time evolution is formally implemented by 

Expressed by the creation and annihilation operators a and 
p, respectively, introduced in Sec. 2, this leads to 

In the same way we obtain 

v = L U(XI ,X2 , YI' Yz)(ax~ a~: a y, (3 ;, 

+ corresponding terms), 

where only terms with an odd number of creation and anni
hilation operators occur. Since now the perturbation is of an 
essentially different structure than for the Fock representa
tion, we cannot adopt the results of Ref. 10 to conclude that 
scattering theory works. However, at least we can consider 

stlim e,f{te If{o'IIa+(f;){3+(gj)lfl> 
I • -I- -r. 

= stlim.irdt'e'1f'·ve ill,,'· 
! ~ • -;c Jo 
XI1a+(fi){3 +(g)lfl) 

- II a+(f;){3 + (g)If1 ). 

In the Fock vacuum V always contained a term with two 
annihilation operators, so that by the coupling of V the weak 
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convergence of eiht f i and eiht g j was sufficient to imply 
integrability of the relevent vector. Now we have also to COD

sider a term with three creation and only one annihilation 
operator, and here the relevant term is 

which does not converge strongly to zero with t - 00. 
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Positive and negative frequency decompositions in curved spacetime 
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In this note we derive a formula for the positive and negative frequency parts of a solution in 
terms of the Feynman propagator. Our arguments are valid in the presence of particle creation. 
We also derive a formula for an operator /' that gives the particle creation rate. The formalism 
uses complex structures to capture the notion of positive and negative frequencies and thus 
avoids using analyticity arguments. The results obtained clarify the relation between approaches 
to quantum field theory based on the complex structure and approaches in which the propagator 
is the basic object. We will consider only scalar fields for simplicity. 

I. INTRODUCTION 

In this note we derive a formula for the complex struc
tures associated with a quantum field theory in curved 
space-time. The action of the complex structures as well as 
the action of an operator describing particle creation are giv
en in terms of the Feynman propagator. In an approach to 
field theory begun by SegaP and by Lichnerowicz/ the com
plex structure is used to capture the notion of positive and 
negative frequency decompositions of solutions of the wave 
equation. This approach has been extended by Ashtekar and 
Magnon-Ashtekar3.4 and by Kay5 to include particle cre
ation effects. Unfortunately, their constructions are difficult 
to carry out in practice. The main results of this note is to 
give concrete expressions to their abstractly defined opera
tors. These formulas allow one to see the relation between 
the approach to field theory of SegaP and Ashtekar and 
Magnon-Ashtekar3.4 based on complex structures and the 
approach of Schwinger, 6 De Witt/ and Rumpf! based on 
Feynman propagators. 

An application of these results would be to check that a 
propagator does define a positive and negative frequency de
composition. It has become popular to use Euclideaniza
tion9

•
lo to define a propagator. In this approach the defini

tions of positive and negative frequencies are not explicit and 
it is of interest to obtain them. This is especially true in cos
mological space-times where the definition of "early time" 
particle states is physically obscure. 10 

II. DEFINITIONS 

Let M be a globally hyperbolic Lorentzian manifold of 
class C 00 with a C 00 metric gab defined on it. The free, neu
tral scalar field of mass m is described by the Klein-Gordon 
equation 

(1) 

where 0 is the Laplace-Beltrami operator and the field <p (x) 
is a real function on M. The Cauchy problem for Eq. (1) and 
for data on a space like hypersurface ~ is solved by' 

<p(x) = L{<P(Y)V;D(x,Y)-D(X,y)va<P(Y»)dlTa(Y), (2) 

where d~ is the volume element on ~ and D (x,y) is the dif
ference between the advanced and retarded Green functions 

ofEq. (1). D (x,y) is skewed in its arguments. Associated with 
solutions ofEq. (1) is a canonical, skewed two-form n called 
the symplectic structure: 

n [<pt(X),<P2(X)] = L (<pt V°<p2 -<P2 V°<Pt )dlTa· (3) 

Because <PI and <P2 are solutions ofEq. (1), n is independent 
of the hypersurface ~. 

The Feynman propagator GF(x,x') is defined as a (dis
tributional) solution to 

(0 - m2)GF(x,x') = - 8(x,x') , (4) 

which is symmetric in x and x'. To obtain a unique solution 
to Eq. (4) we must of course impose boundary conditions. If 
we have a positive and negative frequency decomposition 
(e.g., static space-times), then we can impose the "causal" 
boundary condition; positive frequencies are propagated 
into the future while negative frequencies are propagated 
into the past. If there is no such canonical decomposition, 
then one is forced to use other procedures which are known 
to be equivalent in flat space-time. II For a discussion of the 
construction of Feynman propagators in curved space-time 
see Ref. 12. 

The Feynman propagator may be written as the sum of 
real and imaginary parts 

GF(x,x') = - !D(x,x') + !ir(x,x') , (5) 

where r is a real symmetric solution to Eq. (1). We will con
sider the various distributions GF , i5, r, and D to act on 
smooth test functions of compact support and we wiII always 
denote such test functions by f, g, and h. 

When D (x,x') acts on a test functionf, it generates a 
solution of Eq. (1), since D is itself a solution of Eq. (1): 

<Pix) = J D (x,x'}f(x')d7'(x') , (6) 

where d7'(x') is the covariant four volume element. Con
versely, if we consider a solution <p (x) ofEq. (1) with com
pact spatial support, we can always find a test function h (x) 
(not unique) such that 

J D (x,x')h (x') d7'(x') = <p (x) . (7) 

To see this consider two spacelike hypersurfaces ~ I and ~2 
with ~I to the past of ~2' Define a new function ~ (x) by 
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setting ~ (x) = ifJ (x) to the futut;.e of I2 and ~ (x)_O to the 
past of II' BetweenI2 and I 1 , ifJ is constructed to be smooth 
and match its values on II and I2 . This can be done in many 
ways and is the source of the nonuniqueness. Finally, set 

h (x) = (0 - m2)~ (x). (8) 

The h (x) defined by Eq. (8) will reproduce ifJ (x) when substi
tuted back in Eq. (6). This can be shown as follows: Let h (x) 
be obtained from ifJ (x) by the above construction. Then we 
have for Eq. (6) 

ifJ h (x) = f D (x,x')(O' - m2
) ~ (x') dr(x') , (9) 

where the prime on 0 means that it acts on the variable x'. 
We now pick hypersurfaces If in the future and I p in the 
past and integrate Eq. (9) by parts twice over a region bound
ed by If and..E p' The volume term will vanish since D (x,x') is 
a solution ofEq. (1) and for the boundary term we get 

f I ~ (x')V,QD (x,x') - D (x,x,)v,a~ (x') Jdaa(x'). (10) 
JIJ 
The integral over Ip iJ zero since we set ~ = 0 in the past. In 
the future, however, ifJ (x') = ifJ (x'), so it is obvious from Eq. 
(2) that the solution ifJh is the same as the ifJ we started with. 
We will denote solutions by ifJh' ifJg, etc. to denote that they 
correspond [via Eq. (6)] to test functions. 

The action ofthe symplectic structure on solutions ifJg 
and ifJh can be expressed as a volume integral over the test 
functions g and h. We substitute for ifJg and ifJh in Eq. (3) 
using Eq. (6) to get 

n (ifJg,ifJh) = L {[ f D (x,x')g(x') dr(X')] 

v,a[ f D (x,x")h (x ")dr(x") ] }daa (x), (11) 

where the double arrow on V is an abbreviation 

aVb = aVb - bVa. (12) 

In Eq. (11) we interchange the surface and volume integrals 

n(ifJg,ifJh) = f [L ID(x,x,)vaD(X,X")Jdaa(X)] 

xg(x')h (x")dr(x')dr(x"). (13) 

However, since D is itself a solution ofEq. (1), it satisfies Eq. 
(2) so the surface integral in Eq. (13) reduces to D (x' ,x") and 
we get 

n (ifJg,ifJh) = f D (x',x")g(x')h (x")d1'(x')d1'(x"). (14) 

This process of changing surface integrals into volume inte
grals will be frequently carried out by using Eqs. (2) and (6) 
and the fact that D and r are solutions of Eq. (1). 

A complex structure J acting on a real vector space V is 
a linear operator on V with the property that J 2 = - 1. 
Such operators always exist on infinite dimensional spaces. 
Let Vdenote the space of real solutions to Eq. (1). Then if we 
have a decomposition of real solutions to Eq. (1) into positive 
and negative frequency parts ifJ (+) and ifJ (-), respectively, 
we can define a complex structure on Vby 

JifJ=iifJ(+)-iifJ(-)· (15) 
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Note that JifJE V even though ifJ ( + ) and ifJ ( - ) do not. ifJ ( + ) 

and ifJ ( - ) are complex solutions and belong to the complexi
fied vector space Vc = V' Ell i V" , where V' and V" are copies 
of V. Conversely, if we have a complex structureJ on V, we 
can define 

P + ifJ = ifJ ( + ) = ;i (iifJ + JifJ ) , 

P - ifJ = ifJ ( - ) = ;;<iifJ - JifJ ) , 

(16a) 

(16b) 

where P + and P - are maps from V into Vc' P + and P -
are the positive and negative frequency projection operators, 
respectively. It can be seen immediately that 

P + 2 = P +, P - 2 = P -, and 

P + + P - = identity. (17) 

In stationary space-times there is a canonical complex 
structure.) In general, there is not. However, if the space
time has asymptotic static regimes in the past and future, we 
can define asymptotic complex structures in the past and 
future Jp and Jf , respectively. The fact that Jp #f is what is 
responsible for particle creation.3

•
4 Ashtekar and Magnon

Ashtekar have used the complex structure to define particle 
states and construct Fock spacesY In their approach, they 
require that J and n be compatible in the sense that, for every 
real solutions ifJ ofEq. (1), 

n (ifJ,JifJ »0. (18) 

This condition is imposed to ensure that the commutation 
relations between the field operators and the decomposition 
of a field operator into creation and annihilation operators 
are consistent. 

We can define an operator 
/ = (Jf - Jp)(Jf + Jp) - 1. (19) 

The existence of an S matrix relating the past and future 
Fock spaces depends on whether / is Hilbert-Schmidt.1l

•
14 

The particle creation amplitUdes can be given completely by 
/ and vanish if / does. For details see Refs. 3-5 and 13. 

III. RELATION BETWEEN PROPAGATOR AND 
COMPLEX STRUCTURE 

We will first derive an expression for the Feynman 
propagator in terms of Jf and Jp • We will take the Feynman 
propagator to be given by 

GF(x,x') = I'(out I TifJ (x)ifJ (x') I in) . (20) 
(out I in) 

This gives the usual Feynman propagator in flat space-time 
since lout) and lin) are the same there. In the formalism of 
Ref. 4 the Jf and Jp define lout) and lin), respectively. The 
quantum states are regarded as holomorphic functions on V, 
the space of classical solutions of Eq. (1). The usual Fock 
representation is recovered by taking the germ of the holo
morphic function at the origin. The out vacuum state is the 
unit function while the image under S, of the in vacuum, is 
the function 

S I in) = K exp(!(v,/ v) +), (21) 

where VE Vand ( , ) + is the inner product in the future one 
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particle Hilbert space given by 

(a,b ) + = --.!..a (a,J! b ) + _1_ ifl (a,b ) . 
2h 2h 

(22) 

The action of creation and annihilation operators C (tP ) and 
A (tP ), respectively, associated with a solution tP is 

C(tP }f(v) = (tP,v) + f(v) , 

A (tP }f(v) = X' '" f(v) , 

where VE Vandf(v) is a holomorphic function on V. 

(23a) 

(23b) 

We will calculate Eq. (20) with G F "smeared out" with 
test functions hand g, where we have chosen hand g so that 

supp h n past of supp g = tP (24) 

to incorporate the time ordering. We then obtain for the 
smeared out Feynman propagator 

GF(h,g) = J GF(x,x')h (x)g(x')dr(x)dr(x') 

= i(outlS lin) -1(outl [C(tPh) +A (tPh)] 

X[C(tPg)+A(tPg)]Siin}. (25) 

The inner products are taken in the future Pock space. Using 
the holomorphic function representation (21) for S lin) and 
Eq. (23) for the creation and annihilation operators, 

GF(h,g) = iK (1, [C(tPh) +A (tPh)][C(tPg) +A (tPg)] 

xexp! (v,f v» , (26) 

whereK is a constant. We note that only terms with annihila
tionopertorson the left survive [since (out I C(tP) = 0] so we 
are left with 

GF(h,g) = iK (1,[A (tPh)C(tPg) +A (tPh)A (tPg)]exp!(v,v». 
(27) 

The first term is calculated easily using Eq. (23): 

A (tPh)C(tPg) exp!(v,/v) 

= !f",.«tPg,v) exp!(v,fv» 

= (tPg,tPh) exp!(v,/ v) + (tPg,v)!f "'. exp!(v,/ v) . 
(28) 

Since we are taking the inner product with the constant 
term, only the first term contributes, giving a term equal to 
(tPg 'tPh)' Similarly, the second term can be shown to give rise 
to a term (tPg'/ tPh)' There is a factor of (outISlin) in both 
terms which cancels the factor K = (outlS lin) ~ 1. Using 
the definition of the inner product (22), we get 

GF(h,g) = -!n [(1 + /)tPg,tPh] 

(29) 

Thus, we have expressed the Feynman propagator in 
terms of the complex structures and /. Our subsequent 
analysis will consist of explicitly displaying the action of Jf , 

Jp ,and f in terms of G F' This will elucidate the relationship 
between the complex structure approach 1-4 and the propaga
tor approach to field theory. 

Consider the case where there is a unique complex 
structure J, i.e., f = 0 and there is no particle creation. 
Then we obtain the following expression by setting f = 0 in 
Eq. (29): 
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J GF(x,x')h (x)g(x')dr(x)dr(x') 

= -!n (tPg,tPh) + !ifl (tPg,JtPh)' (30) 

where we have choseng and h as in Eq. (24). Comparing Eqs. 
(30) and (5), we see that in this case 

J y(x,x')h (x)g(x')dr(x)dr(x') = n (tPg,Nh)' (31) 

We invert Eq. (31) to obtain J as follows: Pick a spacelike 
hypersurface.2. Then define the action of Jon tP by 

JtP (x) = 1 I tP (x') v,ay(x,x') - y(x,x,)v,atP (x') JdO'a(x'). 

(32) 

For J to be a complex structure we must have J 2 = - 1. 
Imposing this condition and using Eq. (2), we obtain 

1 I y(x,y)V;y(x',y) - y(x',y)V;y(x,y)jdO'a(Y) 

=D(x,x'). (33) 

Thus, if y is to define the action of J via Eq. (32), it must 
satisfy Eq. (33). We thus impose Eq. (33) as a condition on y 
and are then assured that Eq. (32) defines a complex 
structure. 

To obtain compatibility in the sense ofEq. (18) we de
mand that y be positive definite in the sense that 

J y(x,x')g(x)g(x') dr(x) dr(x'»O 

for any real test function g(x). It also follows that 

n(tPg,Nh) =f1(tPh,JtPg) 

(34) 

(35) 

from the symmetry of y. By comparison ofEqs. (31) and (14) 
we see that if D and y annihilate the same test functions 
(which they must since J is a linear operator), we must have 
the following condition: 

kerDe kery. (36) 

The complex structure we have defined is clearly the same 
one as was implicit in Eq. (30), as can be seen by computing 
n (tPg,JtPh) using Eqs. (32) and (14) and the fact that y satis
fies Eq. (2). 

We can express Eq. (32) as a four volume integraL If we 
use Eq. (6) in (32), we find that 

JtPix ) = 1 [ J D (x',y}f(y)dr(y) ]v,ay(x,x') 

- Y(X,x,)v,a[ J D (x',y}f(y)dr(y) ]dO'a (x'), (37) 

interchanging the orders of integration 

JtPf(x) = f [l ID(x',y)V'Oy(x,x') 

- Y(X,X')V'OD(x',Y)ldO'a(X')Y(Y)dr(y). (38) 

Since y is itself a solution ofEq. (1), it satisfies Eq. (2) so we 
get 

JtPix ) = J y(x,y}f(y)dr(y). (39) 
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The fact that this J is unique is guaranteedll
•
15 if y is Lie 

derived by the timelike Killing field. To see that the ythat we 
have produced is indeed the one which defines the vacuum in 
Eq. (20) we note that if we have some complex structure 
which defines a vacuum and we use Eq. (20) to define GF , 

then 2 ImGF is n (ifJh ,JifJg) by the argument following Eq. 
(20). If we use our definition of J and directly compute 
n (ifJh ,JifJg), a straightforward calculation reveals that we re
cover y. Thus, the J we have defined is indeed the one implic
it in y. 

We can summarize the situation as follows: A propaga
tor G F arises from a single complex structure J if and only if 
it satisfies in addition 

(a) ReG F(X,X') = !D (x,x'), if x>x', 

= - jD(x,x') ifx<x', 

and zero if x and x' are spacelike related; 
(b) r(x,x') 2 ImGF(x,x') is symmetric in x and x' and 

satisfies Eq. (1); 
(c) Ker y(x,x') = KerD (x,x'); 
(d) Eq. (33) is satisfied by y(x,x'). 
Condition (d) is stated by Lichnerowicz2 and the exis

tence of a y satisfying these conditions is discussed by 
Moreno. 16 

We can obtain explicitly the positive and negative fre
quency parts ofa solution ifJh(X) by using Eq. (16). One ob
tains the result (for x to the future of supp h but not in supp 
h). 

ifJ ~ + l(X) = f GF(x,x')h (x')dr(x'), 

ifJ ~ - l(X) = f G ~(x,x')h (x')dr(x'), 

(4Oa) 

(4Ob) 

where the • denotes complex conjugation. To obtain the so
lutions everywhere we use Eq. (2). 

We now consider the case where there are two asymp
totic complex structures' Jp and JJ. In this case there will be 
particle creation by the space-time geometry since J' =FO. 
Also, the expression for the propagator given by Eq. (29) is 
appropriate. This is the most general situation that can be 
described by an S matrix connecting particle states in the 
distant past and the distant future. We see immediately from 
Eq. (29) that if there is particle creation, the real part ofGF is 
not simply the symplectic structure. If we define 

jj (x,x') = - 2 ReGF(x,x'), (41) 

we can tell whether there is particle creation by comparing jj 
andD. 

If there is p~ticle creation, we can extract the action as 
follows: Define D as follows: 

D (x,x') = jj (x,x') - D (x,x'). (42) 

where fi acts on test functions g and h we obtain 

D(ifJg,ifJh) = f D(x,x')g(x)h (x')dr(x)dr(x') 

= n (J' ifJg,ifJh)' (43) 

Let i be a test function with the property 

f D (x,x')g(x')dr(x') = J'ifJg. (44) 
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Using Eq. (44) to rewrite the RHS ofEq. (43) in the form of 
Eq. (14), 

n (J' ifJg,ifJh) = f D (x,x')g(x)h (x')dr(x)dr(x') 

= f D(x,x')g(x)h (x')dr(x)dr(x'). (45) 

Since this is valid for arbitrary test functions h, we get 

/ ifJg(x) = f D (x,x')g(x')dr(x'). (46) 

For this to be well defined we must required 
A. 

KerDC KerD. (47) 

We now turn to the question of recovering JJ and Jp 
from GF • The Feynman propagator defines the positive and 
negative frequencies in Eq. (40). In analogy with this we 
define 

<P ~ + )t(x) = f GF(x,x')h (x')dr(x'), (48a) 

(48b) 

to the future of but not including supp h. We obtain the 
solutions everywhere by choosing a spacelike hypersurface 
to the future of supp h and inducing the appropriate Cauchy 
data on it. We then use Eq. (2) to solve the Cauchy problem. 
Similarly, we obtain the past decomposition by defining 

ifJ ~ + )J(x) = f GF(x,x')h (x')dr(x'), 

ifJ ~ - H(x) = f G ~(x,x')h (x')dr(x') 

(49a) 

(49b) 

in the past of but not including supp h. The Cauchy problem 
can again be used to obtain the solutions everywhere. We 
recover Jf and Jp by using Eq. (15). Thus, 

JAh(X) = f r(x,x')h (x')dr(x') (50) 

to the future of supp h, while to the past of supp h 

JpifJh(X) = f y(x,x')h (x')dr(x'). (51) 

These complex structures are not the same since the real part 
of GF no longer governs the Cauchy evolution. Since we 
want J A and JpifJ to be solutions of Eq. (1), we must de
mand that y is a solution of Eq. (1). Then we can use Eq. (2) 
in Eqs. (50) and (51), and using Eq. (6) we can write the 
volume integrals as surface integrals to obtain 

J Ah (x) = L I ifJh (x,)v,ay(x,x') 

- y(x,x,)v,a<ph (x') )dO'a (x') (52a) 

for.I being a hypersurface to the future of supp h and x to the 
future of .I. Similarly, we have 

JpifJh (x) = L I ifJh (x,)v,ay(x,x') 

- y(x,x,)v'aifJh(x'»)dO'a(x') (52b) 

for.I to the past of supp h and x to the past of .I. We use these 
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forms to impose J; = J} = - 1 and obtain convolution 
conditions exactly like Eq. (33). This is the case even though 
ynow involves as well as 11 andJ. The formulas (48) and (49) 
can also be written in terms of surface integrals. We regard 
GF(x,x') as a function of x' for fixedx. This is a well behaved 
(nonsingular) solution ofEq. (1) for all x'-=/=x. Thus, if we 
restrict x' to the future of x, we may use Eq. (2) in (48) or 
( 49). We then perform the four volume integrals so that 
SD (x,x')h (x')d1"(x') becomes ¢h(X) and obtain 

¢ h + )lex) = L I GF(X,X,)v,a¢h(X') 

- ¢h (X,)v,aGF(X,X') )dCTa (x'), (53a) 

¢ h + l1(X) = L I GF(X,X,)v,a¢h (x') 

- ¢h (X,)v,aGF(X,X') )dCTa(X'), (53b) 

for I being a hypersurface to the future of x. There is an 
analogous formula for the past decomposition. In this form 
the positive and negative frequency parts can be defined 
without reference to the test functions. Rumpf had earlier 
used these formulas to define positive and negative frequen
cy parts. S His arguments used the analyticity properties of 
the propagator regarded as a function of m 2

• As in the one 
complex structure case we require for consistency (a) 

A 

KerDCKerD, (b) y is a symmetric solution ofEq. (I), and 
(c) yobeys Eq. (33) on hypersurfaces in the distant past or 
distant future. 

There are three principal approaches to quantum field 
theory in curved space-time: That of Lichnerowicz2

•
16 based 

on Eq. (33), that of Segal, I Ashtekar, 3.4 and Kay' using com
plex structures, and that of DeWitC and Rumpf in which 
the propagator is the fundamental object. In this paper we 
have indicated the relations between these three approaches 
by explicitly displaying the complex structures in terms of 
the propagator and obtaining Eq. (33) as a necessary condi
tion. We have also obtained conditions which a propagator 
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must satisfy in order to qualify as being a legitimate propaga
tor. Finally, since the propagator can often be explicitly cal
culated we can explicitly determine /' and hence the S ma
trix, a calculation which is very difficult in the original 
formulation of Ashtekar and Magnon-Ashtekar3.4 and Kay.' 
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For scattering operators that have the cluster decomposition property, it is shown that crossing 
relations for the scattering operator are consequences of the assumed crossing relations of the 
kernels of the connected parts of the scattering operator. 

The goal ofthis paper is to derive crossing relations for 
scattering operators. The motivation for studying the cross
ing properties of scattering operators arises from trying to 
build an elementary particle theory in the spirit of the origi
nal Heisenberg theory, 1 in which the unitary scattering op
erator is constructed without the use of equations of motion. 
What we have in mind is a theory in which physical proper
ties such as relativity, cluster properties, crossing and unitar
ity are expressed as operator relations. 

The basic crossing operation to be used in this paper 
involves crossing one particle at a time, 2 either an initial or 
final particle (though for convenience most ofthe subse
quent discussion will deal with crossing a final particle to an 
initial particle), in distinction to the more usual crossing op
eration, in which an initial and final particle are simulta
neously crossed. 3 For multiparticle reactions crossing two 
particles simultaneously is equivalent to first crossing an ini
tial (final) particle and then crossing a final (initial) particle. 
But for two particle to two particle reactions, the single par
ticle crossing operation does not lead to a physical reaction. 

To define crossing for scattering operators, we first con
sider the kernel of the connected scattering operator for an 
A-B reaction, where A is an initial and B a final cluster of 
particles. Now the kernel of the connected scattering opera
tor can be written as the product of an energy momentum 
delta function times the connected scattering amplitude for 
the A_B reaction, which itself contains no further delta 
functions. As variables for this scattering amplitude, we will 
choose the energies E j and directions P j of the individual 
(incoming and outgoing) particles, for then all particles are 
treated on an equal footing. Such a choice of variables makes 
it easy to deal with identical particles where it is necessary to 
interchange particle labels. Because of the relativistic invari
ance of the scattering operator not all of the energies and 
angles are independent; but it is always possible to choose the 
energy of the particle being crossed as an independent vari
able. It is of course understood that all of the energies are 
positive. Along with energy and momentum variables, scat
tering amplitudes also depend on spin and internal symme
try variables. In the interests of simplicity such variables will 
be ignored in this paper. It is to be emphasized that it is not 
necessary to assume that the scattering operator is generated 
from some underlying Hamiltonian; instead general require
ments such a relativistic invariance and unitarity are 
postulated. 

The definition to be used for crossing is motivated by 
results from quantum field theory. If one particle (call it c) is 

crossed to become the antiparticle c, there exists a path of 
analytic continuation for the scattering amplitude of the 
connected operator from the physical region of the direct 
channel where the energy Ee is positive to the physical re
gion of the crossed channel, where it is negative_ In this 
crossed physical region the analytic continuation of the scat
tering amplitude of the connected scattering operator for the 
direct reaction coincides with the scattering amplitude for 
the connected scattering operator of the crossed channel. 

We begin the analysis of crossing properties of scatter
ing operators by defining the projected or channel scattering 
operators. Consider an initial channel A of particles going to 
some final channel B of particles; not all of the particles need 
to interact with one another. Then the scattering operator 
for the A_B reaction can be written as 

SB,A =ABSAA' (1) 

where S is the scattering operator and A A (A B) is a projec
tion operator from the full Fock space to the subspace JYA 

(dYB )· 

The cluster properties for S BA are physically motivated 
by requiring that if a cluster of particles is far away from 
another cluster, no interaction from the short-range ha
dronic forces should take place between the separated clus
ters. This physical requirement can be expressed mathemat
ically in terms of strong operator limits of S B,A .

4 If the 
particles in channel A are divided into two clusters A 1 and 
A 2 , and the particles in channel B divided into clusters B, 
and B2 , then the cluster property can be expressed as 

strong limit U!SBAUs =SBA ®SIJA' (2) 
lal----+ 00 • I I 2 2 

where Us = exp( - 'PAl-a) and PAl is the momentum opera
tor for cluster AI' By letting A 1 and B 1 range over all differ
ent combinations of particles in A and B, respectively, a set of 
disconnected scattering operators for the A---+B reaction is 
generated. Further sets of scattering operators can be gener
ated by taking strong operator limits of the scattering opera
tors of subclusters, until finally connected scattering opera
tors are obtained. 

Such connected scattering operators are characterized 
by the fact that 

strong limit U!S~~ Ua = 0 (3) 
lal~oo 

for all possible subclusters of A and B. That is, any scattering 
operator S B,A can be written as a sum of products of connect
ed scattering operators, just because for a fixed cluster A of 
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initial particles, there are only a finite number of ways of 
dividing A into subclusters. This means there is a unique 
connected scattering operator S c;,~ associated with each 
scattering operator S B,A . 

Equation (3) states what is meant by a connected opera
tor. The kernel of a connected operator S c;,~ can be written 
as 8 4 (p A - P B)F B,A, where F B,A is the scattering amplitude 
for theA_B reaction and is analytic everywhere in the phys
ical region except at physical region singularities. As stated 
in the Introduction, it is assumed that a path of analytic 
continuation for FB,A between the direct and crossed chan
nels always exists. 

To define a crossed connected operator let c denote the 
particle to be crossed and let A and B denote clusters as 
before. Then the kernel of the connected scattering operator 
for theA + c-B reaction is related to the kernel of the con
nected scattering operator for the A-B + c reaction by the 
crossing relation 

[84(PA - PB - pJFB+ C,A r = 84(PA + Pc - PB)FB,A +C, 

(4) 

where [84(PA -PB _pc)]<r=84(PA -PB +p,Jand 
(F B + c,A Y' is the analytic continuation ofF B + c,A to the phys
ical region of the A + c-B reaction. To convert Eq, (4) to an 
operator equation, write 

(S!JJ~ -+ C fA -+ C) (Pj,jEB) 

= f IT _ d
E

3Pi 
(j4(PA + Pc - PB)F B.A +"(Pj,Pi)fA H'(p,), 

ILA -+ C I 

(5) 

where fA is in tW'A and S!JJ~fA is in tW'B' 
We define a new operator, the crossed connected scat

tering operator, by 

SCf}~ c,A (cr}fA + c 

From this definition and the crossing relation, Eq, (4), a 
crossing relation between connected operators for A-B + c 
and A + c-B reaction immediately follows: 

SCf}~c,A(cr)=S!JJ~+i" (7) 

If there are particles in cluster B that are identical with 
particle c, it is clear thar F B + c.A must be properly symme
trized with respect to the identical particles. Further, though 
the action of the connected operators in Eq. (5) is given with 
respect to momentum variables of the individual particles 
other choices of variables could also be made. In particular 
Ref. 2 gives a set of variables in which the total momentum of 
A, along with the invariant masses SA of cluster A and SB of 
cluster B are used; these variables have the important prop
erty that the analytic continuation of F B + c,A involves only 
an analytic continuation in S Band SA' with all other variables 
held fixed, Such types of variables will be of special interest 
in the succeeding paper where crossing relations are com
bined with unitarity, 
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To proceed from a connected crossed scattering opera
tor to a full crossed scattering operator, it is necessary to be 
somewhat more explicit about the form of the cluster decom
position of S B + c,A . Once particle c is chosen it follows from 
Eqs. (2) and (3) that it is possible to write all the disconnected 
terms in the cluster decomposition of S B + C A as tensor pro
ducts of connected operators involving particle c times re
maining operators not involving c: 

S/I-tc,A =S~~l®S/I.A_C+ I S~°L.A,(;)®SB_j.A, 
j.A,(;) 

+ '" s(O}. . ®S . 
~ c+;+k,A,(;.k} B-;-k.A, 

j.k.A ,Uk) 

+ ... + S Cf}~ c,A , (8) 

with AI uA 2 =A. 
The definition ofSB+ c,A (cr) will be given in terms of the 

crossed operators in the cluster decomposition of S B + c.A . 
Thus it is necessary to extend the definition of a crossed 
operator from connected operators to the disconnected op
erators occurring in the cluster decomposition of S B + c,A ' 
Such an extension is straightforward because all of the oper
ators in Eq. (8) involving particle c are connected, A typical 
term in Eq. (8) can be written as S lJ},) + c,A , ® S B _ BpA _ A" 

where A I and B I are subclusters of A and B, respectively. 
Now 

f 
d3p 

= n _i [(j4( _ _ )F B , + c,A I 

iEA Ei PA, Pc PB, 

X {j4(PA A, -PB_B)K B- BI,A-AI]r (9) 

so that a crossed disconnected operator can be defined as 

(SCf}! +coA/ ® SB _ BI,A _A)(cr) 

=SCf}: + C,A/(cr) ®SB _ B"A _ AI' (10) 

From this definition of a crossed disconnected operator, a 
crossing relation immediately follows: 

(SCf};+c,A/ ®SB_B/,A_A)(cr) 

(11) 

where S Cf};,A I + C ® S B _ B /,A _ A / is a disconnected operator oc
curring in the cluster decomposition ofSB,A + c' K B

- BI,A - AI 
in Eq. (9) is the kernel of the operator SB-BI,A -AI which 
itself can be written as a tensor product of connected opera
tors-that is, as a product of momentum delta functions and 
connected F amplitudes. Some care must be exercised in us
ing the crossing relation, Eq. (11), for the right-hand side 
may be zero depending on the particles in cluster B, . 

For example the simplest operator, the "straight thru" 
or unit operator in which none of the particles interact, can 
be written 

(12) 

so the kernel consists only of delta functions. In particular 
the delta function 84(p; - Pc)' where P; is the initial and 
Pc the final four momentum of particle c, indicates that the 
four momentum of particle c is unchanged. Crossing the 
"straight thru" operator then gives 
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s~r~i~~ thru(cr)f,Hc= f d4p;···~(pc +p~)"fA+C. (13) 

This example shows that the energy momentum delta func
tions may force some of the disconnected terms to be zero 
under crossing, for there is no physical region where 

t)4(P c + p~) is nonzero for positive energy positive mass 
particles. 

In fact it is easy to isolate those disconnected operators 
that give zero contribution under crossing by looking at the 
delta functions t)\ P A, - Pc - P B) in Eq. (7). If B 1 is the 
cluster containing either no particles (as was the case for the 
"straight thru" operator) or the cluster containing only one 
particle, then after being crossed the delta function 
t)4(PA, + Pc - PB) will always give zero contribution to the 
cluster decomposition of SB,A +C' 

Because of such delta functions there will not be a cross
ing relation of the typeSB + c,A (cr) = SB,A + c' as was the case 
for connected operators, Eq. (7) [and most disconnected op
erators, Eq. (11)]; rather terms must be added in order to 
relate SB + c,Acr) to SB,A + c. But the analysis of the previous 
paragraphs shows that it is just the one line and N-2, N;,2 
connected pieces of a general disconnected term that need to 
be considered. By suitably adding in these terms it is possible 
to relate S B,A + c to S B + c,A (cr) plus disconnected operators in 
which the one line and N-2, N;,2 connected operators in
volve particle c, the particle being crossed. If S B + c,Acr) is 
defined through the cluster decomposition of S B + c,A' Eq, 
(8), namely 

SB+C,A(cr) S~~~(cr)®SB,A_c + L S~O~j,A,(})(cr) 
j,A ,(j) 

®SB-j-k,A
2 
+ ... + S~~c,Acr), (14) 

then the crossing relation can be written as 

SBA+-=S--®S - + '" S(O) , c C,c B - c,A 4.. B,(}),c + j 
j,B,(}) 

®SB_ B,(}),A _ j + SB + c,A (cr). (15) 

Equation (15) is the desired crossing relation; it relates the S 
operator for the A + c-B reaction to the crossed S operator 
for the A_B + c reaction plus disconnected operators in
volving certain connected subreactions for c. These subreac
tions are either of the from c-c (c does not interact with 
other particles) or c + j-Bl (}), in which cinteracts with 
any particlej from cluster A to produce a final cluster Bl (j). 
An expression similar to that of Eq. (15) can be written for 
S B + c.A in terms of S B,A + icr) plus one line and N-2 type 
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connected subreactions involving particle c. It is then 
straightforward to check that if the expression for S B,A + c 
given in Eq. (15) is substituted into the analogous expression 
for S B + c,A' an identity in S B + c,A results. In obtaining this 
identity care must be taken in applying "(cr)" twice. The 
operation "cr" is defined only after the particle to be crossed 
has been chosen. To apply the crossing operation twice, that 
is, first to particle c and then to particle c means using the 
cluster decompositions [Eq. (8)] appropriate to particles c 
and c. Only if these cluster decompositions are used will "cr" 
applied first to c and then to c result in an identity in S B + c.A . 

In concluding it is necessary to ask how identical parti
cles might affect the crossing relation [Eq. (15)]. In the clus
ter decomposition, Eq. (8), it was (implicitly) assumed that 
each disconnected term could be written as though the parti
cles were distinguishable. However for particles in B that are 
identical to c, it is necessary to check that the terms are all 
properly symmetrized. This is most easily done when the 
cluster decomposition of S is given in terms of connected 
scattering operators only. Then there are two ways in which 
a particle c' identical to c can be related to c. Either c' occurs 
in the same connected amplitude as c or it does not. If c' and c 
are in the same connected amplitude, then the connected 
amplitude must be appropriately symmetrized with respect 
to c and c'. If c' is not in the same connected amplitude as c 
then, because of the cluster decomposition of S into connect
ed parts, there must be a term with c and c' interchanged. 
That is, for the cluster decomposition of S into connected 
parts, proper symmetrization is assured if each connected 
amplitude containing identical particles is properly symme
trized. Then the terms in such a cluster decomposition can 
be grouped according to Eq. (8) and crossing carried out as 
though there were no particles identical with c. 

We have shown how to obtain crossing relations not 
only for connected, but also for disconnected and full scat
tering operators. In the following paper, 5 these crossing re
lations will be used in conjunction with unitarity equations 
to represent scattering operators so that crossing and unitar
ity are automatically satisfied. 
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A representation for multi particle scattering operators satisfying unitarity and crossing 
properties is presented. The representation is given in terms of a set of functions that satisfy 
orthogonality, completeness and analyticity conditions. It is shown that integrals over these 
functions yield inclusive cross sections. 

The framework for an S matrix theory was first pro
posed by Heisenberg in 1943. [ His idea was to constrain the 
possible forms the S matrix could have by making use of 
relativity and unitarity. This was done by writing S = e ill , 
where 1] is Hermitian2 and then choosing various forms for 1] 
in order to make predictions for cross sections of production 
reactions. In the spirit of Heisenberg's original proposal, we 
wish to construct a representation for multiparticle scatter
ing operators that not only automatically satisfies relativity 
and unitarity, but also crossing relations. 

As discussed in the previous paper,3 the theory under 
consideration is basically an operator theory in that physical 
properties such as a cluster decomposition or unitarity are 
stated as operator relations on the scattering operator. The 
previous paper discussed how relations between crossed re
actions could be stated as operator relations between scatter
ing operators. Also cluster properties can be stated in terms 
of strong operator limits of scattering operators" In this pa
per unitarityS will be analyzed and it will be shown how a 
spectral representation for the scattering operator can be ob
tained, which, when combined with crossing relations, al
lows one to express all multi particle operators as products of 
a set of functions that must satisfy certain orthogonality, 
completeness, and analyticity conditions. That is, this set of 
functions will automatically satisfy unitarity and crossing 
relations. To indicate the close connection of this set offunc
tions with quantities of physical interest, the paper con
cludes by showing that there is a simple relationship between 
integrals of these basic functions and inclusive cross 
sections. 

In order to focus on the basic features of the representa
ton, we will only deal with reactions of the form two nu
cleons plus any number of pions reacting to produce two 
nucleons plus any (other) number of pions. Spin and internal 
symmetries such as isospin will not be considered; general
izations to arbitrary numbers of nucleons with spin and in
ternal symmetries will be discussed in subsequent papers. 
Between the three and four-body thresholds there are then 
four reactions that are related by unitarity, namely, 
NN-NN, NN-NNTT, NNTT-NN, and NN1T-NN1T. The 
manner in which the scattering operators for these reactions 
are related can be obtained by projecting the unitarity equa
tions sst = sts = I into the various (initial and final) two 
and three-particle subspaces of the Fock space. For the four 
reactions mentioned above, this gives S B,A = A BSA A where 

A A and A B are projection operators into either a two-parti
cle (NN) or three-particle (NN1T) subspace. Because of the 
relativistic in variance of Sit is most convenient to write these 
two and three-particle subspaces as direct integrals of two 
and three-particle partial wave Hilbert spaces. More gener
ally the projection of Fock space to an n-particle Hilbert 
space can be written as the direct integral 

J d 3p J ds I EI1 )}'f" PsJa;n , 
J,a 

where P is the total momentum, VS the "mass," Jthe total 
angular momentum, and (T the spin projection of the n-parti
cle system. )}'f"PsJa;n is the n-particle partial wave Hilbert 
space. Since we will be dealing almost exclusively with par
tial wave Hilbert spaces in this paper, the subscripts P, s, J, 
and (T will be omitted and the n particle partial wave Hilbert 
space written as)}'f"n' 

For example, a two-particle wave function may be writ
ten in terms of the individual momenta of the two particles; 
however, a change of variables to the total momentum P, the 
two-particle mass vs = V(p[ + P2) 2, andJ, (Tobtained by 
Legendre transforming the direction of the relative two-par
ticle momentum allows one to specify the action of S2,2 
= A 2SA 2 as 

S2,2 / = 1](sJ) e2i8
('J) J, /&Jr'z (1) 

where 1] is (up to a phase space factor) the inelasticity param
eter and () the phase shift. Actually it is possible to drop the 
element/in Eq. (1) since the two-particle partial wave space 
)}'f"2 is one dimensional. 

Similarly S3.2 is an operator from)}'f"2 to)}'f"3' the three
particle partial wave space. If/is in)}'f"2 (i.e., is a number), 
then 

S3.2 / = .sf2-.3 J, S3.2 = .sf2-~\ (2) 

where sf2
-.

3 is the NN-NNTT partial wave amplitude. 
Equation (2) states that the operator S 3,2 = A 3 SA 2 can be 
viewed as a vector in )}'f"3' 

The unitarity equations for two-particle initial and final 
states can thus be written as 

A2StA2A2SA2 + A 2StA 3A 3SA 2 = A 2, 

1]2 + 11.sf2 .• 311 2 = 1, 

A2SA2AzStA2 + A z SA3A3StA2 = A 2, 

1]2 + 11.sf3 .211 2 = 1. 

(3) 
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Here d 3 •2 is related to the operator S2,3 = A 2SA 3 by 

S2,3 I = (d3~2,J)E22' IE23 (4) 

where d3~2 is also an element in dY3. Two-particle unitar
ity, Eq. (3), thus states that the lengths of the 2~3 and 3~2 
partial wave amplitudes are equal. 

There are other unitarity equations relating the four 
operators. The most improtant ones, resulting from three
particle initial and final states, can be written 

A 3SA 2A 2StA 3 + A3SA3A3StA3 = A 3, 

S3,2 S t2 +S3,3 S L =A3' (5a) 

1- S3 3s1 3 = d 2- 3 ® d2~3t V IE23. 

Here I is the unit operator in dY3 and Sl,z is defined as 
(A 3SA 2)t from which it follows that S;,2 1= (d2- 3,J) 
E22 , for/in dY3. Thus, S3,2S;,2 1= S3,2(d2- 3,J) 
= d 2 .3( d2-~3, f) (d2- 3 ® d 2

- 3t) f A similar equation 
follows from S t S = I : 

A 3StA 2A 2SA 3 + A3StA3A3SA3 = A 3, 

SLS2,3 +S!.3 S 3,3 =A3' (5b) 

1- S;,3 S 3,3 = d 3 •2 
® d 3

-
2t V/E23 , 

where the adjoint of S2,3,St3 = (A zSA 3)t, satisfies 
S;,3 = d 3- Z

• The last lines of Eqs, (5a) and (5b) indicate 
that the 3~3 operator misses being a unitarity operator by 
the existence of the production partial wave amplitudes, 

We would like to use Eq, (5) to spectrally representS3,J' 

But as can be seen from Eq, (5), S3 3 is not a normal operator. 
An associated normal operator Scan be defined by making 
use of the fact that I IdJ

-
2 1 I = Ild2~311 and defining a 

unitary operator WfromdYJ todY3 by d 3-.2 = W d2~3 (W 
is obviously highly nonunique), Then if Sis defined by 
S = S3,3 W, Eq. (5), written in terms of Sshows that Sis 
bounded and normal; that is, [s,st] 1= 0 for allfin dY3 • A 
spectral representation can then be written as 

S = J df1(r) Ayey ® e~, 
(6) 

S1.1 = J df1(r)A yel' ®d~" 
where r stands for the set of labels needed to specify the 
eigenvectors, df1(r) is the unknown spectral measure and the 
{el' } form a complete orthonormal set in dY3 • dy is defined 
as Wel' , and since Wis unitary the set {dr} also is complete 
and orthonormal in dY3 • Though the {dy j are defined by the 
operator W, since nothing at this point is known about W 
except that J:/ 3 

.2 = Ws1'2-.3, we will regard the {dy } as a 
complete set of vectors that are independent of the {eJ and 
make use of further physical requirements to relate the {dy } 

and {ey} 
By applying Eq. (5a) to a basis element ey' it is readily 

seen that the generalized eigenvalues Ay all have modulus 1 
except for one eigenvalue A , for which JA, J = 7]; here r = 1 
has been chosen to designate that eigenvector for which 
d 2 

.J = 11(1 - 7]2)e, (similarly d J - 2 = 11(1 - 7]2) 

X d,). Aside from the fact that e, is a true eigenvector of S, 
nothing is known about the spectrum of S. The sense in 
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which the right-hand side ofEq. (6) represents S3.3 is in 
terms of a strong operator limit. 6 

To generalize these unitarity results to arbitrary num
bers of pions,7 it suffices to replace dY3 by the direct sum 

dY'=dYJ EIlK4 EIl"'EIlKN , (7) 

where N is the maximum number of particles allowed by the 
fixed mass 11 s. Define projection operators A 2 and A " 
where A 2 projects into the one-dimensional two-particle par
tial wave space as before, and A 'projects the full Fock space 
into the direct sum space dY'. Then the unitarity equations 
will have the same form as the three-particle unitarity equa
tions, Eq. (5). In particular, each operator SB,A = ABSAA' 
where A and B are channels containing one or more pions, 
can be written 

SB,A = J df1(r)Ay~ ®d :t, (8) 

where e: = ABel' and d: = AB Wel' ; for a fixed channel B 
some of the e: and d : may of course be zero, 

The projected vectors e: and d: are not in general orth
ogonal; only their direct sum is orthogonal: 

(9) 

L (d:,d:,) = 81'1'" 

B 

where the sum over B means a sum over all the partial wave 
Hilbert spaces in the direct sum Hilbert space dY', Thus the 
{e:} and {d:} each span dYB , but do not in general form 
orthonormal bases in dY B' As was the case for three-particle 
unitarity, lAy I = 1 for r*l. We will fix the "eigenvectors" 
ey and dy' r*l, so thatA y = 1; that is, ey anddy will absorb 
the phases coming fromA y ' r*l. As was the case for three
particle unitarity the production partial wave amplitudes are 
given by d 2- B = 11(1 - 7]2)ef and dB .2 = 11(1 - 7]2)d f, 
with lA, I = 7] the inelasticity parameter. The argument of 
A, is related to the two-particle to two-particle phase shift. 

Thus far the spectral representation for the channel op
erators S B,A has not referred to any particular set of varia
bles; to prepare for an analysis of crossing, it is convenient to 
choose a set of variables that refers specifically to the particle 
(call it c) being crossed, As in Ref. 3 crossing refers to the 
transformation of one incoming (outgoing) particle to an 
outgoing (incoming) antiparticle. The more usual use of the 
term "crossing" to designate the transformation of two par
ticles, one incoming and one outgoing, to their respective 
antiparticles is equivalent to two single particle crossing op
erations for multiparticle reactions, If variables for elements 
of dY B are used as variables for elements of dY B + c' it is 
possible to expand the eigenfunctions e: + C and d : + c in 
terms of e: and d:, respectively: 

B + c - J d ( ') B IB + c ey - f1 r ey' 1"1' , 

d B + c J d ( ') d B 8, c l' = f1 r y' gr'r ' 

(10) 

wherel:,: C andg~,;; c may be thought of as expansion coeffi-
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cients that contain variables from elements of :Jt"' B + c not 
occurring in elements of:Jt"' B' 

To be more specific about these variables, we choose a 
definite ordering of the particles in the B cluster, say 1,2, ... ,j 
with 1,2 always referring to the two nucleons. Then the indi
vidual momenta of the B cluster particles can be replaced by 
the unit vector directions of all the B cluster particles, along 
with subcluster masses defined by s; = (PI + '" + py, 
i = 2 .. j. Thephasespacemeasured 3PI I E I ···d 3pj IEj can be 
written in these new variables asS 

dw=dpj ~~I dsj _ I ••• dp3 ~~3Ids2Ip21' (11) 
v ~ v S2 

where I P; I = [A 112(S;,S; _ I,m;) ]/(2y s;), A (x,y,z) = X2 
+ y2 + Z2 - 2(xy + xz + yz) is the magnitude of the mo
mentum of the ith particle in the frame where PI + ... + P; 
= ° and the limits of integration of the cluster masses ys;is 
fromm l + ... + m;_1 tOYs;+ 1- mj (m/ is the mass of the 
I th particle). dpj = d (cosO;) dC{Jj where the angles OJ and C{Jj 
are chosen as 

cosOj = pj.pj+ I in the frame where PI + ... + pj = 0, 

C{Jj = azimuthal angle between the planes defined by 

P, - Pj + I and pj + I - pj + 2' also in the frame where 

PI + ... + pj = 0, (12) 

because then they have simple crossing properities. 9 

Since we are interested in partial wave amplitudes, the 
angles OJ and C{J j are Legendre transformed to Jo the angular 
momentum of the 1,2, ... ,i cluster and ao the spin projection 
along an axis defined by the i + 1 particle.9 In these variables 
the phase space volume becomes 

f f
(VS, -m,)' 

dw-
(n'1 1 + ... + m, 

The cluster variables just defined can be used in the partial 
wave Hilbert spaces:Jt"' B; however, in these spacesJ B and a B 
are fixed parameters, so that when computing an inner prod
uct of elements in :Jt"' B, there is no sum over J B and a B [i.e., 
over Jj and aj in Eq. (13)]. 

It is now possible to use the cluster variables for ele
ments in ~ B and ~ B + c and thus give a precise meaning to 
the expansion, Eq. (10). In particular, ~ + C can be written in 
terms of cluster variables as ~ + C(s B J B a B···)' where the dots 
refer to further cluster variables and the superscript B + c 
refers not only to the B + c cluster, but also to the (fixed) 
labels S B + C and J B + c. Now e: does not depend on a B and 
depends parametrically on S Band J B. Thus, ~ + C is an ele
ment of ~B for SB JBaB held fixed. So the expansion coeffi
cientsf :1"+ C will have as variablessB JBa B and depend para
metrically on S B + c and J B + c. Since the Hilbert space K B is 
nested in K B + coit is possible to view the expansion coeffi
cients as elements of a Hilbert space with a norm given by 
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Ilf:!CW= L r:B+c-mB+J2 Ipc I dS
B 

J,pB JmB "" r V sB+e 
X I f ~+ C(SB+ C JB+ c;SB JBaB) 12 < 00, 

(14) 

where m B is the sum of the masses of all the particles in 
cluster B. 

In Ref. 3 a crossed scattering operator was defined by 
first defining a crossed connected scattering operator 
through the analytic continuation of its associated scattering 
amplitude. The operator S BoA + c(cr) was then defined as the 
sum of all the crossed scattering operators that occur in the 
cluster decomposition of S B,A + c' Using the functions g ry , 
the spectral representation of S B,A + c can be written as 

S B,A + c = f d",(y)Ar~ ® d ~ + <'t 

= f d",(y) d",(r')Are: ® (d~ ~; C)t . (15) 

We now make the fundamental assumption that if par
tide c is crossed, the crossed channel operator SB,A + c(cr) 
can be represented as 

SB,A H(cr) = ( - ItA + JB f d",(y) d",(y')Are: 

X ,.A + «cr)" /Q d A t 
SYr '0' r' (16) 

where (cr) denotes the analytic continuation of ~,; c in the 
variables SA and SB· That is, we assume that gr'Y (andfy'Y) 
have analytic properties that allow them to be analytically 
continued in the variables SA and S B from the physical region 
of theA + c-+Bchannel where YSB = YSA c c;;,ysA + me 
to the physical region of the A-+B + c channel where Y S A 

;;. Y S B + me. The term ( - 1 )J, + J" arises because there is not 
only an analytic continuation in SA and SB but also an inter
changing of roles of JA , the angular momentum of the A 
cluster, which is also the total angular momentum of the 
A-+B + creaction, withJB , the angular momentum oftheB 
cluster, which is also the angular momentum of the 
A + c-+B reaction. Under crossing the momentum vector of 
particle c changes direction which-in partial wave varia
bles-gives the factor ( - l)J, + J". Reference 9 presents 
these arguments in greater detail, and also shows that under 
crossing the spin projection variable a of cluster B becomes 
the spin projection variable of cluster B + c. Thus, 
~,; «cr)(SB JB; SA JA a) designates an analytic continuation 
in the variables S8 and SA to the physical region where YSA 
;;'YSB + me> while JA becomes the total angular momen
tum oftheA-+B + c reaction and JB is the angular momen
tum of the B cluster. 

On the other hand, it is possible to represent S B + c,A as 

S B + c,A = J d",(r')Ay e~ +c ® d ~ t 

= f d",(y') d",(y).,1, y e: f ~ +c ® d ~ t, (17) 

where in contrast to g IT' the variable dependence of the fry 
isf ~+ C(SA JA; SB JBa), with YSA ;;'YSB + mc. By compar
ing the representation of SB,A + c(cr) [Eq. (16)] with the re-
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presentation for S B + c.A given in Eq. (17), it is seen that 
SB.A +c(cr)-like SB+ c.A ---carries elements from KA to 
K B + c. Thus, crossing a scattering operator means carrying 
out an analytic continuation on thel ~ + c or gtrr'+ c functions. 
In order for such an operation to be compatible with the 
spectral representation of the scattering operators-where 
the final channel variables are not functionally related with 
the initial channel variables, we assume that the/yy andgrr' 
do not depend on the number of particles in cluster B or 
cluster A. Then the superscript B + c on the I rr' and A + C 
on the gyy can be removed and the I rr' and gyy become 
"universal" expansion coefficients, valid for any number of 
particles. In the following paragraphs it will be shown that 
the functions I rr' and grr' are not independent of one an
other, but can be related through the use of crossing relations 
that connect SB + c,A with SB.A + c(cr). Also, crossing rela
tions can be used to express the e~ and d ~ in terms of the g rr' 
and I rr' functions, Since e~ and d ~ can be expanded with 
respect to the/yy andgyy ' respectively, it is seen that all 
channel scattering operators can be expressed in terms of the 
I rr' and gyy . 

Before showing how crossing relations can be used to 
express the ~ and d ~ in terms of the I rr' and g rr' functions, 
we want to demonstrate that the universal character of the 
Iyy and gyy is consistent with the cluster properties of the 
scattering operators. For simplicity choose cluster A to be a 
three-particle cluster. Reference 3 shows that the crossing 
relation then becomes 

SB+c.A =SB.A+c(cr) +Sc.c ®SB,A-c (18) 

which in terms of the spectral representation gives 

f dp(y) dp(y')Ay (A ~I rr' ® d ~ t 

= (- l)JA +JB f dp(y) dp(y')Ay(B)~ ® [d~gy/rr 

+,F- W[B - (A - c)] v' 1- r/ef, (19) 

where Ay(A ) means Ay(SA JA)and03(B -A ) designates the 
threedeltafunctionso(sB - SA )8JBJAOUglTA;,F is the Jacobian 
ofEq. (14). Taking the inner product ofEq. (19) from the left 
with respect to~. and summing over the particle number B 
(while holding SB and JB fixed) gives-using the orthogona
lity relations, Eq. (9)-

f dp(y'}fyyAy(A )®d? 

=(_l)JA+JB f dp(y')Ay(B)gyy(cr)' 

®d? +,F- W[B - (A - c)] v' 1 - r/(B) 0YI' 

(20) 

Now Iyy is an element of a Hilbert space with a norm given 
by Eq. (14). On the right-hand side ofEq. (20) there are also 
elements of this Hilbert space, but they do not depend on the 
B cluster. Therefore, we conclude thatlyy can be chosen to 
be independent of the number of particles in cluster B. 

A further consequence of the crossing relation, Eq. (18) 
is obtained when the B cluster is chosen to consist of two 
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particles. Then e~ and d ~ can be shown to also depend on the 
I rr' and g rr' . If the A cluster is chosen to consist of more than 
three particles, Eq. (18) can be spectrally represented as 

f dp(y)Ay(A )e~ ®d: t 

= (- I/A +JB v'1 -1l(B) f dp(y)(d: g~[»t 

+,F- W[B - (A - c)] v' 1 -1/(B) d1- ct. 
(21) 

To express e~ in terms of grr" we write d: as f dp(y') 
X d ~ - Cgyy and make use of the fact that d: - c spans the 
direct sum Hilbert space summed over A to get 

f dp(y) [Ay(A )e~ - ( - l/A + JB v' 1 - 112(B) g~}cr)] g~y 

= v'1 -112(B) ,F- W[B - (A - c)] 01"1' (22) 

To actually express e~ in terms of gyy it is necessary to 
investigate how the orthogonality properties of ~(d~) de-
termine orthogonality properties of Iyy (g rr')' When 11 S B is 
between the three and four-body threshold, only e~, where B 
is a three-particle cluster, can contribute in the orthogona
lity relation, Eq. (9). Then 

(e~,e~) = orr" (23) 

for 1IsB between the three and four-body threshold. Be
tween the four and five-body threshold the orthogonality 
relations, Eq. (9) read 

(24) 

If e~ is expanded as f dp(i)4!ry, the invariant mass vari
able appearing in the ~ must be between the three and four
body threshold, so that the (~,e? ) appearing in the expan
sion of(e~,e~) ofEq. (24) will give a Dyy , according to Eq. 
(23). Therefore, 

f dp(y>Urr.J'Yr') + (e~,e~) = Dyy , (25) 

where the inner product ifyy.J'Yr') is defined in Eq. (14). 
Though Eq. (25) holds only for 11 S between the four and 
five-body thresholds, we will assume that it holds for all en
ergies above the four-body threshold. For then it is not diffi
cult (but rather tedious) to show that the orthogonality rela
tions of Eq. (9) hold for any energy. Basically all that is 
required is to show that ifEq. (9) is valid for B clusters con
sisting of 3,4, ... ,j numbers of particles, from Eq. (25) it fol
lows that Eq. (9) holds for B clusters consisting of 
3,4, ... ,j,j + 1 particles. Thus, the orthogonality relations of 
Eq. (9) will automatically be satisfied if we assume that Eq. 
(25) is valid for all energies above the four-particle threshold; 
there is of course a similar expression for the g rr' and d ~. 

Using the orthogonality relation, Eq. (25), it is possible 
to simplify the crossing relation, Eq. (22). To that end the 
spectral representation ofEq. (18) when B is a two-particle 
cluster and A is three-particle cluster can be written as 

f dp(y) [Ay(A )e~ - ( - l)JA + JB v' 1 - 112(B) g~~cr)] ® d ~ 
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=5- W [B - (A - c») d2~2(B), (26) 

where d2~2 is the 2---+2 partical partial wave amplitude. 
Equations (22) and (24) can then be written as 

I dfl(Y) [Ay(A )e~ - ( - 1/4 + J o Y 1 _1J2(0) gt?r)] 

X I(gr'Y' gr'r) + (d~, d~) 
)/ 

= Y 1 -1J2(B) glr + d2~2(B)dh 
and using the orthogonality relation, Eq. (24) gives 

Ar(A )e~ = Y 1 -1J2(B) [( - I)JA + J
8 g~}er) + girl 

+ ,l;",2~2 d~. (27) 

An analogous expression can be written for d ~ in terms of 
I ~~ ,It Y' and e~. Taken together such equations show that e~ 
and d ~ can be written in terms oflyr' , gyr' and their respec
tive crossed functions. 

It is not the goal in this paper to write out the conSe
quences of all the crossing relations explicitly. The reaSOn is 
that when both the A and B particle clusters contain more 
than three particles the crossing relation, Eq. (18) is not com
plete. Rather, as shown in Ref. 3, two-particle disconnected 
terms must be added which make the spectral representation 
considerably more complicated. What is missing in the 
crossing relation, Eq. (18)-as shown in Ref. 3-are all the 
two-line disconnected terms of the form Sc + I,A

I 
® S B - I,A, 

with A 1 U A 2 = A. If such disconnected operators are spec
trally represented, it is possible to show that thelyr' appear
ing in Eq. (19) can be written in terms ofthegyr" wheregyr' 
arise not only from S B,A + c(cr) and Sc,c ® S B,A _ c as before, 
but also from the two-line disconnected terms given above, 
What makes these two-line disconnected terms complicated 
to handle is they connot be naturally expressed in terms of 
the cluster variables of Eq, (13). Rather the natural cluster 
variables that are used to spectrally represent each channel 
scattering operator in the two-line disconnected terms must 
be transformed with the help of Poincare group Racah coef
ficients into the correct cluster variables. Before these two
line disconneted terms can be properly handled, it is neces
sary to work out these Racah coefficients for n particles, as 
generalizations of the three-particle Racah coefficients. 10 

Thus, unitarity and crossing leads to a representation of 
the channel scattering operators in terms of a basic set of 
related functionslyr' andgyy' that satisfy orthogonality rela
tions of the type given in Eq. (25) and are independent of 
cluster size. 

As an application of these ideas, we conclude by show
ing that the e;~ (and hence theirI" andgyy') are closely tied to 
inclusive cross sections. Consider at first only energies up to 
the four-body threshold. Using crossing relations the 2-..4 
partial wave amplitude can be written 

.el2 
·4 = (_ l)J, t ./" f df.1(y)A),(B) e;!n d iA t fl*cr, (28) 

where A refers to the initial two-particle (NN) cluster, andB 
refers to the outgoing three-particle (NNlT) cluster. To get an 
inclusive cross section we first Legendre transform both 
sides ofEq. (28) by PJ,cr(B) to convert the total angular mo-
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mentum JA to an angle 0, the angle between the incoming 
particles and outgoing detected pion (in the overall eM). 
Then Eq. (28) becomes 

:;;}2--4 = ( _ ItB I dfl(Y)1Jy(B )e<.:)d (A + Cler., (29) 

where 

d<.: + Cler = I P
Jp 

d~A + Cler( - 1/'. 
J A 

To get an inclusive cross section, we write 

(I It, 1.~L412 
I df.1(Y) df.1(y')A y d ;~+ Clcr*(e~B >,e;!j»A t, d;~ + flcr 

f df.1(Y) lAy 12Id;~+ClcrI2 

= 1J2 Id \1+ ClcY 12 + f df.1(Y) Id ~A + ncr 12 
1'/1 

= f df.1(Y) I d (A j flcr 12 - (1 - 1J2) I d \.4+ flcr 12
, (30) 

where B ' designates the labels for the outgoing two-particle 
NN cluster. Rewriting Eq. (30) then gives 

I dp(y) 1 d;~ I flcr 12 

= IYI_1J2d \A+ Clc'1 2+ (IIt, 1:;;}2--41 2 

= 1 (_1/".~2 "1
2+ (I I)B' 1.~2.412, (31) 

where use has been made of the fact that (d 3_ 2y' 
= (- I)JA+Jod2~3. :;;}2~3istheLegendretransformofthe 

d2~3 partial wave amplitude. Now the right-hand side of 
Eq. (31) can be converted to 2---+3 and 2-4 amplitudes by 
transforming with respect to the spherical harmonics 
YJ IP (n). In fact, using the completeness of the spherical 
harmonics and summing over J Band (7 gives 

I I df.1(Y) Id ~A + Cia 12 
JIP 

(32) 

That is, by taking suitable sums over the d y functions one 
obtains an inclusive cross section. But the dy functions are 
related to the basiclyr' andgyr' functions. Thus, sums of the 
Iyr' functions lead directly to an inclusive cross section. 

To generalize this result to arbitrary energies it is sim
ply necessary to make use of the spectral representation for 
theA + c---+B operator, where again A is a two-particle clus
ter, but now B contains more than one pion. Equation (18) 
gives 

SH + c,A = SB,A + f{cr) 

= (- I)J,+J'J df.1(y)Aye~~)®di~+Clcrt, (33) 
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.if A ·B + c = ( _ I)J, + J" f dp(y) Are~B) d;~ + C)cr', 

where the last line ofEq. (33) follows from the fact that 
SB -+ c.A acts on elements in ~A' which is a one-dimensional 
space. Again, if both sides of Eq. (33) are Legendre trans
formed with respect to PJ ,a(e), the equation can be written 

.;fA ·B +c = ( _ I)JI< f dp(Y)Aye;~) d ~A -+ C)cr*, 

where dy is defined as before [see Eq. (29) ffj. Now, however, 
the e~) are not orthonormal for a fixed number of particles 
in B. Rather it is necessary to sum over all possible clusters, 
which means summing over all possible numbers of pions 
that can be produced for a given initial energy SA: 

B duster 

variahles 

f dp(y) dp(y')AyA y' (e<:), eiJ») d ~A -+ C)cr* d ~-1 + C)cr 

f dp(y) Id;~ -+ C)cr 12 - V 1 _1/2 d \A+ C)cr 1
2

, 

f dp(y) 1 d;~ + Clcr 12 

B duster 

variahles 

Finally if the :# partial wave amplitUdes are converted to 
amplitudes, the result becomes identical with Eq. (32), now 
valid at all energies. 

I f dp(y) 1 d;~ ~ Clcr 12 = lTinciusive (SA' cosO,S B)' (35) 
JlIlT 

Equation (35) states that the "eigenvectors" of S B.A + 0' when 
converted into amplitudes and suitably summed and inte
grated, give the inclusive cross section at all energies with 
respect to the detected pi meson, that is, the particle that as 
crossed. A similar result can be shown to hold for two parti
cle inclusive cross sections by suitably crossing two particles 
using the representation for the S B.A + c operator where now 
A is a three-particle cluster, and in general the N particle 
inclusive cross section, resulting from crossing N - 2 parti
cles in the A particle cluster. 

We have shown how a basic set offunctions can be used 
to represent multi particle scattering operators in such a way 
as to guarantee that the scattering operators will satisfy uni
tarity and crossing relations. This has of course only been 
demonstrated on a restricted class of production reactions 
(no NN pair production) and for particles with no spin or 
internal symmetries. Nevertheless, it is clear how such sets of 
functions-the frY and g ry --could be broadened to include 
more realistic particle reactions. 

In stressing the importance of this basic set offunctions, 
it is important to be clear as to the assumptions that have 
been made that lead to the conclusions of this paper. The.!;')'. 
and gyy' are assumed to not only have orthogonality proper-
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ties of the type given in Eq. (25), but also have analyticity 
properties, so that they can be analytically continued to 
crossed channels. These analyticity properties are postulat
ed to give meaning to the most important assumption of this 
paper, namely that the spectral representation of a channel 
scattering operator can be analytically continued to a 
crossed channel to represent the crossed channel scattering 
operator. It is not at all clear how such an assumption might 
be checked. Rather the usefulness of such an assumption is 
given by the degree to which it is possible to actually con
struct models of multi particle scattering operators that satis
fy general physical requirements, including not only those 
discussed in this paper, but also other requirements such as 
time reversal invariance and causality. 

Along with these assumptions, there are also further 
requirements that must be investigated in order to develop a 
sensible operator S matrix theory. Thus far it has been as
sumed that the nucleons are inert in the sense that they can
not be crossed or form NN pairs. Allowing the nucleons to be 
crossed means dealing with internal symmetries and con
served changes, so the set of reactions that are allowed and 
connected by crossing and unitarity become larger and more 
complicated. Further it is necessary to let the particles have 
intrinsic spin and impose the correct statistics on the multi
particle amplitudes. 

In spite of the fact that these issues have not yet been 
dealt with, it is our contention that the/yy functions offer a 
suitable starting point for investigating multiparticle pro
cesses. For by approximating the spectral measure by a finite 
sum, it is possible to construct model multiparticle ampli
tudes that automatically satisfy relativity, crossing, unitarity 
and cluster properties. There are of course other properties 
that would not automatically be satisfied by these model am
plitudes, for example, causality. So, on the one other hand, 
by building in more properties such as causality or time re
versal invariance, it should be possible to restrict the class of 
/yy functions and perhaps even be able to fix the spectral 
measure. On the other hand, it should be possible to approxi
mate the/ry functions with functions having finite spectral 
measure, and in this way construct actual phenomenological 
models for multi particle reactions. Both ofthese possibilities 
are being explored. 
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We derive closed expressions for and interrelationships between off-shell and on-shell scattering 
quantities for Coulomb plus short-range potentials. In particular we introduce off-shell Jost 
states and show how the transition matrices are obtained from these states. We discuss some 
formulas connecting the coordinate and momentum representatives of certain quantities. For the 
pure Coulomb case we derive analytic expressions for the Jost state and the off-shell Jost state for 
I = 0 in the momentum representation. 

1. INTRODUCTION 

In this paper we study off-shell scattering by a potential 
which is the sum of the Coulomb potential and a local central 
potential of short range. We derive many interesting expres
sions, notably for the Jost functions, the off-shell Jost func
tions, and the on-shell and off-shell "Jost states." These 
quantities are closely connected with the transition matrix 
which plays such an important role in scattering theory. 

First, in Sec. 2, we confine ourselves to a general local 
short-range central potential. Here we derive many interre
lationships between the above quantities. Only a few of these 
are well known, e.g., the defining expression for the (off
shell) Jost functions in terms of the (off-shell) Jost solutions 
in the coordinate representation. We give the momentum 
representation equivalents of these expressions which have a 
somewhat simpler form. 

Some of the equations given in Sec. 2 are also valid for 
Coulomblike potentials. However, some have to be modified 
for such potentials with a long range. To this end we consider 
in Sec. 3 the pure Coulomb case. By working out a number of 
explicit expressions we pave the way for the treatment of the 
general case of Coulomb plus shortrange potentials, which 
will be given in Sec. 4. We also prove the validity of two 
conjectures made in Ref. 1. 

Furthermore, in Sec. 3 we derive some interesting ana
lytic expressions, notably for the I = 0 Coulomb Jost state 
and the off-shell Jost state in the momentum representation. 
In these expressions we encounter a certain hypergeometric 
function which appears in many other Coulomb quantities. 
Only its argument is different for the various different cases. 

We will use mainly the notation of Refs. 1 and 2. In 
particular the energy is k ' with Imk!D and the energy depen
dence ofG, Go and Twill be suppressed. However, instead of 
the Jost solutionjAk,r) and the off-shell Jost solutionjAk,q,r) 
of the radial differential equations we will use the Jost solu
tion <rlkl r) and the off-shell Jost solution <rlkql r) of the 
partial-wave projected equations. Here q is an off-shell mo
mentum variable for which we assume Imq;>O. We shall also 
consider the Hankel transforms of the above Jost solutions. 
These are denoted by (Plkl r)and(Plkql i), respectively. We 
call Ikl r> the Jost state and Ikql r) the off-shell Jost state. 

2. THE SHORT-RANGE POTENTIAL CASE 

In this section we confine ourselves to a local central 

potential V (r), having a short range. Let us first recall Fuda's 
definition of the off-shell Jost solutionJ:jAk,q,r) is that solu
tion of the inhomogeneous differential equation 

( k' + ~ _ I (I + I) _ V(r»)!t(k,q,r) 
dr' r' 

= (k' - q')i'qrh ) + )(qr), 

which satisfies the asymptotic condition 

lim !t(k,q,r)e iqr = 1. 
r ~ oc 

We introduce the "state" Ikql i) by 

(rl kql r ) ===-(21 tr)II'(qrttft(k,q,r). 

(2.1) 

(2.2) 

This may be compared with the "state" Ikl i) that we intro
duced before, 

<rl kl i) (2hr)I/'(krt'!t(k,r). (2.3) 

Let HI = HOI + VI be the partial-wave Hamiltonian, then we 
obtain from Eq. (2.1), 

(k 2 - HI) 1 kql t) = (k 2 - q2)lql r )0' (2.4a) 

that is, 

G ,-ilkql r) = GOi1lql r)o. (2.4b) 

Here Iql i)o is the Jost state corresponding to V O. In the 
coordinate representation one has 

<rlql i)o = (2/ tr)1I2/h j + )(qr). 

Furthermore, we denote the scattering state for V =0 and 
energy k' by Ikl), or by Ik) when no confusion arises, e.g., 
Tllkl) = Tllk). It should be noted that Eqs. (2.4) are valid 
only in the coordinate representation. We shall call <rl kql r) 
the off-shell Jost solution of the "inhomogeneous Schro
dinger equation" corresponding to Eqs. (2.4). 

We would like to have a closed expression for Ikql r). It 
is easily seen from Eq. (2.4b) that GI G Oi ilql t>ois a particu
lar solution of an inhomogeneous differential equation. If 
one adds to this quantity an arbitrary solution of the corre
sponding homogeneous differential equation it remains a so
lution of (2.4). Now we have, again in the coordinate repre
sentation only, 

(2.5) 

Furthermore, any solution is a linear combination of Ikl i) 
and 1 kl!). Therefore, using G, = Go, + Go, TI Gal we obtain, 

Ikql r) = (1 + Go,T])lql i)o + c1lkl i> + c,lkl!). (2.6) 
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In order to determine Cl and C2 we consider the asymptotic 
behavior of the right-hand side. By using 

we obtain, for r- 00 , 

- -l1Tk <rlkl tXkl- I V!lqll t)o, 

r-oo. 

Since <rlkqll) has by definition the same asymptotic behav
ior as <rlql t)o, namely, 

lim <rlkql t)qre- iqr = (2/1r)112, 

we find 

C1 = !1Tk <kl- I V!lql t)o, 

C2 = O. 

It is convenient to rewrite C1 in terms of the off-shell Jost 
/unction//...k,q). Fuda4 has given a closed expression which in 
our notation reads, 

ft(k,q) = 1 + !1Tq(q/k )'/i(k )<kl - iVII qll )0' (2.7a) 

Some equivalent expressions are 

(2.7b) 

(2.7c) 

= I + 11Tq(q/k)lft(k) o(ql! I V,lkl +). (2.7d) 

By substituting Cl in Eq. (2.6) and using (2.7a) we obtain the 
convenient expression, 

Ikql t) = (I + GOI T1)lql t)o + Ikl t)(k /q)I+! 

ft(k,q) - I 
X ft(k) . (2.8) 

From now on we shall suppress the argument k of the 
Jost function, so we writeft instead ofj/...k). 

When the potential has a short range the off-shell Jost 
function and solution are continuous in q = k, (cf. Ref. 3) 

limft(k,q) = ft, 
q~k 

(2.9) 

limlkqlt)=lkll). (2.10) 
q~k 

By taking the limit q_k in Eq. (2.8) we obtain 

Ikl r) = (1 + GOI TI)lkl t)oft. (2.11) 

We multiply both sides of this equation by VI and get 

V1lkll) = Tllkl t)oft. (2.12) 

This equality turns out to be very useful below. 

Multiplying Eq. (2.8) by VI and using Eq. (2.12), we 
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obtain 

V1lkqll) = T1Iqll)0+ Tllklt)o(k/q)l+! 

X [ft(k,q) - 1]. (2.13) 

Further we get some closed formulas for the Jost function 
from Eqs. (7) by taking q = k. We have 

ft = ft(k,k) = 1 + !1Tkft<kl - iVl I kl t )0' 

and therefore 

By using Eq. (2.12) we obtain from Eq. (2.14), 

(2.14) 

ft = 1 + !1Tk<kl iV,1 kl t) = 1 + !1Tk<kl! iVII kl). 
(2.15) 

We shall need the connection between <P I kl t) and 
<PI Vlkl t). From Eq. (2.11) we have 

Ikl t)/I- 1 = Ikl t)o + Go1Tllki t)o, 

(2.16) 

Therefore, 

<Plkl t) = <Plkl t)<1; + <PIGol V1lkl t). (2.17) 

The free "state" <Plkl t >0 is given explicitly by 

<Plklt)o= 2. (P/k)!, Imk>O. (2.18) 
1Tk p2 _ k 2 

By inserting this in Eq. (2.17) one easily obtains 

<PI V1lkl t) = (k 2 - p2)<Plkl t) + 2(1Tktl(p/k)lft, 
(2.19) 

which is the relation we wanted. 

The connection between the off-shell quantities, corre· 
sponding to the one of Eq. (2.19), can be obtained from Eqs. 
(2.8), (2.13), and (2.19), 

<PI Vllkql t) = (k 2 - p2)<Plkql t) 

+ 2(1Tqt1(P/q)Vl.k,q) 

_ (k 2 _ q2)/(P2 _ q2)]. (2.20) 

It is interesting to consider the limit of <Plkl t) for 
p- 00. This limit could be used for an alternative definition 
of ft (cf. Refs. 5 and 6). By using the fact that 
<rlkl t) = 0 (r- 1- I) as r-D, we obtain 

<PI Vllkl t> = (2/1T) 112i- 1 fOj1(Pr)Vk)<rlkl t)r dr 

=.c/- 2 i'''jl(X)VI(x/p)XI-IdX, p_oo. 
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In this way we find that 

limp-'<PI ~lklt)=O, [>->00 

when the potential is nonsingular, i.e., 

V (r) = 0 (r - a), a < 2, r~. 

It is easily seen from Eqs. (2.19) and (2.21) that 

(2.21) 

j,=~7Tk'+llimp2-'(plklt). (2.22) 
P--"-cc 

This may be compared with the usual definition ofJ,., 

J,. (7T12) 112 (2Ii) , (I !/(21 )!)lim(kr)' + \rlkl t). (2.23) 
r~O 

Similar equations hold for the off-shell Jost function and 
solution. The analog of Eq. (2.23) is (Ref. 3) 

J,.(k,q) = (7T/2)1I2(2IZ)' [l !/(21)! Jlim(qr)' + '(rlkql t). 
r~ 

(2.24) 

The off-shell analog ofEq. (2.22) follows by using Eq. (2.8). 
We have [cf. Eq. (2.21)] 

lim p2 - '<P I Go, Tt I ql t)o = limp - / <P I T, I ql 1)0 = 0, 
p-co p----+oo 

and so we obtain from (2.8), 

J,.(k,q) = !7Tq' + I lim p2 -'<Plkql t). (2.25) 

This expression can also be derived with the help of Eq. 
(2.20). 

It is interesting to note that Eq. (2.25) is obtained in a 
different way, by using Eq. (2.24) in the expression 

<Plkql 1) = (2I7T)1I2i-tlOO Mpr)(rlkql 1)r' dr, (2.26) 

and applying the equality 

i 00 • ( ) ,- A d 1122 - A r (1 + 11 - !.-l ) i, x x x = 7T , 
o r (~ + ~l + ~.-l ) 

O<Re.-l <i + 2. (2.27) 

On the other hand, we shall now derive Eq. (2.24) from 
Eq. (2.25). We have 

(rlkql i) = (2/7T)1I2 i'lim ('''It(pr)<Plkql t)e - EPp2 dp, 
£10 )0 

(2.28) 

where e - £p has been inserted to guarantee the convergence 
of the integral. It turns out that, when r goes to zero, 
<Plkql i) may be replaced by its asymptotic value, which is 
given by Eq. (2.25). Then we obtain from (2.28), using the 
new variable of integration x = pr, 

lim(qrY+ '(rlkql i) =j,(k,q)(2I7T)312 it 
r~O 

X lim (00 Mx)x' e - Exlr dx. (2.29) 
EIO )0 
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In order to evaluate the integral here, we note that 

l'" e - ax "'l (f3x)x" dx 

= (a 2 +/32)- (1/2)-(112»' 

X r (l + f-l + V)P,~ !l(a(a2 + 13't' 1/2)), 

(2.30) 

Here P ,-:-1'<;) is the Legendre function of the first kind "on 
the cut"; - 1 < ~ < 1. Its value for ~ = 0 is given by 

r(1 + f-l)P v-IL(O) = 2FI ( - v,v + 1;,u + I;!) 

r(1 + !f-lW(1 +!f-l) 

By using this expression we get 

lim (00 e - EX J (x)XV dx = 2V r (! + !f-l + !v) 
E!O)O IL r(!+!f-l-!v)' 

Re(1 + f-l + v) > 0, 

and so 

lim ('" e - E),(X)X' dx = 7T 1122' - Ir (/ + !) 
nO )0 

= 7T2 - ,- '(21)!/1!. 

(2.31 ) 

(2.32) 

By inserting this in Eg. (2.29) wejust obtain Eg. (2.24). 

We note that the above limiting procedures constitute 
in fact a generalization of the well-known Riemann-Lebes
gue lemma, i.e., 

lim ff(x)e iXY dx = 0, 
y- ± 00 

where f is any summable function. 

3. THE COULOMB CASE 

Some of the expressions derived in Sec. 2 do not hold 
when the potential has a Coulomb range. Especially Eqs. 
(2.9), (2.lO), (2.14), and (2.15) need modification. In this 
section we shall derive the analogs of these equations for the 
case ofthe pure Coulomb potential. Further we shall develop 
some explicit expressions, in terms of hypergeometric func
tions, for the particular case when 1= O. In Sec. 4 we shall 
derive interesting formulas for the case when the potential is 
the sum of the Coulomb potential and a short-range poten
tial, by using the results obtained in Secs. 2 and 3. 

In the first place we note that the important equations 
(2.11) and (2.12) do hold for the Coulomb case, i.e., 

Ikl t)c = (1 + Go, Tcl)lkl t)ofc" (3.1) 

and so 

(3.2) 

We shall prove Eg. (3.1) in an independent way. To start 
with, we observe that the existence of the quantity 
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GOI Tcdkl t)o = Gel Vcllkl t)o is easily confirmed by using 

<rl Gel I r') = -11Tk <r> Ikl t)cc<kl- Ir <). (3.3) 

One can also show in this way that Go[Tellkl!)o is not de
fined, i.e., that it contains a divergent integral. 

In order to prove Eq. (3.1), we note that its right-hand 
side equals some solution !/J of the equation (k 2 - Hel)!/J = 0 
(in the coordinate representation). Further, by using Eq. 
(3.3) and by considering the asymptotic behavior (r----.. 00) of 
the right-hand side of (3.1), we find that it must be propor
tional to Ikl t )c' The next step is to consider the behavior for 
small r. By again using (3.3) one has 

<riGel Vcdkl t)o = o (lnr) , 1 = 0, r----..o, 

= 0 (r - ), i> 0, r----..O. (3.4) 

Therefore, 

liml+ 1 <rIGOl Tel lklt)0=0, 1=0,1,. ... 
r-.o 

By using Eq. (2.23) the proof ofEq. (3.1) now follows easily. 

In a previous paper2 we have derived the Coulomb ana
log of Eq. (2.9), by using an explicit expression for lel (k,q). 
The following equality holds, 

limw.t;Ak,q) =ic[, k>O. (3.5) 
q .k 

Here 

(q-kr 
e1Ty/2 leO 

Imq>O. (3.6) 
w- q + k r (1 + iy) leO (k,q) 

, 

The Coulomb analog ofEq. (2.10) is now easily obtained by 
using Eqs. (2.8), (3.1), and (3.5), 

limwlkql t)c = Ikl t)c, k > O. (3.7) 
q~k 

It is interesting to note that we are now able to prove the 
validity of two conjectures from a preceding paper.' The first 
one, Eq. (40.1), is in fact just (3.7). The second one, Eq. 
(40.k), is easily proved by using Eqs. (40.h)-( 40.j) of Ref. 1 
and Eq. (2.8). 

We note that Eqs. (2.7a) and (2.7d) are valid in the 
Coulomb case, whereas Eqs. (2.7b) and (2.7c) are not. By 
using Eqs. (2.7a) and (3.5) we have obtained the interesting 
equality, 

Obviously, this can be considered as a Coulomb analog of the 
short-range potential formulas given in Eq. (2.14). 

It would be interesting to have available explicit expres
sions for the above quantities. Only a few such formulas are 
known. The quantities <rlkl t)c andlcA:k) for I = 0,1,2,.·· 
have been known for a long time. We have obtained a num
ber of interesting analytic expressions for IcA:k,q), 
1 = 0,1,2,.·· (see Ref. 7). Further, <PI TellP') is known in 
closed form for 1 = 0' and for 1 = 1 only.9 Below we shall 
derive analytic expressions for <Plkl t)c' <Plkql t)c' and for 
<P I Tel I ql t )0' in the case 1 = 0 only. 
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Before we start with the derivations we would like to 
make some remarks on the interrelationships between the 
above quantities. It is importanttonotethat (PI Tel Iql t >ocan 
be considered as the general object from which all other 
quantities can be obtained in a simple way. This is true as 
well for Coulomblike potentials, and of course also for short
range potentials. Indeed, by taking q = k we have 
(P I Tel I kl t > 0 from which (P I kl t ) c follows with the help of 
Eqs. (2.12) and (2.19). Once (P I kl t ) c is known, (P Ikql t ) c is 
obtained by using Eq. (2.8). The ordinary off-shell Coulomb 
T matrix (P I Tel IP') follows from (p I Tel I ql t ) 0 by noting 
that 

Furthermore,icl (k,q) can be obtained from (P I kql t ) c and.t;'l 
from (Plkl t) c by using Eqs. (2.25) and (2.22), respectively. 
Finally we note that application of the Coulombian asymp
toticstates(seeRef. 10)to (pITcllql t>oand (PITcllP') yields 
icl(k,q) and (Plkl + )c' respectively. Since, therefore, 
(PI Tcllql t >0 appears to be the object of central important, 
we are interested in the general structure of an analytic ex
pression for this quantity. 

For the moment we restrict ourselves to the case I = 0 
and we suppress I. Let us first recall the expression for 
<PI Tclp') given in Ref. 8, 

<P I Tc Ip') = ik (1Tpp')-' [Fi/aa') + Fi/(aa't') 

(3.10) 

Here 

and 

a-(P - k), a'-(P' - k). 
(P + k ) (P' + k ) 

By using a well-known integral representation for the hyper
geometric function, 

Fi/Z) = iy f t iy - 1(1 - tzt' dt, 

we are able to evaluate 

(P I Tc Iqt)o = f" (p I Tc Ip') (P'lqt ).p'2 dp', 

where [cf. Eq. (2.18)] 

<Plqt)o = 2(1Tqt'(p2 - q2t', Imq> O. 

After a number of manipulations we arrive at 

with 
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Equation (3.9) provides us with a check on this result. It can 
be seen by inspection that we have indeed 

lim«P1 Tclqt>o + (PI Tcl( - q)t>o) 
q._p' 

= 2i(P1 Tclp'), (3.13) 

note that b-'>1Ib when q is replaced by - q. 

Further, we clearly have from (3.12), 

Jim (p I Tc I qt >0 = (P I Tc I k T >0 
q ·k 

= 2(rrpt' [F,/a) - F,/1Ia)]. (3.14) 

By using Eq. (3.1) one easily obtains 

(PI Vclk t>c = 2(1TPt1c[F'r(a) - Fir(1Ia)] , (3.15) 

and with the help of Eq. (2.19), 

(Plk t>c = 2(1Tp)-1(P2 - k 2t'fc[plk - Fir(a) + Fir(1Ia)]. 
(3.16) 

Finally we note that (Plkqt>c can now easily be given. We 
only need to insert the known expressions for the terms on 
the right-hand side ofEq. (2.8). In particular, we have 

fc(k,q) = b - '1'. (3.17) 

Let us, for completeness, write out this expression for the 
Hankel transform of the Coulomb off-shell Jost solution for 
1=0, 

(PlkqT)c = 2 + 2k 
1Tq(P2 _ q2) 1Tpq(P2 _ k 2) 

x [Fi/ab) - Fir(b la) - plk + b - ir 

(3.18) 

By using Eq. (2.13) or Eq. (2.20) we have 

(P I Vcl kqt>c = 2k (1Tpqt l [Fi/b la) - Fir(ab) 

By taking here the limit q-'>k we get, with w = fcbir, 

limw(p I Vc I kq t > c = (P I Vc I k t > c' 
q~k 

Such a relation holds in fact for alII. Indeed, with the help of 
Egs. (2.19), (2.20), (3.5), and (3.7) the proof of 

limfcb 'l'(P I Veil kql j>c = (P I VC/I kl t>c, 
q·~k 

1=0,1,2, .. ·, (3.20) 

is easily obtained. 

A final remark concerning the generalization of the 
1= o expression for (P I Tclqt>o to general values of lis appro
priate here. In view of Eq. (3.12) it can be expected that 
(PI Tellql t>o where I = 0,1,2,.··, can be expressed in terms of 
simple functions and the hypergeometric function Fir with 

2524 J. Math. Phys., Vol. 20, No. 12, December 1979 

exactly the same arguments as in (3.12), notably ab, b la, a, 
and 1Ia. 

4. THE COULOMBLIKE POTENTIAL CASE 

In this section we assume that the potential is the sum of 
the Coulomb potential and a short-range potential, 
V = Vc + Vs' We shall discuss the necessary modifications 
of the equations given in Sec. 2 by using the appropriate 
results obtained in Sec. 3. In particular, we will derive the 
analogs of Eqs. (2.9), (2.10), and (2.14). 

We shall use the well-known two-potential formalism. 
The T operator corresponding to V = Vc + Vs is given by 

T = Tc + (l + Tpo)tcs(l + GoTJ, 

where tcs is the solution of 

fcs = Vs + Vs Gc fcs' 

(4.1) 

(4.2) 

The partial-wave analogs of these equations have exactly the 
same form. For the partial-wave "outgoing" scattering state 
I kl + > the following equation can be obtained, 

(4.3) 

In order to derive relations for the "Jost states," we use 
Eqs. (2.11) and (2.12). These are also valid for a Coulomb like 
potential. We insert (4.1) in (2.11), 

Ikl t)f,- 1= (1 + GOI TI)lkl t)o, 

and obtain 

(4.4) 

Further, by inserting (4.1) in (2.12), 

Vllkl t)fl- I = Tllkl t)o, 

we get 

Vllkl t>fl- 1= Vellkl t)Jcl l + G Oll Gel tcs/lkl t>Jcl I
• 

(4.5) 

We are now going to derive a connection between the 
Jost functionJ; and the Coulomb Jost functionfel' To this 
end we write Eq. (4.3) in the coordinate representation. In 
the resulting equation we insert the equality [cf. Eq. (3.3)] 

(rl Gel I r') = - !1Tk (r < Ikl + >c c(kl! Ir ». 

We note that c(kl L Itcs/lkl + )c is a well-defined quantity 
since tcsl is a short-range operator. By using 

(rltcs/lkl+)c=O(rl-U), a<2, r-'>0, 

we obtain from Eq. (4.3) 

(rlkl + > = (rlkl + )c - !1Tk (rlkl + >c 

The Jost functions can be obtained from the scattering states 
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by considering their small-r behavior. We have (e.g., Refs. S 
and 6) 

limr - 1 (rlkl + ) = 11- 1 (2hr)II2(2ik YI 1/(21 + I)!. (4.6) 
r --0 

With the help of this relation one obtains 

11- I = Icll - ~1T"klcll /kl! I tcsll kl + )c, 

as can be seen by inspection. We rewrite this equation in the 
more convenient form, 

(4.7a) 

If we take here Vc---"O we get back one of the expressions of 
Eq. (2.14), since in this case tcsrTsl andfcrl. Just as in 
(2.14) there are three different equivalent expressions, 

namely 

(4.7b) 

(4.7c) 

(4.7d) 

These are easily derived with the help ofEqs. (4.1) and (4.3). 

In order to derive the analog ofEq. (2.1S), we first mul
tiply both sides ofEq. (4.4) by VsI' This yields 

V,llkl t)/I-1 = tcsllkl t)Jcl l. (4.8) 

By inserting this equation in (4.7d) we get 

I cl l It = 1 + ~1T"k c (kl - IVs' I kl t) 

(4.9) 

Obviously this is the two-potential analog of Eq. (2.1S). 

It is interesting to consider the analog of Eq. (3.8), i.e., 

1,- I = lim(liJ-1 - ~1T"k <kl - I V, I ql t )0), k> O. 
q~k 

(4.10) 

In order to prove this equation, we first note that one has 
from Eqs. (4.1)-(4.3), 

<kl - I VI = /kl - I Vcl + c<kl - I tcsl (1 + GOI Tel)' 
(4.11) 

We insert this expression in (4.10) and use 

(4.12) 

By applying finally Eqs. (3.8) and (4.7d) the proof of Eq. 
(4.10) is completed. 

Now we turn to the off-shell Jost function. In Eq. (2.7a) 
the following general formula, 

ft(k,q) = 1 + !1T"q(qlk)lft<kl- I V,lql t)o, (4.13) 
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has been given.4 This equation is also valid for a Coulomblike 
potential. By inserting Eq. (4.11) in (4.13), and by using 
(4.13) for the pure Coulomb case, we obtain 

[(,(k,q) - 1]/,-1 = IIAk,q) -1]/CI 1 + ~1T"q(qlk)' 

(4.14) 

Herewith we have obtained a useful relation between the 
Coulomb off-shell Jost function and the off-shell Jost func
tion for a Coulomblike potential. Indeed, from Eq. (4.14) 
one obtains, by using Eqs. (4.12) and (3.S), the analog of the 
pure Coulomb formula (3.S), 

limliJft(k,q) = ft, k> O. (4.1S) 
q~k 

Here liJ is given by Eq. (3.6). 

Finally, we are going to prove 

limliJI kql t) = Ikl t), k > O. (4.16) 
q~k 

This is just the Coulomb like analog of the pure Coulomb 
formula (3.7). From Eqs. (2.8) and (2.11) we obtain 

Ikql t) ---.. Ikl t) 11- I ft(k,q). 
q~k 

Application of Eq. (4.1S) then completes the proof of Eq. 
(4.16). 

So we see that the singular behavior of the off-shell Jost 
function and of the off-shell Jost state in q = k is just the 
same as for the pure Coulomb potential. This result is as 
might be expected, since this singularity is generated by the 
asymptotic part of the potential only. 
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Symmetries of the stationary Einstein-Maxwell field 
equations. Va) 
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This paper shows that the field equations and the hierarchy of potentials for static 
electrovac fields can be formulated in close analogy to the stationary vacuum ones. A 
list of transformations. some of them previously unknown, will be given for the later 
case. 

1. INTRODUCTION 

In a series of papersl Kinnersley and Chitre explored 
the symmetry group of the stationary Einstein-Maxwell 
equations. In the present work, dealing with some aspects of 
the electrostatic Einstein-Maxwell equations and the sta
tionary vacuum, we shall in Sees. 2 and 3 show that the 
equations for static electrovac space-times allow a treatment 
which differs only in the use of dual instead of complex func
tions from the one for vacuum. The generators of their sym
metry group)Y, a subgroup ofthe group discussed in II, will 
be identified with some of the generators of K '. 

Section 4 deals with the stationary vacuum equations 
by the Lagrangian method as outlined in Refs. 2 and 3. We 
shall give a detailed prescription how to perform the Le
gendre transformations connecting the Lagrangians, from 
which the field equations are to be derived. We shall further
more identify the generators of the invariance groups of 
those Lagrangians (at least for the first ten) with some of the 

rA"J used in Ref. 1. 
While this method may be less powerful, it has the ad

vantage that only a finite number of potentials are involved 
and the integration of the infinitesimal transformations is 
straightforward. Even though asymptotically flat metrics 
yield asymptotically nonflat ones, one may hope that some 
of the transformations can be used to cure the undesirable 
behavior of the later. 

2. FIELD EQUATIONS AND THE HIERARCHY 

Following Kinnersley: we write the relevant equations 
for electrostatic space-times as 

~ V(pVf) = ('11)2 + (Vt/;? 
P 

'1(;2 Vt/;) = 0, 

(2.1a) 

(2.1b) 

where the Ernst potential 'l? and the electromagnetic poten
tial 1[1 have been taken as real and we defined 

12 =/ 
It has been observed by BonnorS that the above equations 
can be obtained from the vacuum Ernst equations by the 

"Supported by National Science Foundation Grant PHY76-12246. 

substitution 

Re'l? _/2, Im'l? -it/;, 

which, however, requires an analytic continuation. Thus it is 
not surprising that the symmetries of Eqs. (2.1) are very 
similar to the one ofthe stationary vacuum problem (cf., e.g., 
Refs. 2, 4, 6). The infinitesimal transformations, neglecting 
gauge transformations, read 

(2.2) 

Equation (2.1 b) implies the existence of a function cp defined 
by 

Vcp =~Vt/;. 
12 

Defining a quantity 

(
f ICP) 

lAB = Icp p21 - 1 + Icp 2 ' 

Eqs. (2.1) can be written as 

v( ~fAXVIXB)=O, 
or equivalently (l XAI XB = p2{j~) 

(2.3) 

(2.4) 

(2.5) 

Ix.:;
VIAB = - -fA Vt/;XB' 

P 

Ix.:;-
Vt/;AB = - -fA VlxB' (2.6). 

p 
To write those equations in a more concise way we make use 
of dual numbers7 and define 

hAB = lAB + jt/;AB' 

which gives the field equation the desired form 

VhAB = - LfAXVhxB. (2.7) 
P 

This form of the field equations is, save for the use of dual 
instead of complex numbers, the same as (II 1.19). We hence 
can, with only minor changes in sign, define a hierarchy of 
fields and potentials in complete analogy to II: 

'1"7 h (n) - _ Lf x.:;- h (n) 
v AB - A v XB' 

P 
h <,;'B+ I) =j(n~I;) + hAxh (n)XB), 

V n~"JJn) + fir;:}v h (n)XA. 

We define 

h ~1 = - jeAB' 

(2.8) 

(2.9) 

(2.10) 
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which leads to 

n~O;) = jh <;~, 

and the above equations hold also for n = O. Furthermore we 
have the relations 

n(m,n) _ j{m.n) - fi(m) h (n)X 
AB AB - XA B' 

n(m.n + k) n(m + k.n) _ ~ n(m,s)n(k - s.n)X 
AB - AB - £.. AX B' (2.11) 

3. THE GROUP 5Y 

The symmetry group of (2.6) consists of real 2 X 2 ma
trices with unit determinant, i.e., it is isomorphic to SL(2,R ) 
(cf. I). Note that, in contrary to the group G of the stationary 
vacuum, the above group gives rise to nontrivial new 
solutions. 

The symmetry group of (2.1) is also isomorphic to 
SL(2,R ); however, neglecting gauge transformations, the co
variant generalization (cf. II) of (2.2) can be written as 

lAB-lAB - 2(llXylXYt/t(AB) -llABIXYt/tXY)' 

from which one obtains the action on h AB : 

hAB-hAB - j(llXYh AxhYB + llA Y n~~» -llXB h ~l. 
As in II one constructs the action of the infinitesimal trans
formations on the potentials n~"]jn) and finds 

n~"]jn)_n~"]jn) + ll~kf n(m + k.n)YB + llC:J n(m.n + k) A Y 

'YI(k )XY~ n(m.s) n(k - s,n) 
-'1 £.. AX YB . 

The infinitesimal parameters ll~kJ have the form 

'YI(k) - 'YI(k) +J' VE(k) 'IAB - '/(AB) AB 

with a real symmetric part. 

(3.1) 

(3.2) 

Our group 5Y is a subgroup of K'. To identify the pa
rameters 1l~k) with Y<Ak) ,C~k) of II, we apply the transforma
tions of 5Y and K' to flat space. 

The h <;~ can easily be shown to be given by 

h \~) = (2rt - IPn _ I (cost1 ), 

h \"i = - j(2r)npn(cost1), 

h i~) = j(2rt 2~ sint1P ~ _ I (cost1 ), 

h (n) = _ (2r)n + I 1 sint1P I (cost1 ). (3.3) 
22 2(n+l) n 

Furthermore, nW) = ni~l) = O. Thus only one term of the 
sum survives if (3.1) is expanded for n\~I). 

We find 

1] W: h11 _l - jll(2rt + IPn + 1 (cost1), 
11 \"i: hll_l- 21l(2rYPn(cost1), 
11 i"i: hlI _1 - jll(2rt - IPn _ 1 (cost1), 

(3.4) 

while V(k) does not have any effect at all. The only transfor
mation which preserves static metrics is r\~). As 

/ = Re(H1!) = Re(hll)2, t/t = Re(tPI) =Jm(h ll ) ,(3.5) 

we can immediately identify 
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(3.6) 

Moreover, we find from (II 3.2) and (III 5.19) that if the c~n) 
transformations are applied to flat space, the result is 

c<;): tPI- - ic(2rYPn(cost1), 
C}n): tP 1-+c(2r)n - IPn _ 1 (cost1 ), (3.7) 

and now 

1m C\k + I) +----+ 1l\~)' Re C~k) +----+ 1l~~) . (3.8) 

One checks from commutators (II 3.4) that 
(r\~), 1m C\k + 1 », Re cik » form indeed the subgroup of 

K' leaving the electrostatic vacuum invariant. Of course, one 
can perform a duality rotation <P _ ei"rp. 

We sketch the proof of the relations 

B- 1 r\;)B = 2 r\;l, B- 1 n;)B = cik ), 

B -1 ,Jk)B _ C(k+ I) 
(11 - - 1 , 

where C}k) is real, C\k) imaginary, and B denotes the Bonnor 
transformation. One first establishes by direct calculation 
from (II 3.1), (II 3.2) 

B -1 .,(O)B - 2 ,,(0) B- 1 ,,(O)B - c(O) B- 1 ,JI)B - c(1) ti2 - fi2' n.2 - 2 , (22 - 2 , 

and uses [B - I y<k )B,B - 1 y</)B 1 = B- 1 [y<k ),y</)]B and 

the commutation relations (II 3.4) to show the above rela
tions for k = 0,1. Then one proceeds by induction. Negative 
k are dealt with analogously. 

4. LAGRANGIANS FOR THE STATIONARY VACUUM 
CASE 

It has been pointed out in A that the stationary vacuum 
Einstein equations in the presence of two commuting sur
face-forming Killing vectors can be derived from a series of 
Lagrangians 

and 

L (2n) = 2Vk.Vp - -1-IV/ABI [p2 = - det(fAB)] (4.1) 
2p 

L (2n + 1) = 2VK'Vp - L(Vp + v¢2). (4.2) 
2/2 

(We use those forms of the Lagrangians as they seem to be 
the most familiar ones, and changed the notation slightly to 
conform with I-IV.) Note that, while in (4.1) p isjust an 
abreviation for a more complicated expression, it is an inde
pendent variable in (4.2). Variation of(4.2) leads to the Ernst 
equations. 

The invariance group of the Lagrangians is generated 
by the Killing vectors, i.e., by 

, 5{3 a = 

o 
/11 

-iz2 
o 

C. Hoenselaers 
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, (4.4) 
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FIG. I. The tree of Lagrangians. The letters on the solid lines refer to Eq. 
(4.7) and (4.10), respectively, while the dashed lines indicate that 
fg(k + 2) ub I is identical to fgku' 

where the sequence of variables is (k./II ./22./12) and 

(K, p, f,if;), respectively. 
The commutators of the transformations are the nega

tive ofthe Lie bracket of the respective Killing vectors, i.e., 

[p,a] = a, [y,a] = - 2P, [y,P] = y (4.5) 

and 

k.77] = -77. [;.77] = -2E. [;.E] = -;. (4.6) 

which immediately shows that both groups are isomorphic 
to SL(2.R ). There is also a Killing vector mapping k----+k 

+ const and K----+K + const. respectively; we shall omit it. 
Concentrating now on (4.1) and (4.3), we look for a 

hypersurface-orthogonal1inear combination of the Killing 
vectors. A rather lengthy calculation shows that the 
equation 

with 

N = 2~ [(2yft2 + PIll)(2al12 - P/22) - (y/22 + alll?] 

is satisfied for arbitrary a, P. y. The Killing coordinate is. 
however, a rather complicated logarithmic function and 
leads us into the dead end street of Eq. (A8). We thus de
mand that N be a perfect square. This gives 

p 2 = _ 4ay. 

where we can resolve the following three cases: y = o. 
- a = y = Y3 = 1, a = O. We find the parametrizations 
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III =f, 
112 = - wf, 
122 = w21 - p2j - I. 

w=-/'2/1". 

III = H/(1 + W)2 - p2/1], 
122 = H/(l - W)2 _p2/1], 
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(4.7a) 

112 = H/(1 - ( 2) + p2/1], 
w = (III - 122)1(2112 + III +/22)' 
1= !(fll + 122) + 112> 

III = w2j - p21 - I • 
112 = - wf, 
122 =f, 
W = -/12/122' 

(4.7b) 

(4.7c) 

(To avoid a profusion of primes. hats, or tildes here and in 
the following. we shall use them only when the danger of 
confusion is really imminent.) 

The first and third of the above expressions have been 
known for a long time while the second one is new. 

All those expressions yield with 

K = k + !lnlfl (4.8) 

the Lagrangian 

L (2n) = 2VK'Vp + ~(P Vw2 
- ~Vp). 

2p P 
from which a Legendre transformation with 

Vif; =/2 Vw 
P 

gives L (2n + I). 

(4.9) 

We now describe how to transform L (2n + I) into 
L (2n + 2). One again searches for a hypersurface orthogonal 
linear combination of the Killing vector (4.4). and finds that 
any linear combination satisfies that requirement. One de
mands. for the same reasons as above. that the denominator 
be a square. The three cases to be distinguished are 

g =f, X = if;. 

21 g= • 
P + (if; + 1)2 
1-P-~ X= , 

P + (if; + 1)2 

1= 2g , 
g2 + Ct + 1)2 

if;= 1-,? - X2 • 
g2 + (x + 1)2 

_ I 
g- P+if;2' 

_ if; 
X- P+~' 

1= g2!if;2' 

if; = X 
g2+X2 

It should now be noted that the parametrization 

g - p 
11- I · 

_ _ pif; 
gI2-g21- I' 
g22 = ~(l2 + ~). 
K' = K - !lnp 

C. Hoenselaers 

(4. lOa) 

(4. lOb) 

(4.lOc) 

(4.11) 
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cast (4.2) in a form similar to (4.1) and the relations (4.10) 
turn out to be the analog of (4.7). 

Equations (4.10) leave L (20 + I) form invariant, i.e., re
place I ~ g, t/J ~ X, and, defining q; so that 

P2VX = \jq;, 
g 

(4.12) 

one gets L (20 + 2). As the structure of the symmetry group of 
L (20 + I), being generated by the Killing vectors, is indepen
dent of the parametrization, we shall canonically choose 
(4.7a) for calculating the lAB from g, q; which replaces/, {j}. 

5. THE GROUPS 

In this section we shall identify the transformations 
generated by (4.3) and (4.4) with those generated by the YAk) 
of II and list them for ~(I)a and ~(2)ab (Fig. 1). (~(o)ab ... 
denotes the group belonging to L (0) ab .. ). 

One first observes that in general 

~(k + 2) _ ~(k) 
, .. abl - ... a' 

and that /3 and E fulfill the relations 

/3 (.C§(20) .. a2) =!<t - 1/)(~(20 - I) .. a)' 

/3 (.C§(2n).a3) = - E(~(2n - I) .. a)' 

E(~(2n + l)a2) = !(a + y)(~(2n) .. a)' 

E( ~ (2n + 1) .. a3) = /3 (~(2n)a)' 

(5.1) 

(5.2) 

respectively. Furthermore, a and 1/(~(n» can contain only 
Y<}J with O<.k<. - n and analogously for rand, (O<.k<.n). 

Now the commutators (4.5) and (4.6) have to be com
pared with the commutators for the Y<}J, i.e., 

[yk) , yl)] = y k + I), YAkB + I) = 2yk )X (A y~l) 

giving a, r, respectively 1/, " up to a~·const, 
r-y-(const) -I. This remaining constant is then deter
mined by the action on flat space and comparison with 
(III 6.1). 
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~(2)32[ - !(ft~) + 1.2 I) + ~2 2)M(~2 I) - ftI(), 
!( - ~Df + ft~ - ftV)], 

~ (2) [.,( - 2) .l .,(0) (2)1 
33 r i2 ,- 2 r 12' - r II • 

The groups are given as ~ [a, /3, r] and ~ [E, 1/, ,]. 

6. REMARKS 

(i) ~o, ~(I)I' and ~(I)3 have, of course, been known for 
a long time while ~(1)2 is new. The infinitesimal action 
, (~(I) 2) produces on flat space is 

111-1 + 2,z, 
112- - 2'zp2, 
122- _p2(l- 2'z). (6.1) 

Considering (4. 7b) and (4.9), one finds that 

(6.2) 

in terms of the {JAB of II. These relations together with the 
structure of ~ (2)2 shows that it is indeed one of the sub
groups conjugate to H (cf. II). 

(ii) It has been pointed out by Neugebauer and 
Kramer 3 that the mapping 

I-pi/, (j}-it/J (6.3) 

maps (4.1), parametrized according to (4.7), directly into 
(4.2). Using (4.11) gives 

L(2n+I)=2VK'.Vp+ -1-IVgABI [p2 = det(gAB»)' (6.4) 
2p 

As, however, the field equations for the gAB turn out to be 

V(~ gA XVgXB ) = 0, (6.5) 

it is clear that one can repeat the discussion of Secs. 2 and 3 
almost word for word. The above transformation has the 
effect of, so to say, starting the infinite sequence of potentials 
at the first instead of the zeroth level. 

Note added in proof A change in the printing method 
prevents us from using the notation ofl-IV. Overhead let
ters now appear as right superscripts in parentheses. 

IW. Kinnersley, J. Math. Phys. 18,1529 (1977); W. Kinnersley and D.M. 
Chitre, J. Math. Phys. 18, 1538 (1977); 19,1926, (1978); 19, 2037 (1978); 
henceforth referred to as I-IV. 

'C. Hoense1aers, J. Math. Phys. 17, 1264 (1976). Lacking the Roman nu
meral "0", this paper is referred to as A. 

'G. Neugebauer and D. Kramer, Ann. Phys. 24, 62 (1969). 
'W. Kinnersley, J. Math. Phys. 14,651 (1973). 
'W. Bonnor, Z. Phys. 190,444 (1966). 
'R. Geroch, J. Math. Phys. 12,918 (1971). 
'Dual numbers are defined by d: = a + jb (a, b E R,j 2 = 1). The dual conju
gate is d = a - jb and the absolute value Id I = (dd) lIZ They do not form a 
field as multiples of I + j or its conjugate do not have an inverse. 

C. Hoenselaers 2529 



                                                                                                                                    

Symmetries of the stationary Einstein-Maxwell equations. VI. 
Transformations which generate asymptotically flat spacetimes 
with arbitrary multipole momentsa) 

c. Hoenselaers, William Kinnersley, and Basilis C. Xanthopoulos 

Department of Physics, Montana State University, Bozeman, Montana 5971 7 
(Received 24 January 1979) 

A new series of transformations is presented for generating stationary axially symmetric 
asymptotically flat vacuum solutions of Einstein's equations. The application requires 
only algebraic manipulations to be performed. Several examples are given of new 
stationary axisymmetric solutions obtained in this way. It is conjectured that the 
transformations, applied to the general Weyl metric, can be used to generate systematically all 
stationary metrics with axial symmetry. 

1. INTRODUCTION 

In a continuing series of papers 1-5 (referred to as I-V) we 
have been studying the symmetry group K of the stationary, 
axially symmetric Einstein-Maxwell equations, and how the 
transformations 'If; may be used to generate new solutions 
of those equations. In Ref. 6 we found a set oftransforma
tions {3 (k) which automatically preserve asymptotic flatness. 
The {3 (k )'s are finite linear combinations of the r ~kJ'S, and 
have the further property that they leave flat space invariant. 
However, in practice those transformations are not easy to 
apply. The only successful examples found to date remain 
the generation of the Kerr and the generalized Tomimatsu
Sato metrics given in IV. 

In the present paper we discuss a new set of transform a
tions A (p) belonging to K, which seem to be much more 
interesting than the {3 (k )'s for generating new solutions. By 
contrast with the {3 (k ) the A (p) are built from infinite linear 
combinations of the y ~ki. They do not leave flat space invar
iant, but they map it into some asymptotically fiat, nonfiat 
spactime. However, their most interesting property is that 
they can be applied straightforwardly to any stationary, ax
ially symmetric vacuum soluton. The procedure involves 
only algebraic manupulations and therefore can be easily 
adapted for use on a computer. 

The general stationary axially symmetric asymptotical
ly flat metric (if Newtonian gravity is any guide) should be 
characterized by two infinite sets of multi pole moments, one 
for the mass distribution and one for the angular momentum 
distribution. The Weyl static metrics already contain the 
first set. Our belief is that the transformations A (p) generate 
the second set. Hence, we think that we have at hand an 
effective procedure for the construction of an arbitrary sta
tionary, axially symmetric, asymptotically flat exact solu
tion with any prescribed multi pole moments. 

2. GENERATING FUNCTIONS 

In Paper IV the generating functions 

a)Partially supported by National Science Foundation Grant PHY 78-
12294. 

FAB(t)= f tnH~n~, 
n~O 

G (t) ~ sm t n N(AmB· n ), AB S, = L 
!n,n =0 

(2.1) 

(2.2) 

(2.3) 

were introduced as an effective means for calculating the 
potentials N<;;;n). In the present paper we will find them to 
play an even more important role. The transformations we 
will presently consider can be described only in terms of the 
generating functions GAB (s,t ). In this section, we will derive 
a few new properties of G AB(S,t) which will prove useful 
later. We will then present a calculation of GAB (s,t ) for the 
general Weyl static metric. 

FAB(t) obeys the differential equation 

VFAB = itS -2[(1- 2tz)VHAX- 2tpVHAX ]FXB (2.4) 

and the algebraic relation 

2iftF2B = (1 - 2tz - 2it/UJ)F1B + SFIB *, (2.5) 

where 
Set) = [(1- 2tZ)2 + (2tp?]1!2. (2.6) 

[Geometrically S (t) is 2t times the distance from the point 
z = (2t) - I, P = 0.] GAB (s,t ) is given in terms of FAB(t) by 

GAB (s,t ) = (s - t) - I [SEAB - t (1 - 2sZ)F!A (s)FXB(t) 

- 2ist/xyFxA*(s)FYB(t)]. (2.7) 

These relationships are quoted as they appeared in IV, 
but they can be further simplified. From Eq. (2.5), 

2it/AXFxB = (1 - 2tz)FAB + SF~B' (2.8) 

and when this is used in Eq. (2.7), we obtain 

GAB(S,t) = (s - t) -l[SEAB + tS(s)FXA(s)FXB(t)]. (2.9) 

Note that no pole is present at s = t, since the residue vanish
es by virtue of 

FXA(s)FXB(s) = -S -I(S)EAB' (2.10) 

Two other functions of particular interest are 

G'ABCS)= f smN~TT;/)=(~GAB(S't)] 
m=O at r~O 
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G () ~ sm+nNA(mB,n) AB S,s = £.. 
m,n=O 

x d F = E AB + sSF A - XB' 
ds 

(The last line was obtained using I'Hospital's rule.) 

Potentials for the Weyl metric 

The Weyl solutions are specified by the metric 

(2.11 ) 

(2.12) 

fAB = (e~x _ p~e _ 2X). (2.13) 

where \72X = O. Then from Eqs. (11.1.12), (II. 1.13), 

VB)) = 2e2
¥ \7X, 'ilB)2 = 2ipVX - i\lp. (2.14) 

Put these in Eq. (2.4), with A = B = 1, and use Eq. (2.5) to 
eliminate F21 . The result is an equation for FII alone 

\lFII = [\IX - S - 1[\7S - (1 - 2tz)\7X + 2tpVX] jFI1 . 

The solution is 
FII(t) = tS - I(t) exp[x + /3 (t )], 

where /3 (t) is a new potential, defined by 

'1/3 = S - I(t ) [(1 - 2tz)\lx - 2tpVX]. 

(2.15) 

(2.16) 

(2.17) 

The other generating functions are now easily obtained: 

F 12(t) = is - I exp(x - /3), 

F21(t) = - !is - 1(1 - 2tz + S) exp({3 - X), 

F2it) =!t -IS - 1(1 - 2tz - S) exp( - {3 - X), 

GII(s,t) = - !itS - l(t) exp[/3 (s) + {3 (t)] (2.18) 

X (1 + s + t - 4stz ), 
sS(t) + tS(s) 

G 11(t) = - i exp(x + /3), 

GII(t,t) = FII(t )F21(t). 

The potential /3 (t ) is a natural t-dependent generaliza
tion of the original harmonic function X. One may show that 
/3 (t ) has the following properties: 

/3(0) = X, [\7{3(t )]2 = [\7xf, 
(2.19) 

\l2[{3(t)/S(t)] = O. 

Equation (2.17), however, does not determine {3 (t ) uniquely. 
There remains the freedom 

{3 (t ~{3 (t ) + C (t), C (0) = 0, (2.20) 

where C (t) is independent of the spatial coordinatesp andz. 
This amounts to a gauge transformation, similar to the ones 
previously encountered in III, Sec. 5 and IV, Sec. 2. 

One may further specify X in terms of a multipole 
expansion 

X = ! mn r- n - I Pn(cosO), (2.21) 
n=O 

where r, 0 are spherical coordinates related to Weyl coordi
nates by z = r cosO, p = r sinO, and the Pn are Legendre 
polynomials. We next seek the corresponding expression for 
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/3 (t ). Using a series expansion for small t, we find the solution 
of Eq. (2.17) to be 

{3(t)=S(t)! i mn(2ty-kr-k-1Pk(cosO). 
n=O k=O 

(2.22) 

On the other hand, for large t one finds 

{3(t)= ! m,,[(2tt+ 1 -r-"-lpn+l(cosO) 
n=O 

+ OCt -I)]. (2.23) 

The divergent behavior at t = 00 may be cured by making 
use of the gauge freedom. This gives the result 

{3(00) = - ! mnr-n-IPn+I(COSO), (2.24) 
n=O 

FII ( 00 ) = !r - 1 exp [X + {3 ( 00 ) ], 

F21(00)= -4i(1-cosO)exp[ -X + {3(00»), (2.25) 

F I2(00) = F2loo) = o. 

Potentials for the Voorhees metrics 

Finally we return briefly to consider the generating 
functions for the Voorhees metrics, given in IV as 

F = tc(t) ( x - 2ty - S (t) )8, 
II Set) X + 1 

F = id(t) (x - 2ty + Set) )0, 
12 Set) x+ 1 

where x, yare spherioidal coordinates, 

p2 = (x2 - 1)(1 -i), z = xy, 

and 

(2.26) 

(2.27) 

(2.28) 

We would like to consider in more detail some particular 
limits, namely, t-+ ± 00 and t-+ ± !. The gauge c = d used 
in IV to simplify the expression F I} + itF12 is not the best 
choice here. One would prefer to use c, d to make the limiting 
values finite. 

The limiting forms for S (t ) are 

S(t)-±2tr, t-+±oo, 

S(t)=x=Fy, t= ±!. 
Choosing 

c = (1 - 2t ) - 0, d = (l + 2t) - 0, 

for t-+ + 4, + 00, and 

c = (1 + 2t) - 0, d = (l - 2t) - 0, 

for f-+ - 4, - 00, one obtains 

F II ( ± 00) = ± 4r-1(r ±y)O(x + 1)-°, 

F21( ± 00) = - !ir- l(r'F xy)(r ±y)Ii(X - 1) - 0, 

F ll(±4)= ±!(X=Fy)-8-1(X-1)°, 

F21 ( ± !) = - !i(x'F y) - Ii - I(X + 1)1i t- 1(1='1= y). 

Hoenselaers, Kinnersley, and Xanthopoulos 
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(2.30) 
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3. THE NEW TRANSFORMATIONS 

The vacuum Einstein equations for stationary axisym
metric spacetimes are preserved by the symmetry group K, 
consisting of the transformations Y<;), A,B = 1,2, 
k = 0 ± 1, ± 2, .... Their infinitesimal action on the poten
tials is given by Eq. (11.3.1): 

,)k). N(m,n)-+N(In.n) + ,)k)NX(m + k,n) + .)k)N(m,n + k) 
(AR' AB AB (AX B (XB AX 

k + r(k)XY I N~"Jt) N<¢B-s,n), (3,1) 

In particular 

N~;) : N\7,n) 

s= 1 

k 
-+ N\7,n) + r ~;) I N\7'S) N~1- s,n). 

s~ I 

(3.2) 

Thus the knowledge of the first components N~7,n) alone is 
sufficient to describe the rW transformations. In the rest of 
this paper we shall consider only these transformations. For 
convenience we simplify the notation, and from now on de
note N ~7,n) by N mn' We also denote GIl (s,t ) by G (s,t ). 

For a transformation of the form 

f ak~;)' (3.3) 
k~O 

where the ak are constants, we have 

(3.4) 

The exponentiation of this infinitesimal transformation into 
a finite one may be carried out as in III and IV. Introduce the 
infinite matrices 

NO! N02 

N= 
Nll NI2 

N21 N12 
(3.5) 

a l a 2 

A= 
az a3 

(3.6) 
a3 a4 

and the infinite-dimensional identity matrix 1. Let N, N de
note the initial and final potentials respectively. Then 

it = N + NAN + NANAN + ... 
=N+NAN. (3.7) 

However, this result cannot be put to immediate use because 
the matrices involved are infinite-dimensional. One must 
look for various ways to replace A and N by finite matrices. 
Two examples of this have been given in III, Sec. 4, and IV, 
Sec. 4. 

The present idea is to abandon the discrete set of basis 
functions N mn in favor of a continuous basis G (s,t). We seek 
transformations of the form (3,3) which are adapted to this 
basis, in the sense that they lead to a finite-dimensional 
problem. 
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The transformations A (p) 

Consider a transformation of the form (3.3), where the 
coefficients ak are given by 

ak = au'. (3.8) 

with a and u arbitrary constants. Then 

~G (s,t) = G (s,t) + aG (s,u)G Cu,t). (3,9) 

The solution of this for Gis 

G (s,t) = G (s,t) + aG (s,u)G (u,t )/[1 - aG (u,u»). (3.10) 

More generally, we have found a series of transform a
tions which can all be expressed in terms of G (s,t ) plus a few 
of its derivatives. We define 

Si t
j 

( a )i( a )J Gij(s,t) = -. -. - - G(s,t) 
111! as at 

00 sm t n N
mn 

= m~ i (m -O!(n - j )! . 
(3.11 ) 

n ~j 

We also define the pth rank transformation as the transfor
mation of the form (3.3) with 

ak = a(p)(;)uk
, k>p, 

=0, k<p, (3.12) 

where (;-> is the binomial coefficient and a{p) and u are con
stants. One inserts Eq. (3.12) into Eq. (3.6), multiplies by 
smt n/(m - i )!(n - j )!, and sums over m and n. This gives 

G;j (s,t ) = Gij (s,t ) + a( p) f Gi .P 
_ k (s,u )Gkj Cu,t) + ... 

k=O 

(3.13) 

To solve Eq. (3.13) for G, we must first set s = u. The result 
can be written 

I Mik (u)Gk; (u,t) = Glj(u,t) , 
k -c 0 

(3.14) 
Mik(U)-Oik - a(P)Gi,p_ k(U,U). 

Solve this system of p + 1 linear equations by matrix inver
sion, and substitute the result back into Eq. (3.13) with 
i = j = O. One gets 

G (s,t) = G (s,t) + a(p) f Go,p _ k (s,u) 
k,I=G 

(3.15) 

Since the Ernst potential is related to our functions by 

~ = iNO! = i[ap(s,t)]s=o,t=o, (3.16) 

we obtain 

w = ~ + ia<p) i Go,p_ k(O,u)M ki I(U) 
k,I=O 

x [aplO(u,t)] t = 0' 

which determines immediately the new solution. 
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Combined transformations 

Successive application of these transformations with 
various ranks and different constants a(p) and U may now be 
used to produce further new solutions. However, one should 
first note that the transformations f-i;.) all commute, and 
hence the present transformations commute also. It is there
fore possible to write down combined transformations in 
which the various a(p),s are present simultaneously, and this 
can sometimes lead to shorter calculations. 

For example, suppose the u's are all equal. Then the 
combined transformation 

ak = f a(p)(k)uk (3.18) 
p=o p 

applied to a given solution will generate a new solution with 
N + 2 additional parameters. The new solution is given by 

_ N .(... 

'tl = 'tl + i L a(p) L Go.P _ k(O,U) 
p=o k.l=O 

XM kl'(u)[at G/o(u,t)]t=o, (3.19) 

where now 
N 

Mij (u) = oij - L a(P)Gp _ i.j (u,u). 
p = i 

(3.20) 

A similar procedure can be used to write combined 
transformations with different U parameters too. For two 
rank -zero transformations, 

ak = a/a) Ul k + a2(O) u/, 
one easily obtains that the new Ernst potential is 
_ 2 

'tl = 'tl + iLl -I L a?)AAatG(uj,t)]t=o, 
j= , 

whereLl is the 2X2 determinant 

Ll = det[oij - a?)G(uj ,u;)) 

(3.21) 

(3.22) 

(3.23) 

and A j is the determinant obtained by substituting the 
column 

(
G(O,U I ») 
G(0,u2) 

in the determinant (3.23). 

4. EXAMPLES 

First we consider applications of the rank zero 
transformation 

G(s,t) = G(s,t) + aG(s,u)G(u,t)/[1 - aG(u,u)]. (4.1) 

From Eq. (3.16), the Ernst potential will be I 

Application to Curzon 

Next, let the initial metric be the Curzon metric, i.e., 

X = - mfr, /3(t) = - mS(t)/r. 

~ = 'tl +iaG(O,u)G'(u)/[I-aG(u,u)]. (4.2) 

Suppose that the initial metric is a static Weyl metric. 
Making use ofEqs. (2.3), (2.11), and (2.18), we obtain a very 
general result: 

_ iau - IS(u)[Fll(u)]2 
'tl = 'tl - ----.-:-.:.--.:..;:.-:.-

1 - aFll (u)Fzl(U) 

= ( 2S2(U) + iau[ 1- 2uz - S(u)] exp[2/3(u)] ) 

2S2(U) + iau[ 1 - 2uz + S(u)] exp[2/3(u)] 
Xexp(2x). (4.3) 

Application to flat space 

Now let us examine a few special cases. Suppose the 
initial metric is flat space. Then X = /3 = 0, and (dropping 
the tilde) 

'tl = 28 2 + iau(1 - 2uz - S) , 

2S 2 + iau(l - 2uz + S) 

s = I - 'tl = iauS 
1 + 'tl 2S2 + Zau(1 - 2uz) 

(4.4) 

In every stationary axisymmetric metric one has the coordi
nate freedom z--z + const, and this can be used here to ad
vantage to simplify Eq. (4.4). Let 

z = i + (2u) - I. (4.5) 

Then, by the remark after Eq. (2.6), 

S(u) = 2uf (4.6) 

and we have 

S = 2iau
2
f = *ia (4.7) 

8u2P 2 _ 2iau2i P - Va cosO . 

This is the well-known form for the extreme Kerr-NUT so
lution with m = I = a = la. (Extreme Kerr could, of 
course, be obtained by a further Ehlers transformation, 

s-- - is·) 
The rank-zero transformation applied to flat space has 

created an extreme Kerr-NUT particle, located at an off
center position along the axis, at z = (2u) - I. For U---+ 0 the 
transformation reduces to 110;. Since11o; leaves fiat space in
variant, one should get in this limit the identity transforma
tion. However, the way the solution attains this limit is rath
er indirect: The particle slides out along the axis to spatial 
infinity. Still, in a pointwise sense, the transformation does 
tend continuously to the identity. On the other hand, for 
every value of u the coordinate freedom may be used to re
turn the particle to the origin. From this latter viewpoint, the 
transformation is independent of u, and hence effectively 
discrete. 

(4.8) 

N ow the generated solution will have two singularities present ( dissimilar ones) at z = 0 and z = (2u) - I. Use the coordinate 
change 

z=i+(4u)-1 (4.9) 
to place them symmetrically about the origin, and then transform to prolate spheroidal coordinates based on these two points: 
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x = 2ur + S(u), y = 2ur - S(u), =?xy = 4uz - 1 = 4uz. (4.10) 

The singularities are now at x = + 1, y = ± 1. The result from Eq. (4.3) is 

If = A (x - yf + lau(l + xy - x + y)B f; _ (x - y)2(1 - A) + iaB [(1 + xy + x - y) - A (1 + xy - x + y)] 
2 .!>- 2 ,(4.11) 

(x - y) + iau(1 + xy + x - y)B (x - y) (1 + A) + iaB [(1 + xy + x - y) + A (1 + xy - x + y) J 
where 

A = exp[ - 8mu/(x + Y)1. B = expf - 4mu(x - y)/(x + y)J. (4.12) 

An asymptotically flat (NUT-free) solution can be obtained from Eq. (4.11) by applying the Ehlers transformation 

s--+sexp(iy), y= tan -I( - ~exp( - 4mU»). (4.13) 
4mu 

Note that, in this example also, the parameter u can be entirely eliminated, by appropriately rescaling m and a. However, 
this will not be possible in the general case. 

Application to Zipoy-Voorhees 

As a final example of application of the rank-zero transformation, let the initial metric be the Zipoy-Voorhees metric. 
From Eqs. (2.26), (4.3) we find 

~ = (x - 1 )8 (1 _ 2iac2(u)uS(u)(x - 2uy - S(U)?8 ). 

X + 1 2S 2(U)(X2 - Ii' + iauc2(u)(1 - 2uxy + S (u»(x - 2uy - S (U)f8 
(4.14) 

Here the arbitrary gauge function c(u) has been retained. However, for any fixed value of u, the effect of c(u) may be absorbed 
into a redefinition of a. Consequently, the gauge freedom does not lead to further solutions. Instead, it may be used as in Sec. 2 
to simplify various limits. 

We expect to find the original rod singularity lying betweenz = ± 1, and the point singularity atz = (2u) - I. Interesting 
cases are therefore u = ± 1. when the point coincides with one end of the rod. and u = ± 00 when it moves to the origin. 
Using the limits found in Eqs. (2.29), (2.30), we obtain for u = + 1, 

(
X - 1 )8 [ (x - y?8+1 - ;\ia(x2 - 1)8(x - 1)(1 + y)] (4.15) 

If = x + 1 (x _ y?8+1 + iia(x2 - 1/(x + 1)(1 _ y) . 

For U = + 00, we find 

If = (x - 1 )8[ rl(r - y)8 - a;a(r + y)8(r + xy) ], 
x + 1 rl(r - y)8 + !ia(r + y)8(r - xy) 

where 

s = Br2(r - y)8 + a;a(Ar - Bxy)(r + yys • 
Ar 2(r _ y)8 + !ia(Br _ Axy)(r + y)8 

(4.16) 

(4.17) 

The case u = -!, - 00 are obtained by replacingy--+ - y and a--+ - a in the above. Physically this amounts to turning the 
source upside down along with its spin. The limits u = ± 00, when the particle approaches the origin from above or below, are 
not identical as one might have naively supposed, indicating that the source somehow remains asymmetrical. 

Combined transformations 

Next we consider examples of applications of the combined transformations. 
Application to flat space of the combined rank-zero and rank-one transformations gives a two-parameter asymptotically 

flat solution which generalizes the extreme Kerr solution. Since the solution has been given in Ref. 7, we do not repeat it here. 
Instead, we devote the rest of the section to the study of applications of two zero rank transformations with different u 
parameters. Acting on flat space the transformation creates the spacetime due to two Kerr-NUT particles located on the axis 
at z = (2uI) - 1 and z = (2uz) - I. By changing z, 

z--+z + (u l + uZ)/4U I Ul , 

and defining prolate spheroidal coordinates by 

S(u l) = [(UI - uz)l2uz](x + y), S(uz) = [(UI - uz)/2u d(x - y). 

one obtains the solution with Ernst s-potential 

i(xl - yZ)[al(x - y) + alex + y)] + 2a 1a l y(yZ - 1) 
s=----------~-----------------------------

(Xl _ YZi _ i[al(x - y)l(xy + 1) + azCx + y)Z(xy - I)J + a la z(1 _ y4) 

(4.18) 

(4.19) 

(4.20) 

This is a special case of the generalized Tomimatsu-Sato metric discovered earlier, Eq. (IV. 4.30), in whichp = 0, q = 1, 
Y = -1T', and 

(4.21) 
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The final example is the application of the transformation Eq. (3.22) to the Zipoy-Voor.hees.metric~. Since the r~sulting 
experessions are rather lengthy, we give them only in the limit u I = 1. U2 = - 1, where they slmphfy consIderably. Usmg Eqs. 
(2.30), we have 

(X-l)fJ 'ifl= --
x+l 

5. MUL TIPOLE MOMENTS 

Consider a stationary asymptotically flat vacuum solu
tion. Let r be a coordinate which is asymptotically the Eu
clidean radius. Then the Ernst potential with respect to the 
stationary Killing field is of the form 

'ifl=1+Ar- I +Br- 2 +O(r- 3
), (5.1) 

where A is a real constant, B and the coefficients of higher 
order terms will be appropriate smooth complex functions of 
polar angle. Conversely, a stationary solution whose Ernst 
potential satisfies these conditions will be asymptotically 
flat. The transformations introduced in Sec. 3 may easily be 
shown to preserve all ofthese conditions, except for the reali
ty of A. Since this can be cured by a subsequent Ehlers trans
formation, we are always led to a new asymptotically flat 
solution. 

Now let us examine the far-field limit of the transforma
tions in more detail, to determine their effect on the multi
pole moments. Consider G (s,t ) for the general Weyl solution. 
Asr~oo,x~. FromEq. (2.19),{3(t) ~ o also. Then, from 
Eq. (2.18), 

G(s,t) = - !ir- I(1- cosO) + 0(r- 2
). (5.2) 

Note that the flat-space term dominates over any nonflat 
ones. Hence, as a preliminary study of the effect of the trans
formations on the multipole moments, we examine their ef
fect on flat space. 

In Eq. (3.13), the dominant effect will come from the 
term with the least number of G 's, namely the term linear in 
a(p): 

G (s,t )zG (s,t) + a(p) :t Go.P _ k(S,U)GkO(u,t). 
k=O 

Using Eq. (3.11) and Leibnitz's rule, we have 

(5.3) 

G(s,t)zG(s,t) + -- - [G(s,u)G(u,t)]. (5.4) 
a(p) uP ( a )P 

p! au 

We now insert the flat-space value for G (s,t) from Eq. (2.18) 
and use Eq. (3.16) to get eht Ernst potential: 

W = 1- ia(p)uP (~)P(_U_). 
p! au S(u) 

(5.5) 

Expand for large r, 

s - I(U) = f (2ur) - n - IPn(cos8), (5.6) 
n=O 

uS - I(U) = (2r) - \ + (4r 2u) - Ip\(COSO) + .... (5.7) 

For p = 0, the leading term is the r - I monopole. That is, the 
transformation produces Schwarzschild mass. For p;;' 1, the 
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I 
leading nonzero term will always be the dipole, and each 
transformation in the series produces angular momentum, 
but does not change the mass. 

Generation of pure multlpoles 

It would be even more desirable to have a somewhat 
different sequence of transformations, say D (P), which 
would leave the first p multipoles unchanged, and change the 
rest starting with the (p + l)th. Using such a sequence, one 
could adjust each multi pole moment in tum, and thus rou
tinely produce exact stationary solutions with any pre
scribed set of moments. 

Such a sequence of transformations is not hard to find. 
They will be simple linear combinations of the A (p), chosen 
to produce a cancellation in the generated dipole, quadru
pole, etc. Proceeding by induction, one can show that the 
transformations with 

(5.8) 

are the ones we seek. 
In fact, the new transformations D (p) would have aris

en naturally to begin with if we had used inverse parameters 
for the generating functions, e.g., 

G(s,t) = G(S-I,t -I). (5.9) 

To illustrate this point, let 

u = (4u) - I, R = r - I. 

Then 

S (u,r) = (2uR ) - IS (u,R ), 

uS - I(u,r) = !RS - l(u,R ) 

Instead ofEq. (5.4), we would have been led to the 
transformation 

~ _ 1- i8(p)u
p (~)P( R ) 

p! au 2S (u,R ) 

(5.10) 

= 1-!i8(P)VP(2R)p+-IPp(cosO)+0(R P+2). (5.12) 

which has a 2 P-multipole as its leading term. 
Note added in proof Due to a change in method of com

position, we have to use a new notation for the potentials 
N~nJt) and transformations if). Formerly m, n, k were 
placed above the main character. 
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Charged fluid sphere in general relativity 
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(Received 9 October 1978) 

An analytic solution of the relativistic field equations is obtained for a static, spherically 
symmetric distribution of charged fluid. The arbitrary constants are determined by 
matching it with the Reissner-Nordstrom solution over the boundary. The distribution 
behaves like a charged perfect gas. As a particular case a solution for a spherical 
distribution of charged incoherent matter is deduced where the charge density and the 
mass density are equal in magnitude. In the absence of the charge, the solution reduces 
to Tolman's solution VI with B = 0. 

1. INTRODUCTION 

On account of the occurrence of two singularities in the 
Reissner-Nordstrom metric corresponding to two nonzero 
finite values of r, it is generally suggested that the collapse of 
a spherical material distribution to a point singularity can be 
avoided if the matter is accompanied by some charge. In 
such a model the gravitational attraction is balanced by the 
electrical repulsion together with the hydrostatic pressure of 
the matter. Therefore, to start with, it is desirable to con
struct new solutions of the field equations in general relativ
ity representing the internal field of charged distributions. 
The external field of such distributions (spherically symmet
ric) will be described by the Reissner-Nordstrom solution. 
In this paper we have solved the coupled Einstein-Maxwell 
field equations of general relativity for a static, spherically 
symmetric distribution of charged fluid. The fluid model has 
nonnegative expressions for the mass density and pressure. 
The magnitude of these parameters and the charge density is 
maximum at the center. 

ered in our investigation is described by the line element 

ds2 = _ eA (r)dr _ r(de 2 + sin2edcp 2) + e,f.r)dt 2. (4) 

The combined Einstein-Maxwell field equations are 
(using the geometric units G = c = 1) 

R{- !Rg/ = - 81TT{, 

where the energy-momentum tensor T{ is given by 

T{=M1+E1, 

M{ = (p + P)UiU i - pg/, 

E/ = _1_( _ F. via + 1.g JF ~va/3) 
I 41T Ia' 4 I afj' • 

(1) 

(2a) 

(2b) 

(2c) 

U i is the timelike four-velocity unit vector and Fi} satisfy 
Maxwell's equations 

Fi}.k + F)k,i + FkiJ = 0, (3a) 

(3b) 

Ji being the charge-current vector. We consider the fluid to 
be of null conductivity, so that, if ()" denotes the charge 
density, 

(3c) 

The static, spherically symmetric space-time consid-

Since the field is static, we have 

ui = (O,O,D,e -- vl2) (5) 

and 

J I = J 2 = J.1 = 0. (6) 

Using (6) and the condition for spherical symmetry we find 
from (3a), (3b) that the only non vanishing components of Fi} 
are F14 and F41 . Hence, in view of (2a), (2b), (2c), (4), and 
(5), the set offield equations (1) reduces to the following: 

(
V' 1 ) 1 e - A -;:- + -;; - -;; = 81T(p - k), 

e - A( v" + _V'_2 + _v_'_-_A_' 
2 4 2r 

A 'v') -4- = 81T(p + k), 

(7) 

(
A' I) 1 e - A ----;- - -;; + -;; = 81T(p + k), 

where the prime denotes differentiation with respect to rand 

k= - _I_F F41 
81T 41 • 

(8) 

2. A SOLUTION OF THE EQUATIONS 

An analytic solution of these equations is obtained. The 
arbitrary constants have been determined by matching it 
with the Reissner-Nordstrom solution 

2m c2 c 
Al"I '" F '" e = e = - -r- + r' 14 = r 

over the boundary. The solution is 

p = _1_[ 1 - c(n - 1/J, 
161Tr 

p= _1_[c(n+ 1)2-1J, 
161Tr 

1 
k = --[ 1 +c(n2 

- 2n -1)J, 
161Tr 

(9) 

(lOa) 
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where 

A =fo 1- --+ __ 2,,( ZrnO E~) 
ro ri' 

(lOb) 

( Zrno E~) ( ZE~) 
C = 1 - -- + - = 1 - - (1 + Zn _ n2) I 

ro ~ ri 
(1Oc) 

Here Eo is the electric charge and rna the mass, as measured 
by an external observer, of a fluid sphere of radius ro' From 
(3b), (3c), (8), and (lOa) we obtain for the charge density 

if = ± -- - 1 + e(n - Zn - 1 . 1 ( C [ 2 1) 1/2 

41Tr 2 
(11) 

In order thatp andp be positive throughout we have the 
following conditions on c: 

c«n - 1) - 2 

c;;'(n + 1) . 

(lZa) 

(l2b) 

if will always be real for 1 - (2) 1/2;;,n-:;. 1 + (2) 1!2. For 
1 - (2)112 < n < 1 + (2)112, if will be real under the condition 

e« - n 2 + 2n + 1) - I. (12c) 

The principle of causality dp/dp< 1 further restricts c by 

c«n 2 + 1)- I. (12d) 

The perfect fluid property p-:;.3p puts a stronger condition 
than 02d) viz., 

(l2d') 

Since c cannot exceed unity, (l2b) restricts n to n< - 2 or 
n-:;.O. But (12a) and (12b) together will hold only when n-:;.O. 
Also from (lOc), c becomes infinite for n = I + (2) 1/2 and 
negative for n > 1 + (2) 1/2. We conclude that (10) will repre
sent a realistic model of the charged fluid sphere for 
O<n < 1 + (2) 112 if 

(n+ 1) --2<;c<;(-n2+2n+ I) -I, for O<n<;~, 
(13) 

(n + 1) ~ 2<e«n 2 + n + 1) ~ I, for ~<;n < 1 + (2)112. 

The electrostatic field inside the sphere is described by 

(
A 2 )112 ~ 1 

FI4 = ± 2c (1 + en - 2n - 1) r" . (l4) 

The mass density, pressure, and the magnitude of the charge 
density decrease as the inverse square of the distance from 
the center and become infinite at the center. Also, from (lOa) 
the equation of state is 

po::p, (IS) 

which implies that our distribution behaves like a perfect 
gas. Further, it is to be noted that the solution provides an 
exact relationship between the mass rna and the charge Co of 
the distribution through (lOc). 

The surviving components of the Riemann-Christoffel 
curvature tensor R hijk for the metric (4) in view of (lOa), are 
given by 
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RI414 = nA (l - n)r(n - I), 

R 2323 = r(c + 1 sin2e - 1), 
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(16) 

R 3434 = - ncArnsin2e. 
Let A ~'a) denote an orthonormal tetrad associated with an 
event in space-time. We choose 

A~) = diagonal ( - V~, - Y _g22, _ V _gJJ, 

Yg44). (17) 

The physical components R(abcd) of the curvature tensor are 
defined by 

R _lhliljlkR 
(abed) - /L (aj/L (I»/L (c)/L (d) hijk' 

The non vanishing components are 

n(1 - n)c 
R(l414) = r ' 

R _ (c + 1 - cosec2e) 
(D23) - r ' 

- nc 
R(2424) = R(J434) = -----;:;-. 

(18) 

(19) 

Since R(abcd) ~O as r~ 00, the space-time is asymptotically 
flat. 

3. PARTICULAR CASES 

A. Charged disordered radiation 

The equation of state for disordered radiation is p = 3p. 
Hence for this type of distribution our solution (1Oa) 
becomes, 

e-"=(n2 +n+1)-·1, e"=Arn, 

p = 3p = 3 n 
161Tr n 2 + n + I ' 

if = ± Y n(Zn - 1) 

4YZ1Tr (n2+n+l) 

(ZO) 

This solution represents a real distribution of charged disor
dered radiation for n-:;.i Another interesting case is the ex
treme case of very relativistic gas where the speed of sound 
attains the maximum value viz., the speed of light. This 
is characterized by dp/dp = 1, which leads to 
c = (n 2 + 1) 1. Thus, our solution becomes 

e A = (n 2 + 1), e'· = Ar", 

n 
(21) p=p= , 

81Tr(n2 + 1) 

Y n(n - 1) 
if = -'-:'~---'---

41Tr(n2 + 1)' 

which is valid for n-:;. 1. 

B. Charged dust case 

Here we consider a distribution of charged incoherent 
matter where the attracting gravitational field offorce is bal
anced by the repulsive electrostatic field of force. In such a 
case p = 0 and the solution reduces to 

e -l = (n + 1) ·2 e'· = Ar", 
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n n 
p= , a= + -----

41Tr(n + 1)2 - 41Tr(n + 1 f ' (22) 

whereA is given by (lOb). We find that the mass density and 
the charge density are equal in magnitude. If N (r) denotes 
the particle number density of the distribution and €(r), mer) 
denotes the charge and mass associated with a particle, we 
have the relation 

p = m(r)N (r), a = €(r)N (r). (23) 

We arrive at the conclusion 

(24) 

Thus, the solution (22) is in agreement with the Newtonian 
theory, which permits the stability of a static distribution of 
charged incoherent mass particles only when (24) holds. The 
solution has a physical character for all positive values of the 
parameter n. Apart from this, in view of (lOc), we have the 
relations 

n n 
€o = + --ro' mo = --ro' (25) 

n+l n+l 
giving exact expressions for the total charge and mass of the 
sphere in terms of its radius. 

C. Uncharged fluid sphere 

From (11) a = 0 if c = (1 + 2n - n 2) - 1 which in view 
of (lOc) makes € = O. Our solution then takes the form: 
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(
2m )_1 

e'" = 2 - (n - 1)2 = 1 - --;;- , 

eV = Arn = ron ( 1 _ 2~o )rn, (26) 

1 n(2 - n) 
p= -- , 

81Tr 2 - (n - 1)2 

which is Tolman's solution VI with B = 0 (Ref. 1). Here the 
condition p>O, p >0 together with the principle of causality 
demand O<n < 1, which implies that the fluid model given by 
(26) has a maximum mass (as measured by an external ob
server) of one fourth the fluid radius. Moreover, if we impose 
the stronger condition p> 3p, the solution is restricted to 
O<n<!, thereby reducing the mass range to O<molro <1\. 
This solution, like that of Adler, 2 has no surface of zero 
pressure. 
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A new highly efficient and versatile general relativistic perturbational formalism for general 
matter occupied spherically symmetric space-times is developed. The perturbations are 
geometrical objects on the two dimensional totally geodesic submanifold spanned by the radial 
and time coordinates. The geometrical objects are "gauge invariant" scalars, vectors, and tensors 
which are independent of infinitesimal coordinate transformations on the background space-time. 
This article gives the even parity gauge invariant perturbation objects for arbitrary background 
scalars, vectors, and symmetric tensors on a spherically symmetric space-time. In particular, 
metric, matter, first and second fundamental forms, as well as vacuum-matter interface gauge 
invariant perturbations for a collapsing star are given. In addition four even parity continuity 
conditions across discontinuous timelike hypersurfaces are given. Two are conditions on the 
metric gauge invariants, one is a condition on the perturbation away from the spherical contour of 
the interface, and the fourth couples that contour perturbation to the metric gauge invariants. 

I. INTRODUCTION AND SUMMARY 

Junction conditions in general relativity arise from the 
answer to the following question: Given a space-time having 
a metric and stress energy as dictated by the Einstein field 
equation and given a three-dimensional hypersurface, how is 
the metric (and the stress-energy) tensor to be continued 
across the hypersurface? The answer is well known; indeed, 
if the stress energy has only a finite jump discontinuity in a 
well-defined sense, then the intrinsic metric (first fundamen
tal form) of the surface of discontinuity, its extrinsic curva
ture (second fundamental form) as well as the flow of ener
gy-momentum across this surface are each continuous 
across the hypersurface. 1 If one asks now the same question 
about a space-time perturbed to first order away from, say, a 
general spherically symmetric background the answer is, of 
course, the same. The junction conditions for the perturba
tions themselves can be roughly obtained in two ways: 

(a) Perturb the background junction conditions and ob
tain thereby the junction conditions for the perturbations. 

(b) Consider the Einstein field equations linearized 
around, say, some spherically symmetric space time. If cer
tain of its coefficients are allowed to have discontinuities to 
reflect those of the background, determine the necessary 
junction conditions that have to be obeyed by the solution to 
the set of linear partial differential equations. 

This paper uses the first of these two ways to arrive at 
the junction conditions. 

The least reason for considering even perturbations in 
general and their junction conditions in particular is by no 
means the fact that asymmetrically pulsating stars undergo
ing gravitational collapse. They are prime candidates for the 
source of gravitational radiation which present day and fu-

'''On leave of absence at Center for Theoretical Physics, University ofTex
as, Austin, TX 78712 

"'Now at Honeywell Electro Optics Center, Lexington, Mass. 02173 

ture detectors are hoped to receive.2 One of the types of 
gravitational collapse that is of particular astrophysical in
terest is a slightly aspherical general relativistic version of 
the type first considered by Colgate and Whitel or May and 
White.' Within this context it is our purpose to make precise 
general relativistic perturbational statements about such as
trophysical events. For odd parity perturbations it is 
straightforward to write down a master scalar equation from 
whose solution all odd parity metric perturbation are de
rived. s These perturbations are, however, only associated 
with viscous or shear stresses and not with any pressure 
(even parity) perturbations. 

Viscous stresses promise to playa particularly interest
ing role in slightly aspherical gravitational collapse.6 Indeed 
indications are that with the existence of viscosity due to 
coherent neutrino scattering, gravitational radiation has a 
significant competitor for damping out asymmetries during 
gravitational collapse. 1 

. 

Asymmetric (even parity) pressure perturbatIons are, 
however, also expected to playa significant role in the pro
duction of gravitational radiation. On a generic spherically 
symmetric space-time even parity perturbation theory has 
as yet not been reduced to a master scalar equation for the 
gravitational degree offreedom in a way that odd parity per
turbation theory has. Nevertheless, a set of coupled equa
tions for the even parity gauge invariantS perturbation object 
does existS and their relevant junction conditions at a discon
tinuous (e.g., matter-vacuum) interface can, as we shall pres
ently see, be written down. 

The results of this article can be stated as follows: Con
sider a spherically symmetric space time with metric 

and stress-energy tensor 
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t v dx'" dxv = t ABdxA d~ + !ta ar 2 [dO 2 + sin20 dqJ 2] 

I-' (1.2) 

Consider an even parity perturbation of the back-
ground fields, Eqs. (1.1), (1.2), and ofthe vector field 

nl-' dx'" = (fa fpg:'(3) - 112 j.Jldxl-' = nA dxA , 

normal to the concentric level surfaces (three-dimensional 
submanifolds) of the scalar functionj(x"') = j(XC

), C = 0,1. 
These perturbations are expressed in terms of the spherical 
harmonic Y (O,qJ ), its derivatives Y:a and Y:a,b (suppress an
gular integers I and m) and the metric Yab on the unit two 
sphere as follows: 

metric: 

hl-'vdx'" dxv 

= hAB(XC)YdxA dxB + hA(xC)Y:a(dxA dxa + dxadxA) 

+ [r 2K (XC)YYab + r 2G (XC)Y:a,b ]dxadxb; (1.3) 

matter9
: 

iltl-'vdxl-' dxv = iltAB YdxAdxB + iltA Y:a(dxAdxa + dxadxA) 

+ [r 2ilt l YYab +ilt2r:d]dxadxb; 

surface: 

ilnl-'dx'" = ilnA YdxA + iln r:adxa , 

ilf'(xl-') = ilj(xC)Y(O,qJ). 

Construct the corresponding gauge invariant metric, matter 
and surface perturbations 

kAB =hAB -PAIB -PBIA' (1.4) 

k=K -2~PA' 
where 

VA = r.A Ir (1.5) 

(1.6) 
where 

Pc = hc - !r 2G.c . (1.7) 

As in the odd parity case,5 note that once these gauge invar
iants are given, all perturbed quantities hAB , ... ,1ltAB , ... ,1lj 
can be obtained by subjecting Pc and G to (a total of three) 
gauge conditions. The well-known Regge-Wheeler gauge, 
for example consists of Pc = G = 0. 

For I = 0,1,2, ... the relevant equations for these (even 
parity) gauge invariants have been given elsewhere5 and are 
not presented here. Their junction conditions consist of the 
following quantities being continuous across a spherically 
symmetric hypersurface across which the stress~nergy ten
sor is discontinuous: 
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(1.8a) 

(1.8b) 

N-, 

(DAaA - aAaA - 2VAaA)vcnCN + 

+ kBDnBnD(VAnA + !n)A)vcnC + 

+ [k,AnA-!nE(kEAIB +kEBIA -kABIE)]VCnC 

(1.8c) 

- [nClCnBIB + (vAnA + !nA IA)IBnB]k. (1.8d) 

The deformation of the surface ~ is given by the gauge 
invariant vector 

(1.9) 

Here aB=nB ICnc is the acceleration of an observer on~, 
iAB=gAB - nAnB is the metric intrinsic to~, and 

D A A· B 
Aa = alB'A 

is the divergence of a A on ~. 
Even parity metric perturbations and their junction 

conditions have not yet been formulated in terms of a single 
master scalar wave function the way odd parity perturba
tions have. Nevertheless, comparing the derivations of even 
and odd parity junction conditions one can say this: 

Eq. (1.8a), obtained from perturbations in the first fun
damental form of ~ and Eq. (1.8b), obtained from perturba
tions (a: YYab) ofthe second fundamental form, constitute 
most probably the intrinsic and the normal components of 
the gradient of the yet-to-be-found even parity master scalar 
wave function. Equations (1.8c) and (1.8d) are continuity 
conditions imposed on the perturbation of the star's surface. 
It is evident that (1.8d) expresses the fact that these surface 
perturbations are coupled to the perturbations in the gravita
tional field itself. 

Equation (1.9) expresses the surface perturbation vec
tor NA in terms of the surface and metric perturbations N 
and kAB . 

II. REDUCTION OF TENSOR FIELDS ON A 
SPHERICALLY SYMMETRIC SPACE TIME 

A general spherically symmetric background space 
time M has a metric of the form 

gl-'vdx'" dxv 

= gAB (xC)dxAdxB + r 2(xC)[dO 2 + sin20 dqJ 2] • (2.1) 

The functions r(x ~ and gAB (XC) are scalar and tensor fields 
on the totally geodesic two-dimensional space-time M 2 

spanned by the two coordinates x C (C = 0,1). The vector 
field 

VA = r,Alr (2.2) 
is also on this submanifold. 

Let 
j(xl-') = j(xC) (2.3) 

be a scalar function independent of the angular variables. Its 
contours are spherically symmetric 3-manifolds in M or sim
ply one dimensional manifolds in M2. 

The first and second fundamental forms of these 3-man
ifolds have the form 

iAB = gAB - nAnB , 

iAa = 0, 

iab = gab = r 2Yab 

U.H. Gerlach and U.K. Sengupta 
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and 

e n C IC' AB = AlB -nAlcn nB =nc lAB' (2.5a) 

eAa = 0, 

eab = !ee egab = vCnCgab . (2.5b) 

Latin lower cases a,b,c refer to the angular coordinates. The 
symbol Yab is the metric on the unit two sphere. The vertical 
slash I in Eq. (2.5a) and in all subsequent equations, refers to 
the covariant derivative with respect to gAB on M 2. The sec
ond equality in Eq. (2.5a), 

eAB = ec ciAB , 

is true for any symmetric tensor with the property e AB nB = 0 
on M2. The partial trace ee e = e2

2 + e3
3 = 2vcnc in Eq. 

(2.5b) is a scalar on M2. 
It is clear that.f(xC),iAB,eAB,n~,vcnc are geometrical 

objects on M2. They detennine iJ.LY and eJ.LY on a spherically 
symmetric space time M uniquely and they are assumed to 
be continuous across the contours of.f(xC

). 

On any given contour ~ ofJthe intrinsic derivative is 
defined by 

DAN=iABN,B 

for a scalar N. For a vector aB which obeys aBnB = 0 this 
derivative is 

D . c· D 
AaB = IA 'B aCID 

Furthennore, D is compatible with the metric iAB of~: 

DciAB = 0 

and it satisfies the Leibnitz rule for the derivative of a prod
uct. Consequently, D is the covariant derivative of~. 

III. CALCULUS OF EVEN PARITY GAUGE INVARIANTS 

The theory of relativistic perturbations on a spherically 
symmetric space time on occasion is characterized by a pro
liferation of symbols that makes a survey of its overall struc
ture seem quite laborious. For spherically symmetric back
grounds this is true, more so of even that of odd parity 
perturbations. Expressing perturbations in terms of geomet
rical objects (scalar, vector, and tensor fields) on a two-di
mensional space-time eases, of course, the labor quite sub
stantially. Nevertheless, after the process of casting the 

perturbations (and the equations they satisfy) into an opti
mally efficient notation for the purpose of surveying their 
structure, there still remains the problem of preventing con
fusion between perturbations of different background geo
metrical objects. These objects are: 

(i) the scalarf, one of whose contours is the submanifold 
~ (say, the history of the surface of the collapsing star) across 
which the stress-energy tensor has a jump discontinuity, 

(ii) the vector field of unit nonnals 
nJ.L = (f.a fp~f3) - 112 on each of the contours off, 

(iii) the background metric tensor field gJ.LY' 
(iv) the metric tensor field iJ.LY = gJ.LY - nJ.L ny, intrinsic 

to each of the contours off, 
(v) the extrinsic curvature eJ.LY = na;piJ.L ai/ = nJ.L;{JiyP 

for each of the contours, and finally 
(vi) the stress-energy tensor tJ.LY' 
If one wanted to consider special stress energy tensors 

(e.g., fluid, electromagnetism, etc.) then there would be ad
ditional scalars and vectors to be kept track of. 

With each of these objects are associated others, name
ly: a perturbation and a gauge invariant constructed from 
the perturbation. 

To keep the number of new symbols at a minimum we 
have found the following notational rule successful: Use low
er case letters Jor the background geometrical objects; indicate 
their perturbations by the prefix .d and their gauge invariants 
by using capitals. We apply this rule consistently to all geo
metrical objects except to the metric tensor gJ.LY' where we 
attempt to deviate as little as possible from the now well
established notation of Regge and Wheeler. See Table I. 

The construction of the gauge invariant geometrical 
perturbation objects in spherically symmetric space time is 
straightforward and runs parallel for scalars, vectors and 
tensors. It is accomplished by a four-step procedure: 

1. Write down the background geometrical objects on a 
spherically symmetric space-time: 

J = f(x C
), (scalar), 

nJ.LdxJ.L = nA(xC)d~ (vector), 

(general symmetric tensor), 

(3.1) 

(3.2) 

(3.3) 

TABLE I. Notation for even parity perturbational geometrical objects and their gauge invariants on a generic spherically symmetric space-time. 

Harmonic coefficients Gauge invariant geometrical 
Back· 
ground as geometrical objects perturbation objects on M' 
geometrical Perturba- onM' 1st 2nd 
object to M tion onM Y Y" Y",Y Y",. Tensor Vector scalar scalar 

Metric tensor g,,,. hi" h'lI h, r'K rG k 1/1 0 k 0 

Scalar j ,;jf' ,;jj F 
Vector field n" ,;jn" ,;jn, ,;jn N, N 
Intrinsic metric i,,, ,;ji,,, Llz,w ,;ji, rK rG k IH - n jIVn - nuN.1 -n,N k 0 

Extrinsic 
curvature ell \ ,;je,,, Lle lit ,;je, r,;je' ,;je' EI/I £, £' £' 
Matter tensor Ifll ,;jl,,, ,;jlw ,;jl, r',;jl ' ,;jt' T111 T, T' T' 
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gll"dxll dx" = gAB (xC)dxtdxB + r 2Yabdxadxb (metric), 
(3.4) 

where 

Yabdxadxb = d(J 2 + sin2(J drp 2 

and tc c = t22 + t33 is the partial trace of til'" 
2. Write down the perturbations (suppress angular inte

gers I and m): 

J1j' = J1!(XC)Y«(J,rp) (scalar), 

J1nll dxll = J1nA (xC)YdxA + J1n(xC)Y.adxa (vector), 

J1tll"dxlldx" 
= J1tAB (XC) YdxAdxB + J1tA (xC)Y.a(dxtdxa + dxadxB) 

+ (r 2J1t 1 YYab + J1t 2y,a,b)dxadxb (general symmetric 
tensor), 

hll"dxll dx" = hAB YdxAdxB + hA y'a(dxAdxa + dxadxt) 

+ (r 2KYYab + r 2GY.a,b)dxadxb (metric). 

Here the coefficien ts of Y, Y.a , Y Y ab' and Y.a,b are geometrical 
objects on M 2

• 

3. Write down the "gauge" transformed geometrical 
perturbation objects. To do this, consider the even parity 
generator of an infinitesimal coordinate transformation 

Sll dXIl = SA YdxA + SY.adxa 

and the associate Lie differentials ofEqs. (3.1)-(3.4): 

.?s!= -/IlSIl , 

.? s nIL dxll = - (nll;uSU + nus U;Il)dxll, 

.? stll"dxlldx" = - (tllv;uS U + tuvs U ;j.L 

+ tllusU;v)dxl'dx", 

.? sgllydxlldx" = - (S1l;" + Sv;,..)dxlldx" . 

The "gauge" transformed geometrical perturbations objects 
are therefore 

J11= 1lf - /BSB 

J1nA =J1nA -nAIBSB-nBSBIA} 

J1n = J1n - nAsA 
- _ C C 

J1tAB-J1tAB-tABlcS -tCBS IA 

- tAcSclB 

J1f1 = J1t 1 - !r ~ 2(r 2V),A S A 

J1? = J1t 2 - ta as 
~B =hAB -SAIB -SBIA 

~ = hA - SA - r 2(S Ir 2).A 

K =K - 2VASA 

G= G - 2r ~2S 

PA =PA -SA 

where 

P A h A - -!r 2G.A 

(scalar) 

(general vector) 

(metric) 

(3.5) 

4. Using the expression G and PA derived from the met-
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ric, eliminate (by taking linear combinations) the "gauge" 
dependence in the other expressions, and obtain thereby the 
following gauge invariant geometrical perturbation objects: 

!_F = J1! - /BpB (scalar) (3.6) 

n 
~{NA = J1nA - nA IB pB - nB pB IA } 
~ (general vector), 

Il N = J1n _ nB pH 
(3.7) 

TAB =J1tAB -tABICPC 
C C -tA PCIB-tBPCIA (general 

tll,,- TA = J1tA - tAC pC - 1r 2ta UG.A symmetric (3.8) 

T 1 = J1t 1 _ -!r~ 2(r 2ta a).B pB tensor), 

T2 =J1t 2 -1r2ta aG 

_{kAB =hAB -PAIB -PBIA} (metric) (3.9) 
gil" k = K - 2v A pA 

where "-" means "has the gauge invariant perturbation 
object(s)". It is clear that the symbol- is a linear operator: 
The gauge invariant of a given linear combination is the lin
ear combination of the corresponding gauge invariants of 
each term of the given combination. There are three note
worthy features of the above collection of gauge invariants. 

(i) Any given background geometrical object on four
dimensional space-time possesses a hierarchy of gauge in
variant perturbational objects on M 2 with a tensor of rank 
zero (a scalar) at the bottom and a tensor of the same rank as 
that of the background object at the top of the hierarchy . 

(ii) All gauge invariants depend on the metric perturba
tions vector P A and scalar G. The hierarchy of metric gauge 
invariants has therefore fewer members; the vector and a 
scalar member are by necessity identically zero. See Table I. 

(iii) Standard formulations of nonrelativistic as well as 
relativistic hydrodynamical perturbation theory draw a 
sharp distinction between Eulerian and Lagrangian pertur
bational variables. This is merely a difference in the choice of 
gauge. In gauge invariant perturbation theory such a distinc
tion is superfluous, at least on a spherically symmetric back
ground. Thus the gauge invariant perturbation set of the 
matter 4-velocity vector field vll ' for example, is 

{
VA = J1vA - VA IB pB - VB pBIA' 

V-
I' V = J1v - VB pB . 

The Lagrangian perturbational variables are recovered by 
working in the Lagrangian gauge which is obtained by set
ting to zero the spatial components of the velocity 
perturbation, 

J1v 1 = 0, J1v = O. 

Eulerian variables as such are not well defined because they 
can be altered at will by some infinitesimal coordinate trans
formation XI'" = xl' + S Il. This is the reason why workers in 
the field work mostly in the Lagrangian gauge. It is well 
defined and the perturbational variables coincide therefore 
with the corresponding gauge invariants. By introducing 
gauge invariant perturbation objects reference to Lagran
gian or Eulerian variables can be eliminated from the very 
start. 
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We must now construct the perturbational gauge invar
iants for some special tensor fields, such as the first and sec
ond fundamental forms, ill-v = gil-v - nil- nv and 
ell-v = na;/3ill- ai/J on the contours of the scalarf Specifically, 
it is necessary to express these gauge invariants in terms of 
those associated with the unit normal nil- to..!' and in terms of 
the metric gauge invariants kAB and k. This is clearly neces
sary because the availability of such expressions gives the 
sought after junction conditions. Instead of becoming em
broiled in a complex and tedious perturbation computation, 
we break up the task into a number of small problems and 
thereby obtain the answer in a systematic way. This we do in 
a sequence of identities with the property that each is ob
tained by using the preceeding ones only. 

The task is simplest for scalars and vectors. Thus for 
any two vector fields Ua and v/3' for example, one has using 
Eqs. (3.6), (3.7), and (3.9), 

VaU/3~/3-+VBUB + VB uB - ~uBkAB . (3.10) 

Thus 

nan/3~/3 = I-+NBnB - !nAnBkAB = O. (3.11) 

This is a constraint that has to be satisfied by the perturba
tion of nil-' For any two scalar fields h andf one has, using 
Eqs. (3.6}-{3.7), 

{
NA = hF.A + HfA' 

n = hI' -+ 
Il- 'J.1l- N=hF. 

(3.12a) 

(3.12b) 

Consider now a special case. If nil- = (fa ,f/3~/3) - 112 

xfll- is the tensor field of unit normals to the contours off, 
then (3.10) and (3.12) imply 

h = (fJ./3~/3) - 1/2-+H = - h (hnBF,B - !nCnDkcD ) . 
(3.13) 

Furthermore, using the above definitions of h and nil-

h 'B h c- h .B
' 

A = - nA Icn = - aA , 

where a A is the acceleration of an observer whose world line 
is normal to (the contours of)f We shall see below that the 
quantity continuous across these contours is N, not F. Thus 
we express Eq. (3. 12a) in terms of N. Using Eqs. (3. 12b) and 
(3.13), one obtains 

NA = (N. B + nBlcnCN)iAB + !NCnBkcBnA 

in terms of the surface deformation scalar N. 

(3.14) 

For tensors the task is analogous to that used to obtain 
Eqs. (3.12). Thus, having obtained the gauge invariant ob
ject(s) associated with some scalar, vector or tensor, reex
press the object(s) in terms of gauge invariants that have 
been constructed already. The four gauge invariant objects 
of the symmetric tensor til-V = /Il-;Y' for example, are con
structed using Eqs. (3.8). The terms of each of these four 
expressions are regrouped into the gauge invariants F and 
kAB and their derivatives. The result is 
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where we write \l CkAB -kCA IB + kCB IA - kAB IC' and Vc is 
defined by Eq. (2.2). The reduced form of the perturbations 
of the derivatives of h,l,., which occur in.t1r a = -2J(h a. 

Jll' 1.£ 'l' 
+ h,. ":Il - hill' ;"), are not listed here. Other gauge invariants 

are obtained in the same way. Thus for any given back
ground scalar h and symmetric tensor t one has 

I'V 

~
hTAB + tABH, 

hTA , 

ht -+ 
Il-V hTI+!taaH, 

(3.16) 

hT2. 

If til-V is the symmetrized product of any two given vector 
fields ull- and Wy then 

TAB = !(uA WB + UB WA) 

+ !(UAWB + UBWA), 

til-V = u<I'-wv)-+ TA = !(uA W + UwA), (3.17) 

TI=O, 

T 2 =0. 
The linearity of" -+" implies that the gauge invariants asso
ciated with n<l'-;v) = H(hfll-);v + (hfv);Il-] are, with the help 
of Eqs. (3. 15}-(3.17), 

~
!(hF'A +/AH)IB +(A~B)-(nc/2)VckAB' 

h(F.A -FVA -!fICkcA ) + !(h.AF+H/A), 
n -+ 

(p;v) h (vcF,c - flBvckBd + !r- 2hfIC(rk)c + vC/cH, 

hF 

or with Eqs. (3.12) 

~
N(A IB) - !nCV CkAB' 

!NA + !N.A - Nv A - !nCkCA ' 
n(p;v) -. C B 2 C 

V (Nc - n kBd + lr- (rk)lcn , 

N. 

(3.18) 

The gauge invariant perturbation of the intrinsic metric 
are obtained using (3.9), (3.17) and the linearity of "-+": 

~
IAB _= kAB - nANB - nBNA, 

. IA - -nAN, 
Ill-v = gil-v - nll-nv-+ 

II =k, 

12 =0. 

(3.19) 

Given any two symmetric tensor fields t<l'-v) and ia/3' the 
gauge invariant perturbation of t(a/3) iap i/3v = e<l'-v) is 

E . c· Dr D· CI D· cI AB = 'A 'B (CD) + tc 'A DB + tc 'B DA 

- tECiAEiBDkcD - tECiBEiADkcD' 

e<l'-v)-+ EA = lia aiA cTc + Fa atb bIA + iA CtcDID' 
E I = !ia aic cT I + ata aic cI I - ita aib bic Ck, 

E2 = aia aib bT2 + ata aib bI2. 

If the tensor ill-v is the intrinsic metric given in Eq. (3.19), 
th~n the gauge invariant perturbations of e<l'-v) reduce to 

EAB = iA ciB DT(CD) - 2nBtBcic(ANB) 

+ 2(nDk DE - NE)tcEic(AnB)' 

e(pv)-+ EA = (Tc - nDtcDN)iA C - !ta anAN, 

U.H. Gerlach and U.K. Sengupta 

(3.20) 

2544 



                                                                                                                                    

Use Eq. (3.20) to obtain the gauge invariant perturba
tion objects of e(l'v) = n(a;p)I;if3". They are given with the 
help of(3.18), (3.12) and 

!taa = !na;a = vcnc, tBc = !(nBlc + nCIB) 

as follows 
'a '(3 

ef.Il' = n(a;(3)l /,1 v-
E [N 1 E k ]. C· D D 'C N AB = CID - 2n UE CD IA IB -n nCIDI (A B) 

+ (nDk DE - Nt....)(nlc E + ncIE)iC(AnBP (3.21a) 

_ EB = [N.B - NUB - !nDkDB ]iA B - uBnBnAN, (3.21b) 

E 1 = uB(NB - nCkCB ) + !r- 2(rk )ICnC, (3.21c) 

E 2 =N, 

EABiAB = DADAN + (DcaC - acaC)N 

where 
B 

ac = nc1nn 

is the acceleration of an observer on ~ and 

VEkAB =kEAIB +kEBIA -kABIE · 

3.21d) 

Equations (3.19) and (3.21) are the respective sets of the 
gauge invariant perturbation objects of the first and second 
fundamental forms. In the next section we obtain those lin
ear combinations of these expressions that are continuous 
across any given contour of ~. 

IV. CONTINUOUS EVEN PARITY GAUGE INVARIANTS 
CONSTRUCTED FROM INTRINSIC METRIC 

First obtain the junction conditions obtained from the 
perturbations of the intrinsic metric field ijlv; then in the next 
section those associated with the extrinsic curvature tensor 

An even parity perturbation in the metric 

ijlvdxf.IdxV = (gAB - nAnB)d~dxB + rYabdxadxb 

intrinsic to anyone of the contours off, which have spacelike 
normals nf.I' is 

Aif.IvdxfJdxv 

= AiAB Yd~dxB + AiA Y,a(d~dxa + dxad~) 
+ (rKYYab + rGY.a;b)dxadxb

). (4.1) 

The continuous perturbation objects are the projections of 
A i,,,. onto the contours of po Thus the following four objects 
are continuous: 

iA ciB DAicD = hCDiA ciB D, 

iA (".:::lic = iA ehe , K, and rG 

In addition 

DA (rG)=iA C(rG),c 

(4.2) 

(4.3) 

is also continuous because it is the intrinsic derivative of r 2G. 
It follows that the intrinsic vector 

iB C Pc=iB C [hc - !(rG),c] 

as well as its intrinsic derivative 

DA (iB C PC> iAEiBD(iD C pdlE 
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(4.4a) 

(4.4b) 

are continuous. 
Furthermore, it follows from Eqs. (4.2) and (4.4) that 

k = K - 2vnic B Pc - 2unnBnc pc (4. Sa) 

kCDiA CiBD = hCDiA ciBD - DA(iB C PC> - DB(iA cpc> 

2 . D' E C (4 Sb) - nDIEIA 'B ncp , . 

obtained from Eqs. (1.4), have each oftheir terms, excepttheir 
last ones, continuous. A single continuous gauge invariant is 
obtained from Eqs. (4.Sa), (4.Sb) by eliminating these of
fending terms between these two equations. This can be done 
because the coefficients (2uBnB = ea a and and 2eAB) ofnc pc 
are continuous. The result ofthis elimination is the continu
ous gauge invariant scalar 

eB Bk - unnBkcDicD = nB IBk - uBnB (kc C - kCDnCnD). 
(4.6) 

Here we used 

kCDiA CiBD = kCD,oCDiAB , 
which always holds in two dimensions if the symmetric ten
sor field is intrinsic to the contours off 

V. CONTINUOUS GAUGE INVARIANTS CONSTRUCTED 
FROM EXTRINSIC CURVATURE. 

The remaining continuous gauge invariants are ob
tained from the continuous extrinsic curvature 

ef.IV = na;8if.I aif3v (S.l) 

Its perturbation (supress angular integer I and m) is 

A ef.I"dxfJdxv 

= AeAB Yd~dxB + AeA Y,a(d~dxa + dxad~) 
+ (r Ae1 YYab + Ae2 Y,a:b)dxadxb 

• (S.2) 

The continuous perturbation objects are the projections of 
Aef.Iv onto the contours of po Thus the following four expres
sions are continuous: 

AecDiA ciBD = AeCDloCDiAB , 

iAcAec ' 

Ae1
, and Ae2 

• 

(S.3a) 

(S.3b) 

(S.3c,d) 

These four objects are, however, not gauge invariant. The 
four corresponding objects that are gauge invariant are ob
tained by referring to Eqs. (3.8) and by projecting, whenever 
appropriate, the gauge invariant objects onto the contours of 
f The result is 

'ABE _ 'AB [ " C C C ] 
I AB-l ~eAB-eABICP -eACPIB -eBCPIA , 

iA BEB = fA B [AeB - irea aG,B - eBC pC] , 

E 1= Ae1 
- !r- 2(rea JIB pB, 

E2 = Ae2 - !reaaG. 

Here Eq. (S.4a) is the trace of 

ECDiA ciB D = ECD,oCDiAB' . 

(S.4a) 

(S.4b) 

(S.4c) 

(S.4d) 

Although Eqs. (S.4a)-(S.4d) are not all continuous across 
the contours off, they at least are nearly continuous. Indeed 
one sees from Eqs. (S.3d) and (4.2) that Eq. (SAd) iscontinu
ous. Similarly (S.4b) is also continuous because 
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C D' C·· . eBC P = eD IBC p IS contmuous accordmg to Eq. (4.4a). 
The properties of e AB and i AB imply that the remaining 

gauge invariants (5.4a) and (5.4c) are 

E JCD - A 'CD B'D C 2 B (. D cr CD - ecDI - eB IDI C P B - eB Ic PD)IE i ' 
- (eB BIDnD + 2eBDnBID)nC pC, 

E I =Ae' -lr-
2(r 2ea Q)IBiB C pC 

- (ea aVBnB + lea alBnB)nc pC . 

All t~rms except the last ones containing the factor nc pC are 
contmuous. Indeed, 

ECDicD + 2E I = (continuous terms) - [unDnB ID 

+ 2ea aVBnB + (eBB + ea a)IDnD ]nc pC 
(5.S) 

has the contents of its square brackets continuous. This fol
lows from the fact that (eB B + ea ~IDnD is continuous. By 
eliminating the last discontinuous terms between Eq. (5.5) 
and Eq. (4.Sa) one obtains the last of the three continuous 
gauge invariant obtained from the extrinsic curvature: 

2(EABiAB + 2E l)vcnC 

- k [2~DnB ID + 2ea aVBnB + (eB B + ea a)IDnD] (S.6) 

We have shown therefore that this expression together 
with EBiA Band E2 as well as Eq. (4.6) are the four even 
parity continuous gauge invariant perturbation objects. It 
remains to actually exhibit these expressions in terms of the 
familiar gauge invariant metric perturbations k, k AB' and the 
gauge invariant surface perturbation scalar N. 

To this end, substitute Eq. (3.21d) for Eq. (5.4d), Eq. 
(3.21b) for (5.4b), introduce Eqs. (3.21c) and (3.22) into Eq. 
(5.6), simplify, and obtain three continuous even parity 
gauge invariant perturbation objects from the extrinsic 
curvature: 

E 2 =N, 

iA BEB = [N,B - vBN -lnckcB ]iA B , 

(5.6) = 2ncvc [DAD AN + 2~DAN + (DAaA - aAaA 

+ 2vAaA)N + nCnDkcD(VAnA + lnA IA) 

- !nEV EkABiAB] + 2nCvCnAk,A - fJk, 

where 

fJ= 2nC 1cnDID + (nc lC + 2ncvC)IDnD. 

(5.7a) 

(S.7b) 

(S.7c) 

The continuity requirements (5.7b) and (S.7c) are simplified 
by observing that the continuity of (S. 7a) implies the con
tinuity of its intrinsic derivatives 

DBN=N.EiB
E , 

D D N - [N . E] . c· D A B = .Elc IDIB IA . 

(5.8a) 

(S.8b) 

These continuous expressions together with the continuous 
scalars e A A = n A IA and e a a = 2v A nA can be used to obtain a 
different but equivalent set of continuous objects. Thus, with 
help ofEqs. (5.7a) and (5.8a), the continuity ofEq. (5.7b) can 
be replaced by the requirement that 

nCkCBiAB 

be continuous. 
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(S.7b') 

Similarly, by subtracting obvious mUltiples of Eqs. 
(S.8a) and (S.8b) from Eq. (S.7e), the remaining continuous 
expression is brought into a form having no derivatives of N. 
The result is given by Eq. (l.8d). 

Equations (5. 7a), (5.7b'), (S.7c) together with Eq. (4.6), 
or equivalently Eqs. (1.8a)--(1.8d) are the four perturbation
al gauge invariants that are continuous across the timelike 
interface I, across which the background first and second 
fundamental form are continuous. The deformations of .I 
are determined by NA , Eqs. (3.14) or (1.9). 

CONCLUSION 

Suppose one wishes to identify and classify perturba
tions of a spherically symmetric, in general matter-occupied, 
space-time. The most natural way of accomplishing this is in 
terms of geometrical objects that arise from, say, the liner
ized Einstein field equations. However, without specifying 
the background geometry these equations and its metric per
turbation tensor are oflittle practical use. Furthermore, as is 
well known, for a given perturbation, this tensor description 
is non unique, reflecting the fact that perturbations in the 
background coordinate system (i.e. gauge transformations) 
yield different tensors. 

On the other hand, if one does specify the background 
geometry by having the background metric expressed with 
respect to a specific spherical coordinate system, then one 
has excluded other possibly more appropriate and natural 
coordinate systems from the very start. One should not have 
to make a coordinate commitment until the very last mo
ment of one's perturbational analysis. In addition, if one 
does force uniqueness onto the perturbation tensor descrip
tion by fixing the gauge representation of the tensor, then 
one has injected an unwarranted and probably an undesira
ble arbitrariness into the representation of the perturbation. 

The description of perturbations in terms of gauge in
variant geometrical objects defined on M2 avoids all four 
disadvantages listed above; it captures the best of both 
worlds: namely, the geometric formulation (i.e., no coordi
nate commitment) and the gauge invariance (i.e., uniqueness 
of the representation). This optimal formulation applies not 
only to the linearized Einstein field equations5 but also to the 
junction conditions both for odd paritylO and for even parity 
perturbations as we have seen in this paper. 

'See. e.g., C. W. Misner, K.S. Thorne, and l.A. Wheeler, Gravitation (Free
man, San Francisco, 1973), Chap. 21. 

'See, e.g., K. Thorne, in Theoretical Principles in Astrophysics and Relativ
ity, edited by N. Lebovitz et al. (Univ. of Chicago Press, Chicago, 1978). 
'S.A. Colgate and R.H. White, Astrophys. l. 143,626 (1966). 
'M.M. May and R.H. White, Phys. Rev. 141,1232 (1966). 
'U.H. Gerlach and U.K. Sengupta, Phys. Rev. D 19, 2268 (! 979). 
6D. Kazanas, Astrophys. l. Lett. 22, Ll09 (1978). 
'D. Kanzanas and D.N. Schramm, Astrophys. l. 214, 819 (1977). 
"In the sense first introduced by V.E. Moncrief, Ann. Phys. 88, 323 (1974). 
'This expression corrects a misplaced parenthesis in Eq. (4b) of Ref. 5. 
lOU.H. Gerlach and U.K. Sengupta, Phys. Rev. D 19, 2268 (1979). 
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The Bonnor transformation, which maps stationary, axially symmetric vacuum fields into static, 
axially symmetric Einstein-Maxwell fields is extended to spacetimes possessing only one 
space like Killing vector. The transformation generates two distinct Einstein-Maxwell solutions 
from any vacuum solution. 

1. INTRODUCTION 

Transformations that generate new solutions to the 
Einstein or Einstein-Maxwell equations from known ones 
have become an effective tool for producing new solutions 
and probing relationships between old ones. The Ehlers 
transformationl and the Bonnor transformation2 are two 
well-known transformations for spacetimes possessing two 
commuting Killing vectors. Extensions of these transforma
tions to spacetimes possessing one Killing vector are of great 
interest due to the complexity of the field equations and the 
resulting scarcity of exact solutions. The Ehlers transforma
tion was extended by Kinnersley3 in 1973. In this paper we 
present an extension of the Bonnor transformation. 

The main idea of the Bonnor transformation is to map 
stationary vacuum fields into static Einstein-Maxwell ones. 
In Sec. 2 we review the general metric and the Einstein
Maxwell equations for spacetimes with one Killing vector. 
In Sec. 3 we consider some particular cases and explicitly 
show a formal analogy between the vacuum Einstein equa
tions and the Einstein-Maxwell equations that may be used 
to generate new, physically distinct solutions from any 
known solution. This analogy is the extension of the original 
Bonnor transformation to more general spacetimes. 

2. ASSUMED METRIC AND ITS EINSTEIN-MAXWELL 
EQUATIONS 

A detailed account of the derivation of the Einstein
Maxwell equations with one Killing vector has previously 
been presented by Harrison.4 We outline the important parts 
of the derivation as follows. 

Sign and other conventions are as in Landau and Lif
shitz.5 The metric is assumed to have the form 

- ds2 = tOe2U(dxk + af adxa)2 + a2e- W Ya (3dxadx(3 , 
(1) 

where a is an arbitrary constant, to = ± 1 = sign (gkk)' k is 
some one particular value ofO,I,2,3. Greek letters take all 
values ofO,1,2,3 except k, and all metric coefficients are in
dependent of Xk. Therefore, a Killing vector field is generat
ed by translation alongxk

• Latin letters (except k) take on all 

a/Research supported in part by NSF Grant MCS75-05415. 
b/Work based on a thesis submitted in fulfillment of the requirements for the 

degree of Doctor of Philosophy to the California Institute of Technology 
in May. 1977. 

values of 0, 1,2,3 except k, and all metric coefficients are in
dependent of Xk. Therefore, a Killing vector field is generat
ed by translation along Xk. Latin letters (except k ) take on all 
values of 0,1,2,3. If E = - 1, the Killing vector is timeIike 
and k = 0; if to = + 1, it is spacelike. 

For notational convenience, we define the differential 
parameters 

.1l (F) = ya(3F.a F, p. 

.1[ (F,G) = y a(3F'a G, (3' 

.1 2 (F) = ya(3F;a(3 , 

where Ya fJ is the inverse of the three-dimensional metric 

(2) 

Ya {3' Ya {3 may be interpreted as a background 3-metric in the 
3-space that is the quotient of the 4-space by the Killing 
vector. A comma denotes partial differentiation with respect 
to xa while a semicolon denotes covariant differentiation 
with respect to YafJ' 

The Einstein-Maxwell equations for the metric (1) can 
be written as4 

.12 + Ee - W [.1 [ (A ) + .1} (B )] + !e - 4 U [ .1 l (4) ) 

+ 4EB.1} (4),A ) - 4EA.1} (4),B) + 4B 2.1} (A) 

- 8AB.1} (A,B) + 4A 2.1} (B)] = 0, (3) 

.12 (4)) - 4.1} (U,4» + 2EB [.12 (A) - 4.1} (U,A )] 

-2EA [.1 2 (B)-4.1 l (U,B)] =0, (4) 

.12 (A) - 2.1 [ (U,A ) + e - W [.1 [ (4),B) + 2EB.1} (A,B) 

- 2EA.1} (B)] = ° , (5) 

.12 (B) - 2.1l (U.B) - e - 2U [.11 (4),A) + 2EB.11 (A) 

- 2EA.1l (A,B )] = ° , (6) 

Pa{3 =2U.a U.fJ +2Ee-
2U(A'a A 'fJ +B,a B '(3) 

+ !e-
4U [4>'a + 2E(BA,a -AB,a)] 

X (4), fJ + 2E(BA, /3 - AB, /3)J . (7) 

P a /3 is the three-dimensional Ricci tensor for the back
ground metric Ya fJ' 

A and B are electromagnetic potentials in terms of 
which the electromagnetic field tensor may be expressed as 

Fa/3 = (_ g) -112~fJrA'r ' 

Fka =B,a· 

4> is a "twist" potential from which the fa may be recov
ered, as follows. Define 

hap = f a,/3 - f fl.a . 
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The ha {3 has a dual axial vector: 

ha {3 = Ea{3yyyliZli ( - y)1/2. 

Za is expressed in terms of U, A, B, and the potential <p by 

Z" =e-- 4U [<p,,, +2E(BA'a -AB'a)]' 

<p is very similar to the twist potential for spacetimes with 
two Killing vectors. In fact, if A = B = 0 corresponding to 
pure vacuum solutions, then 

h = E yyb( _ y)1I2e - 4U<p 
a {3 a {3y 'li 

and <p is seen to be the extension to three variables of the 
above mentioned twist potential. Furthermore, if <p = 0, 
then the fa are all constants which can be set to zero and the 
Killing vector then defines an orthogonal congruence. If the 
Killing vector is timelike, the metric is then stationary. 

3. PARTICULAR CASES 

The use of a twist potential plays a central role in the 
original Bonnor transformation. The occurence of a similar 
twist potential here motivates us to look for a similar phe
nomena in Eqs. (3)-(7). 

From the Einstein-Maxwell equations (3)-(7) we may 
obtain three important special (but physically distinct) 
cases, as follows: 

Case I:A =8=0 

This is the pure vacuum case. Equations (3)-(7) reduce 
to 

..1 2 (1/')= -e-2'I'..1 1(<P) , 

..1 2(<P) = 2..11 (I/',<P), 

where I/' = 2 U. 

Case II: <P = A = 0 

(8) 

(9) 

(10) 

The metric in the case <p = 0 has no terms of the form 
dxkdx" since <P = 0 implies f" = O. Choosing A = 0 speci
fies a particular type of electromagnetic field. Equations (3)
(7) reduce to 

..12 (U) = - Ee - 2U..1 1 (B) , (II) 

.1 2 (B) = 2.11 (U,B), (12) 

(13) 

Case III: <P = 8 = 0 

The metric is the same as in Case II. The electromagnet-
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ic field is physically distinct from that of Case II. Equations 
(3)-(7) reduce to 

.12 ( U) = - Ee - 2U ..11 (A ) , 

..12 (A ) = 2..11 (U,A ) , 

(14) 

(I 5) 

P" {3 = 2U'a U, {3 + 2Ee - 2UA'aA, (3 • (16) 

It is immediately obvious that Eqs. (11)-( 13) for Case II 
and Eqs. (14)-(16) for Case III are identical if we identify A 
and B. Furthermore, if we define new independent coordi
nates (denoted by primes) by 

(17) 

but leave the background metric Ya{3 un transformed, the 
equations for Cases II and III become, in terms of the primed 
variables [using Eq. (2) and omitting the primes): 

..1 2(U)= -Ee- 2U..1 1(fl) , (18) 

..1 2(fl) = 2.11 (U,fl) , (19) 

(20) 

where fl is equal to either A or B. 
Equations (18)-(20) for (U,fl ) are identical to Eqs. (8)

(10) for (4ft,<P) when E = + 1. Thus, given any vacuum solu
tion (Case I) we can generate two physically distinct electro
magnetic solutions (when the Killing vector is spacelike) by 
using the transformation, Eq. (17). This can be considered 
an extension of the Bonnor transformation obtained for the 
stationary axisymmetric Einstein-Maxwell field equations 
with two commuting Killing vector fields, one spacelike and 
one timelike.2 Since three-variable solutions of the Einstein 
and Einstein-Maxwell equations are relatively rare, the 
above transformation, which generates two new Einstein
Maxwell solutions for any given vacuum solution, should be 
very valuable. 
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We consider a class of Lorentz metrics on1R4 which are Minkowskian off a compact set. For each 
such metric we construct a quantum field operator which satisfies the generalization of the 
Klein-Gordon equation. The field has a causal commutator and transforms as a scalar under 
general coordinate transformations. The field determines a unitary scattering operator which is 
invariant under coordinate transformations. 

I. INTRODUCTION 

This paper is concerned with the problem of a scalar 
quantum field in an external gravitational field. Alternative
ly, it is a problem of quantum field theory in curved space
time. The external field is specified by a Lorentz metric on 
the space-time manifold, and if 0 is the d' Alembertian for 
the metric we ask for a quantum field operator <P satisfying 
the equation (0 + m 2)<p = 0 where m;;;.O is a mass 
parameter. I 

This problem has attracted considerable interest lately 
due to a paper ofHawking2 in which the metric is taken to be 
that of a collapsing black hole, and the prediction is made 
that the ensuing particle creation is sufficient to radiate ev
erything away. This indicates a range of potential astro
physical applications. The external field problem may also 
be of interest as a building block in a more complete theory in 
which the metric is treated quantum mechanically as well. 
For a survey of what is known about the physics of quantum 
field theory in curved space-time, see DeWiW or Parker.4 

One of the goals of this paper is to give a mathematically 
precise construction of the field operator <P and its associated 
scattering theory for a certain nice class of metrics. The 
space-time manifold is taken to be R 4 and the metric is re
quired to be globally hyperbolic and Minkowskian off a 
compact set. 5 Under this assumption we show that there is a 
unique field operator <P solving (0 + m 2)<p = 0 and reduc
ing to a free field <Pin in the distant past. The field is causal in 
the sense that the commutator vanishes when the points are 
not causally related. The field reduces to a free field m in Tout 

the distant future and we show that there is a unitary scatter-
ingoperatorSsatisfying<pout = S - l<PinS. The existence ofS 
uses an additional assumption on the metric which, howev
er, is possibly no more restrictive. 

Our approach to the external field problem follows par
ticularly the general framework of Wightman. 6.7 In this 
framework the advanced and retarded fundamental solu
tions of the differential operator playa key role. In particu
lar, estimates on the regularity of the kernel of the funda
mental solutions are the basic input for the existence of the 
scattering operator. For these estimates we rely on the the
ory of Fourier integral operators as developed by Hor
mander and Duistermaat. g-IO 

The existence of the scattering operator for this prob
lem has been independently obtained by Wald in a recent 

")Supported by NSF Grant PHY77-21740, 

preprintll; see also Ref. 12. The method are quite different 
from ours, and both approaches seem to be of interest. We 
also remark that progress has recently been made in obtain
ing a unitary scattering operator for other external field 
problems (e.g., electromagnetic) by Seiler,lJ Ruijsenaars,'4 
and Dimock. 15 

A second goal of this paper is to show that the quantum 
dynamics we have defined is natural in the sense of being 
coordinate independent. Namely we take all possible global 
coordinates on R 4 which are standard at infinity, and con
sider the family of fields defined in each coordinate system. 
We show that these fields are related by a scalar transforma
tion law. Hence the fields plus transformation law (the co
variant field) is naturally arrived at. We also show the scat
tering operator is independent of coordinates. 

Our treatment of these matters seems to shed some light 
on the general question of how to combine the principles of 
quantum mechanics with the principle of general covariance 
(the principle that the dynamics be naturally specified). The 
importance of effecting this synthesis has been particularly 
emphasized by Dyson. 16 

II. PRELIMINARIES 
A. The metric 

We consider Lorentz metrics g on R4. In standard co
ordinates the metric is a matrix valued function g on ]R4 p.v , 
such that for each XE]R4 [x = (x°,x l,xl ,x3) = (XO,x)] the ma
trix gp.v(x) is symmetric, nondegenerate and has signature 
(1,3). For each x the metric defines a quadratic form on tan
gent vectors vER4 [v = (vO,v l ,if,v3

) = (VO,v)] by gx (v,v) 
= gp.v(x)vp.v" (summation convention). A tangent vector is 

called timelike, null, or spacelike according to whether 
gAv,v) is positive, zero, or negative. The nonspacelike vec
tors form a cone Cx = [v: gx(v,v);;;'Oj. A smooth curve <P: 
[O,I]-+R4 (with d<p Idt=f=O) is called nonspacelike if 
d<p I dtEC'I' (t) • The metric assigns to each nonspacelike curve 
an interval of proper time 

(' g«'(tl(d<P , d<P)'/2 dt. 
Jo dt dt 
The cone Cx is actually a double cone, and we assume 

that there is a continuous splitting Cx = C x+ uC x- into past 
and future cones, i.e., a time orientation. Nonspacelike 
curves are either future-directed or past-directed according 
to d<pldtEC q~(t). The future J + (x) of XElR4 is the set of all 
points which can be reached from x by a future directed 
curve, and similarly we define the past J - (x). 
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We are interested in metrics which are globally hyper
bolic; see Refs. 17-19. One characterization of this proper
tyls is that for any x,YER4, the lengths of all smooth nonspa
celike curves ({! between x and yare bounded, where the 
length is the usual Riemannian length sb Id({! Idt I dt. Such 
metrics have nice properties like J ± (x) is closed, and 
J +- (x) n J - (y) is compact for any x, y. 

A special case of the above is the Minkowski metric 17 
corresponding to flat space-time. The metric is 171"" 
= diag(l, - I, - I, - 1) and the cones C x± are 

V ± = (v: (UO)2 - /V/2)O, ± UO)Oj. (2.1) 

This Minkowski metric is globally hyperbolic. 
We will be concerned with the following class of 

metrics: 
Definition: A metric g is admissible if 
(A 1 ) g = 17 off a compact set (inel uding time 

orientation), 
(A2) g is globally hyperbolic. 
Now we consider general coordinate systems on R4. 

These will always be global and given by a diffeomorphism K 

on R4. We write diff(R4
) orjust difffor the group of all diffeo

morphisms on R4. We usually also require that K is the iden
tity off a compact set. All such K are denoted diff ° (R4) or just 
diffo ' This is still a rich class. For example, the flow of any 
smooth vector field with compact support consists of ele
ments diffo ' Using diffo instead of diff amounts to giving 
special treatment to infinity. 

The coordinate independent definition of the metric as 
a tensor field can be formulated as follows. The metric tensor 
is a function from coordinates on R4 as given by KEdiff (or 
KEdiffo) to matrix valued functions gl~" as above, such that 
for any pair K 2' K I we have 

g;l~' = D (KI 0Kz- 1r,;D (KI 0K2' 1);;'( g;'~,/ 0KI 0K2- I), (2.2) 

where (DKr,:' is the Jacobian matrix for K. In this view the 
metric tensor is an indexed family of diffeomorphic metrics. 
We also write this as 

g'" = (KI OKz- 1)* gk', 

where in general for metricg and diffeomorphismK, K* (g) is 
the metric given by 

(K* (g»),,,, = (DKY,;'(DK);/( g,l'" OK), 

A metric tensor will be said to be admissible if g K is 
admissible for all KEdiffo. (Note that this would be impossi
ble for KEdiff which is one reason why we take diffo)' It is 
sufficient that it be admissible for some KEdiffo . 

B. The differential operators, distribution densities 

The d' Alembertian is defined by 0 = VI' gl'''V v where 
VII is the covariant derivative, or by 

0= Igl - I12al' IgI I/2gl"'B". 

Here Igl = Idet! gl'vl I,glll'istheinversematrixtogl'v and 
ai' = a lax 1'. This is a strictly hyperbolic differential opera
tor which is said to be globally hyperbolic if g is globally 
hyperbolic. 

Let g', g be diffeomorphic metrics, g' = K* (g), and let 
0',0 be the associated operator. Since 0 is built from the 
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covariant derivative we have the well-known identity for 
smooth functions u on R4 

(2.3) 

The d' Alembertian naturally defines an operator on 
scalars as follows. A scalar is a function from coordinates K 

(diff or diffo) to functions UK such that 

(2.4) 

Let OK be the family of operators for the tensor g K. Since 
g'" = (KI OK2-

1). gKl we have by (2.3), 

Thus vK = OKU
K defines a scalar. 

The above remarks also hold for distributions. Namely, 
define the composition of a distribution u and a diffeomor
phismKby 

{UOK,f} = (u,ldeWK-11 10K- I), (2.5) 

define a distribution scalar to be a function from diffeomor
phisms K to distributions UK satisfying (2.4), and then OK 
defines an operator on distribution scalars as above. [(2.3) 
extends by continuity to distributions.] 

Instead of working with scalars we can work with scalar 
densities. A scalar a-density (aER) is a function from coordi
nates K to functions or distribution UK such that 

UK, = U"'OK 1 OK l 1 IdeW (KI OK l - 1) lao (2.6) 

If w K is a scalar, then UK = Ig" I a12wK is an a-density [use 
(2.2)] and moreover, every a-density can be written in this 
way. Instead of 0 we consider the equivalent operators O(a) 
given by 

O(a) = Ig/ al2Ol g i -a/2. 

Then O(a) naturally defines an operator on a-densities in 
the sense that if UK is an a-density, then so is vK = O(a)"uK

• 

In the following we find it convenient to work with half
densities (a = !) as well as scalars (a = 0) translating back 
and forth as needed. Thus we consider the operators 
O=0C!) = jg 11/40 Ig [ - 114 which can be written 

0= Igl-1/4a/LlgI1l4gPvlgII/4avlgl-1I4. 

Note that 0 is self-adjoint with respect to the usual inner 
product (11'/2) = s II (XV2 (x) dx on R\ which is not true 
for O. [0 is self-adjoint if we replace dx by Ig(x) 1112 dx, but 
the dependence on g is awkward when there is more than one 
metric, in our case 17 as well asg.] Another advantage of half
densities is that there is a natural pairing: Ifl t,f 2K are half
densi ties, then (f r, 12") is independent of K, or if UK is a 
distribution half-density andl K is a test function half-densi
ty, then (uK,/ K) is independent of K. 

c. The fundamental solutions 

Let 9 = fiJ(R4) = C o (R4) and I&' = I&'(R4) 
= C 00 (]R4) with the usual topologies and with dual spaces 
9' (the distributions) and 1&" (the distributions with com
pact support). An operator T: fiJ--.9' has a kernel in 
9'(R8

) which we denote T(x,y). (Formally, (lI,Tfz) 
= f II (x)T(x,y)fz (y) dx dy.) 
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The main result we need is 
Theorem 2.1: Let g be an admissible metric. Then there 

exist operators E ± mapping g) continuously to g' 

satisfying: 
(a) E ± are fundamental solution for (0 + m 2), that is 

on g), 

(0 + m 2)E ± = E ± (0 + m 2
) = f. 

(b) suppE ± (x,y)C I (X,y):XE J ± (y) J. 
Similarly (0 + m 2) has fundamental solutions E ± with this 
support property. 

This follows from a general theorem of Lerayl7 for glo
bally hyperbolic differential operators; see also Choquet
Bruhat. IS The proof is by patching together local fundamen
tal solutions. 

Note that although J + (y) can be rather convoluted it 
cannot extend into the distant past where the metric is Min
kowskian. Thus for lEg) , E + I vanishes in the distant past. 
(A property holds "in the distant past" if it holds on a set 
( - oo,T] XR3 for some T.) 

The following corollaries are not difficult (cf. Refs. 18 
and 20). We state them only for (0 + m 2). 

Corollary 2.2 (General uniqueness theorem): If UEg)' 
satisfies (0 + m 2)U = 0 and vanishes in the distant past or 
future, then U = O. 

Corollary 2.3: E ± are the unique operators from g) to 
g)' which are fundamental solutions and are such that for 
lEg), E ± I vanishes in the distant past (future). 

Corollary 2.4: E ± has a continuous extension to an 
operator from ~' to g)' which is given by E ± = (E "F)'. 

For the Minkowski metric 0 + m 1 or 0 + m 2 reduces 
to the Klein-Gordon operator Do + m2 where 
Do = rfval'av is the wave operator. The fundamental solu
tions in this case are denoted E rf . 

We write 0 as a (singular) perturbation of Do by 
o = Do + G where 

G=O - Do = (g"v - rf,al'av + lower order. 

This second-order differential operator is self-adjoint since 
0, Do are self-adjoint. For an admissible metric all the coeffi
cients are in g) and so G is continuous from ~ to g) or from 
g)' to ~'. 

Proposition 2.5: As operators on g) or ~', 

E± =Eo± -Eo±GE± 

=Eo± -E±GErf. 

Proof For fEiiJ let v = (E ± - E o± + E rf GE ±)f. A 
simple calculation shows (Do + ml)v = O. Since v vanishes 
in the distant past or future we have v = 0 by Corollary 2.2. 
This proves the first identity on iiJ and the second is similar. 
Taking adjoints gives the identities on ~'. Q.E.D. 

Finally we consider the transformation properties of 
E ± , E ± . If (E ±)" E ± are the fundamental solutions for 
metrics g', g and g = K. (g), then by (2.3) and the general 
uniqueness theorem, 

(E ± )'(fOK) = (E ±f)OK, lEg). 

It follows that the family (E ± r for a metric tensor gK de
fines an operator from iiJ scalars to ~ scalars. Since 
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0= Ig11l4Dlgl-1/4 we have E ± = Igl 1l4E ± \gl-1I4 
and so (if ±)K defines an operator from iiJ half-densities to 
~ half-densities. 

III. THE QUANTUM FIELD 

We now begin the development of the quantum prob
lem, cf. Wightman. 6.7 The first step is to review the definition 
of the free field. Let JY' = L2 (R3 ,dp) be the one particle 
space where dJ.l(p) = [2w(P)] - Idp and a>(p) 
= (I P 12 + m2)1!2. The n-particle space is JY'" = ® ~m JY', 

and with JY'0 = C the Fock space is.7 = ffi;;' ~ 0 JY"'. Let 
.70 be the dense subspace consisting of vectors with a finite 
number of particles. For hEJlr', let a*(h ),a(h) be the usual 
creation and annihilation operators on .70 defined so that 
eaCh )]* = a*(h),sothata(h )110 = Owherel1o = (I,O,O, ... )is 
the no-particle state, and so that the canonical commutation 
relations (CCR) hold: 

[a(h I ),a*(h1 )] = f hI (p )h1 (P) dJ.l(P). 

Wedefinell ± :J"(R4) __ JY'(J" = Schwartz space) by Four
ier transformation (with Lorentz inner product) followed by 
restriction to the mass shell: 

II ± f)(p) = (21T)1!2j( ± UJ(p), ± pl. 

The free field operator is then defined by 

CPo (f) = a(ll + f) + a*(ll -f). 

Then CPo satisfies the Klein-Gordon equation 
(Do + ml)cpo = 0 in the sense of distributions, that is, 

CPo «Do + m 2)f) = 0 

and the commmutation relations 
1 

[CPo Ct; ),CPo Cfz)] = -:- (1; ,11 fz ), 
I 

where 11 = 11 + + 11 _ is the usual commutator function. 
We also have 11 = Eo_E 0+ - EO-. 

Now let CPin be a free field as above. We want to define a 
field operator ~ to satisfy (Do + m2)~ = 0 and ;p = CPin in 
the distant past, and we put;P = (1 - E + G)CPin' Since 
(1 - E + G):iiJ'-iiJ' is the adjoint of (1 - GE -):g) __ g) 
what this means precisely is for IEiiJ , 

;P(f) = «1 - E + G )CPin )(f) = CPin «1 - GE - )f). 

The field <p is an operator valued distribution, by which we 
mean that for/~ ... p, qi(f): .70-.7 0 and for x,t/JE.7o the 
function/ __ (xcp (1)1/1) is continuous on iiJ (these follow 
from the same properties for CPin ). 

Theorem 3.1: For an admissible metric: 
(a) ~ is the unique operator valued distribution satisfy-

• - 2 - -
mg (Do + m )cp = 0 and cP = CPin in the distant past. 

(b) [~(fl)'<P(f2)] = (lIZ)(/l,Elz) where 
E=E+ -E-. 

Proof: (a) ~ solves the equation because 

<p «0 + m 2)f) = cpin«1 - GE - )(0 + m 2)f) 

= CPin «Do + m 2)f) 
=0. 

If Ihas support in the distant past, then so does 
E -f = E 0- J, hence GE - f = 0 and <p (I) = (jJin (f). 
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For uniqueness suppose rp' is another solution and de
fine U,u'EfiJ by (u,j) = (x,.p (f)¢) and (u',j) = (x, 
.p '(f)¢). Then (0 + m 2)u = 0, (0 + m 2)U' = 0 and both 
agree with Uin the past where (uin,j) = (x,tpin (f)¢). By the 
general uniqueness theorem u = u'. Since X is arbitrary in 
the dense set Yo we have.p (f)¢ = .p '(f)¢ for ¢EYo , i.e., 
~=.p'. 

(b) By the free field commutation relations it suffices to 
show 

(I - E +G)Eo(1- GE -) =E. 

However, by Proposition 2.5 we have 

(I-E +G)Eo±(I- GE -) =E ± -E +GE -. 

Taking the difference of the plus and minus equations gives 
the result. Q.E.D. 

Now we define tp = Ig I - 1/4.p, that is, 

tp (f) =.p (Igl - lIy). 
Theorem 3.2: For an admissible metric: 
(a) tp is the unique operator valued distribution satisfy

ing (0 + m 2)tp = 0 and tp = tpin in the distant past. 
(b) [tp(! g 1112}; ),tp (Ig 11/,%) J = <}; , I g ]1/2 E h) where 

E=E+-E-. 
Proof Since 0 = Igl - 1/40 Ig1 1l4

, part (a) is a direct 
translation of Theorem 3. 1 (a). For part (b) the commutator 
is calculated as (};, Igl 1l4E Igl ll%). But since E 
= Igl 1l4E Igl - 1/4 we get the result. 

Remarks: (I) suppE (x,y) orsuppE (x,y) are contained in 
! (X,y):.xE J + (y)u J - (y) J. Thus if supp};, SUPpf2 are not 
causally related in the sense that no pair of points can be 
joined by a nonspacelike curve, then 

[.p (}; ),~ (f2)] = [tp (}; ),tp U;) J = O. 
(2) The form of the commutator in Theorem 3.2(b) was 

anticipated by Lichnerowicz. 20 

Theorem 3.3: Let g,g' be admissible metrics such that 
g' = K. (g) for some KEdiffo ' 

(a) If tp,tp' are the fields given by Theorem 3.2, then 

tp' = tp°K. 

(b) If ;P,~' are the fields given by Theorem 3.1, then 

.p' = (rpOK) I deWK' 112. 

Note: composition in the sense of distributions. 
Proof To prove (a) define u,u',u in EfiJ' by 

(u,j) = (x,tp (f)t/J), etc. Then (0 + m2)u = 0 so 
(0' + m 2)(uOK) = [(0 + m 2)u) OK = O. We also have 
UOK = U in in the distant past. By Corollary 2.2 UOK = u' and 
hence tp0K = tp '. Now (b) follows from;P = Ig1 1l4tp, 
.p' = Ig' 1I/4tp '. 

Conclusions: (I) This theorem enables us to define the 
field as an operator valued distribution scalar or half-densi
ty. Namely, letgKbe an admissible metric tensor indexed by 
KEdiffo' Ifwe definetpKto solve (OK + m 2)tp K = 0 as in Theo
rem 3.2, then Theorem 3.3(a) says that for any K 2 ,KI Ediffo, 

tpK2 = (jJ K'OK \ OK
2
- I. 

If we define.p K to solve (OK + m 2).p K = 0 as in Theorem 3.1, 
then Theorem 3.3(b) says 

.pK2 = (.pK·OKI OK; I) I deW (Kl OK; I) 1112. 
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In either case the dynamics as given by the scalar tpK or the 
half-density .p K has been specified without special choice of 
coordinates. 

(2) We can cast things in a manifestly coordinate free 
form as follows. Let <P be the half-density ;PK and let D be the 
operator on half-densities defined by the family OK. Then the 
equations (OK + m2)qJ K = 0 can be written as 

(D + m 2)<p = O. 

The field <P can also be regarded as a function from fiJ -half
densitiesf K denoted F to operators on Yo by <P (F) 
=.p K(f ~ which is independent of K, just as fiJ-half-densi

ties themselves have the natural inner product (FI ,F2 ) 

= (f t,j {). Now if E ± ,E are the operators on half-densi
ties defined by (E ± y, E \ we have that the commutator can 
be written 

[<P (Fl ),<P (F2 )] = (1I1)(FI ,EF2 ). 

A similar treatment can be given in the scalar case. 
(3) Our treatment is not completely coordinate-free 

since the data tpin at Xo = - 00 is given in special Min
kowski coordinates, rather than somehow naturally as a sca
lar or half-density. This is not necessarily a defect. There is 
no overriding physical principle that the data (like the dyna
mics) be specified naturally. Moreover, in actual quantum 
experiments the initial state is prepared (observed) in specif
ic coordinates. 

In this connection we remark that it would not seem to 
be particularly appropriate to try to extend the collection of 
coordinates from diffo to diff: Special treatment has already 
infected infinity. (Although it would be appropriate to in
clude diffeomorphisms which reduce to a Poincare transfor
mation off a compact set-this should not be difficult.) We 
also note that Fadeev21 advocates a similar restriction on 
coordinates for quantized gravity. 

IV. SINGULARITIES OF E± 
A. Regular metrics 

In preparation for the scattering theory in Sec. V we 
introduce some refinements on the material in Sec. II. The 
first step is to introduce a new class of metrics. 

Definition: A metric g is regular if 
(Rl) gill' - 1JJll'EC o (R4), 
(R2) va> 0 for all V=FO in C / , all x, 
(R3) (l,O)ECx+ (the interior of C x+) for alI x [i.e., 

goo (x) > 0). 
Condition (R 1) is the same as (A 1). Condition (R2) says 

the hypersurfaces X o = s = const are spacelike [since the 
tangent vectors (O,v) are spacelike]. Condition (R3) says the 
cones do not tip too much, and is only needed for Corollary 
4.4 to follow: 

Proposition 4.1: A regular metric is admissible. 
Proof We show that (R 1), (R2) imply global hyperboli

city (A2). Let 0 = infu ° where the infimum is taken over all v 
with Ivl = 1, VEC / ,xElR4. Since va is continuous, positive, 
and va;;. 1Iy'2 off a compact set we have 0 > O. Thus for any 
V=FO in C / we have v°;;.o I v I ;;'0' v,. Thus all the cories C x+ 

are contained in the fixed cone ! v: v°;;.o I v I J. 

J. Dimock 2552 



                                                                                                                                    

Now let qJ be an arbitrary future-directed curve from x 
toy (Yo >xo)' Then Idcp/dt 1 </j-l(dqJ°/dt) and so 

( I dqJ I dt «1 + /j - 1) ( dqJ ° dt 
Jo dt Jo dt 

= (1 + 0 - l)(yo - xc)· 

Thus all such curves have a bounded length and the metric is 
globally hyperbolic Q.E.D. 

Remark: For the scattering theory we consider metrics 
which are regular for some choice of coordinates KEdiffo. 
Such metrics are admissible since regular metrics are admis
sible. It is not clear whether we are being more restrictive or 
not. Possibly every admissible metric is regular for some 
choice of coordinates .. A construction like that of Geroch19

•
22 

might be a means to prove this. 

B. Blcharacteristics 

We introduce the cones r x± dual to C:- . with the nota
tion S = (SO,SI ,S2,S3) = (So,S) for SER4 we have 

r x± = Is: Sl'vl';;;'O for all VEe x± }. 

The double cones rx = r x+ ur x- can also be characterized 
by 

rx = Is: hx(S'S);;;'0J, 

where 

The conditions for a regular metric can be translated to dual 
conditions: 

(Rl') gl''' -lll'''EC 0'(R4), 
(R2') (l,O)EF x+ for all x [i.e., gOO(x) > 0], 
(R3') SO > 0 for all s=/=-O in r x+ , all x. 
The dual cones are of interest because hx(S's) is the 

characteristic polynomial of (0 + m 2). The bicharacteris
tics for (0 + m 2) are the solutions of 

itt= ~hx(S,S), 
as I' 

. a 
S I' = - - hx(S,s), 

ax I' 

which stay on the manifold 

I (x,s): hx(S,s) = 0, s=l=Oj. 

This manifold has two components defined by SE r x± • A 
bicharacteristic is either future or past directed depending 
on which component it is in. 

The bicharacteristic curves are the projections of a bi
characteristic (x I'(t ),S tt (t» to xIl(t ).It is well known that 
they coincide with the null geodesics for the metric. The 
latter are solutions of 

il' = uI', 

vI' = - r ::f3(x)vav f3 

(r ::f3 = Christoffel symbols), which stay on the manifold 

{(x,v): gAv,v) = 0, v¥:Oj. 

Proposition 4.2: for a regular metric, the bicharacteris
tics of 0 + m 2 satisfy the Duistermaat-Hormander 
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conditions9 

(a) No complete bicharacteristic stays over a compact 
set. 

(b) For every compact K, there is a compact K' such 
that any bicharacteristic curve with endpoints in K is con
tained in K '. 

Proof (a) We show that no complete null geodesic stays 
over a compact set. Replace the system above by 
il' = 1 vi - lui' and vI' = - 1 v I - Ir~f3(x)vav{3. This 
changes the speed but not the geometry of the solutions. 
Since the solutions are nonspacelike curves we have from the 
proof of Proposition 4.1 that I Vo 1 ;;;'01 v I. Thus 1 iO I )0 
which gives the result. 

(b) A null geodesic with endpoints in K lies in 
J + (K)n J - (K). But this is compact by the global 
hyperboIicity. 

C. The wave front set 

The wave front set of distribution UEfiJ' (R4), denoted 
WF(u), is the complement in R4 X (R4 \, 0) of the set of all 
(XO,So) such that there exists a neighborhood U ofxo, WofSo 
so that for eachfEC O'(U) and each N> ° there is a constant 
K so that 

I (fu)-(1'S) I <K (1 + 1') - N 

for all SEW, 1')0. (" -" = Fourier transform.) For an oper
ator T: fiJ (R4~fiJ'(R4) we define 

WF'(T) = {(x,S), (Y,ll): (x,y; S, -ll)EWF(T(x,y» j. 
The next theorem describes the singularities of E ± in 

terms of the wave front set. 
Theorem 4.3: For a regular metric, 

WF'(E ± )C4iu'G', 

where 

'G' = {all (x,S), (Y,ll) which lie on the same 
bicharacteristic j , 

4i = I (x,S), (Y,ll): x =Y, S = 111· 
Proof The proof depends on anther construction of 

E ± using Fourier integral operators as developed by Hor
mander and Duistermaat. 8

•
9 In fact, our theorem is a special 

case of a theorem of DuistermaatlO (Theorem 5.1.6), as we 
now explain. 

Duistermaat's theorem applies to differential operators 
of arbitrary order on a manifold R X vii satisfying the follow
ing conditions: (1) The operator is strictly hyperbolic with 
respect to {s) Xvii, SER [our condition (R2), (R2'); strict 
hyperboIicity can be relaxed; see ChazarainH ]. (2) The oper
ator satisfies the Hormander-Duistermaat conditions (Pro
position 4.2). (3) The domain of dependence between any 
point x and Is) X vii is compact (e.g., J -(x)n{ Y:Yo;;;'O) is 
compact; a proof can be had by following the proof of Pro po
sition 4.1) . 

. Under these conditions one constructs solution opera
tors and characterizes their wave front sets. In our case the 
theorem says there exists a continuous operator E (s) on 'l! 
such that U = E (s}fis the unique solution of (0 + m 2)U = J, 
u(s,.) = 0, (aulaxo)(s,.) = 0, and the wave front set satisfies 

WF'(E (s» C4iu'G'u'G's' 
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where CCf s C {(x,t), (y,rJ):Yo =sl. By the uniqueness we 
have for /Eg; and s sufficiently negative that E + f = E (s)f. 
In this situation CCf s has no effect and one can conclude that 
WF'(E +)C.JuCCf. The proof for WF'(E -) is similar. 

Q.E.D. 
We apply the theorem in the following form: 

Corollary 4.4: Let/! '/2 EfiJ. For any N there is a K such 
that 

I (e - iP('~ ,E ± e - iQ<'Y2 ) I <K (1 + Ip 12 + I q 12) - N 

for all p,qE V + (or p,qEV -). 
Proof Let x,yER4 and p,qE V + , not both zero. We claim 

that (x,p;y, - q)EWF'(E ±). Clearly the point is not on the 
diagonal.J so we only need show that (x, p;y, - q)/;CCf. Since 
- qo <0, condition (R3') says that (y, - q) cannot lie on a 

future-directed bicharacteristic. Similarly, since Po »0, (x, p) 
cannot lie on a past-directed bicharacteristic. Thus (x, p) and 
(y, - q) cannot lie on the same bicharacteristic. 

With x, y and p,q as above we now have (x,y; p,q) 
/; WF (E ± (x,y». Therefore there exist neighborhoods 
UI ,U2 of x,y,Wof(p,q) such that for anY/I EC O'(UI), 
h EC 0' (U2 ), and N> 0 there is a K so that (in the sense of 
distributions), 

I J E ± (x,y}fl (xV; (y)e -. i;\px + qy) dx dy I 
<K(l + 1') - N 

for all (p,q)EW, 1'»0. By a compactness argument we can 
extend this bound to hold for any J.. ,h EfiJ and all p,qE V + 

such that Ip 12 + I q 12 = 1. But this form implies the bound 
stated in the Corollary. 

V. THE SCATTERING OPERATOR 

We now are interested in the asymptotic behavior of our 
field operator ;p (Theorem 3.1) in the distant future. Still 
assuming an admissible metric we define for /EfiJ , 

q;out (f) = «(1 + EO' G);P )(f) 

= ;p «1 + GE 0+ }f). 

Then;P = q;out in the distant future. (And also q; = q;out in 
the distant future). Furthermore it is straightforward to 
check, as in Theorem 3.1, that q;out satisfies the free field 
equation and the free field commutation relations. For the 
moment, however, we cannot conclude that we have a vacu
um vector for q;out. 

The out field is independent of the choice of coordi
nates. Namely, suppose we have metrics g,g , such that 
g' = K. (g), KEdiffo. By Theorem 3.3 the associated fields 
satisfy ;p' = «(jJOK) I deWK 1112. In the distant future this be
comes q;~ut = q;OU!' Then q;~ut = q;OU! everywhere since as bi
linear forms they satisfy the same equation and agree in the 
future. The result can also be formulated to saying that if 
q;OU!,K is the out field for a metric tensor g\ then q;OUt,K is 
independent of K and may be denoted just q;out· 

We now ask whether q;OU! is unitarily equivalent to q;in' 
Is there a unitary operator S such that q;out = S - lq;inS? 
Clearly, S can be taken to be coordinate independent ifit 
exists at all. To prove existence we may choose special co-
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ordinates. We assume that our metric is such that for some 
choice of coordinates it is regular, i.e., that g K is regular for 
some KEdiffo . (See the remarks in Sec. 4.1.) 

Theorem 5.1: Let q;out be the field for a metric which is 
regular for some choice of coordinates. Then there exists a 
(coordinate independent) unitary operator S such that 
q;out = S - lq;inS. 

Proof We assume a regular metric. The out field is giv
en by 

q;out (f) = (Rq;in)(J) = q;in (R 'J), 

where R: fiJ'_fiJ' is defined by 
R=(l+EO'G)(l-E+G) 

= 1-Eo(G-GE+G) 

= 1- Eo J 

and J is defined by 

J= G- GE +G. 

In rewriting R we have replaced E 0- by E 0+ - Eo and used 
Proposition 2.5. Note that E b = - Eo and J' are continu
ous operators on Y(R4), hence so is R ' and we may continu
ously extend the definition of q;out to Y(R4). 

For any h in Y(R3
), there exists h ± in Y(R4) such that 

II ± h ± = hand II ± h * = o. We define 

aout (h) = q;outCh +), a:ut (h) = q;out (h -) 

Then [aout (h) ]. = a:ut (h) and 

q; out (f) = aout (ll + J) + a:ut (ll - J). 

Since q;out satisfies the free field commutation relations it 
follows that aout> a:ut satisfy the CCR. Finally, the relation 
between the in and out fields becomes 

aout(h) = ain(ll + R'h +) + a~(ll - R'h +). 

It now suffices to show that there exists a unitary opera
tor satisfying aout = S - lainS. According to a standard 
theorem (e.g., Seiler24 or Wightman7

) a CCR preserving 
transformation as above is unitarily implementable if the off
diagonal operator h-ll - R 'h + is Hilbert-Schmidt. We 
now show this. 

Since Eo satisfies 

(J,Eoh +) = (21T) I12iJ j( -cu(q), - q)h (q) dJ.l(q), 

and since R' = 1 + J'Eo we have 

(ll - R 'h +)(p) 

= 21TJ } ( - cu(q), - q; - cu(p), - p)h (q) dJ.l(q), 

where} (p,q) is the Fourier transform of the kernel J (x,y) of 
J. Since J (x,y) has compact support, } (p,q) is a smooth 
polynomially bounded function. We show that it is actually 
rapidly decreasing for p,qE V + or p,qE V - and hence that 
h-ll - R 'h + is Hilbert-Schmidt. 

Now G can be written G = a "va"av + b "a" + c where 
a"V = g"V _ rJ"v, b "andc are in fiJ. Typical terms in} (p,q) 
are thus (up to a constant) 

(i) a"V(p + q)q"qv' 
(ii) PI' p,. (e - ipOa "v,E + e - iQOau{3 )quQ{3' 
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which come from G and GE + G respectively. Now for 
p,qE V + we have for any N 

laI-'V(p+q)I..;;~(l + Ip+qI2)-N 

..;;~(1 + Ipl2 + IqI2)-N 
so that terms of type (i) are rapidly decreasing. Terms oftype 
(ii) are rapidly decreasing by Corollary 4.4 which holds for 
E + as well as E + . (Note: e - ip(.) means the function 
x-exp [ - i(poxO + p.x)] in Corollary 4.4 and 
x-exp [ - i(poxO - p.x)] in (ii), but the conclusion still 
holds.] 

Final remark: Ifwe now define Ilout = S - Illin , then 
aout (h )Ilout = 0, so we have a vacuum vector for the out 
field. The states of the form 

<Pout = a~ut(hl ) .. ·a~ut (h n )Ilout 

may be interpreted as containing n particles with wave func
tions hi , ... ,hn in the distant future,just as a similar interpre
tation is held for 

lJIin = a! (h 1 ) ... a! (h ;" )Ilin 

in the distant past. Scattering is described by the amplitudes 
( <Pout> lJIin ) = (<Pin ,SlJIin ) 

and features particle creation and annihilation. 
Note added in proof After this manuscript was com

pleted, I learned of the recent lectures ofC.J. Isham,2s which 
provide a nice mathematical framework for quantum field 
theory in curved space-time. The present results could be 
profitably incorporated into that framework. 
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Conformally invariant Maxwell equations in the closed Einstein spacetime are derived, using the 
diffeomorphism between Einstein spacetime and the universal covering of conformal space. 
Spatial integration of the charge density yields the total charge 0. 

1. INTRODUCTION 

Recently, SO(4)-invariant finite energy solutions of the 
massless q:;4 and the free Yang-Mills theory were found l

, 

essentially by transforming the nonlinear field equations 
into static Einstein spacetime, where the SO(4) subgroup of 
the conformal group SO( 4.2) acts as the spatial group of 
motions. 

It is tempting to look along similar lines for solutions of 
coupled matter and gauge fields, e.g., of the Maxwell-Dirac 
equations. Here we want to discuss electrodynamics only, 
using as a guide for finding Maxwell's equations in Einstein 
spacetime their well-known conformal invariance. 

2. ELECTRODYNAMICS IN CONFORMAL SPACE 

With conformal space we mean the set of rays 

xa:;Axa, A>O, a=I, ... ,6, (x j ... x 6 )=:;t(0 ... 0) (I) 

in a quadric of R 6: 

xaxa = 1JabXaxb = 0; 

TJab = ( + I, + I, + I, - I, + I, - I). (2) 

The free electromagnetic field transforms like a conformal 
vector. The corresponding generators J = M + S are given 
by 

(3) 

d 1 (d d (Sab)c = --:- TJac TJb - TJbc TJa)' 
I 

The second order Casimir operator ofSO(4.2) has for the 
(massless) exceptional degenerate discrete representation2 

the eigenvalue 3(p~ - 1), wherepo is the helicity, in our case 
p~ = 1. Acting on a twice continuously differentiable vector 
field with degree of homogeneity - 1, C2 has the form 

(C2):'ad =! (Ja"rh)~ad 
= [! - (xaxa)(abab) + (xaaa )2 + 4(xaa")Jo~ 

+ ! 2(acxd - xca") - 2o~J + ! 50n lad = 0. (4) 

The operators in braces! J and the operator xaaa(Xaaaad 
= - ad) commute with all elements of the Lie algebra (and 

with one another) and thus are invariant operators which 
obey an eigenvalue equation in the irreducible 
representation. 

For the first parenthesis we obtain the eigenvalue - 3, 
when restricting the equation to the quadric. Therefore, 
( - x 2a2 + (xa)2 + 4(xa) lac = - 3ac in general. Now it 

follows immediately that (a"aa)ac = 0, which must be valid 
for twice continuously differentiable functions on the 
quadric. 

Equation (4) now gives 

acxdad - xca"ad = 0. (4a) 

Differentiating with respect to (Y yields Xd(Yacad - 2(Yac 
= 0 and therefore (Yac = O. From Eq. (4a) we obtain finally 

xCac = c = const. So our vector field obeys the following 
equations: 

(a"aa)ab = 0, (xaaa)ab = - a" , 
(5) 

a"aa = 0, xaaa = C = const. 

This is Dirac's conformal electrodynamics,3 if we choose 
c = 0. The last two equations in Eqs. (5) follow from the 
(MS) term in the Casimir operator.4 

For the field strengths!ab = Jaab - Jbaa we obtain 

xCJJab = - 21ab' a"lab = 0, Xa!ab = O. (6) 

Here the constant c does not appear any longer. 
In addition to the usual gauge freedom a; = a" + abA, 

we have in Eqs. (5) a conformal gauge freedom 

a~ =aa +x2bo , with xaJabc = - 3bo 

(Yacba = 0, xOba = 0, 

a"ba = 0. 

It changes the field strengths even on conformal space: 

(7) 

(7a) 

!~b = la" + 2(xo b" - x/Jba) + x 2(Jabb - abba)· (8) 

Together with Xa!ab = ° this leaves only six of the 15 Jab 
independent. 

Our explicitly covariant inhomogeneous Maxwell 
equation on conformal space has the form 

For the current one easily derives 

Xaaaib = - 3jb , 

x a ia = 0, 

a" ia = O. 

The conformal gauge transformation (8) yields 

a"!~b = a"lab - 2xba"ba - 2abx aba 
+ x2(a2bb - aba"ba) = ih , 

which stays invariant if ba fulfills Eqs. (7) and (7a). 

(10) 

(11) 

(12) 

(9a) 

Now conformal currents like the spinor currenf must 
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have a conformal gauge freedom of the form 

]b =]0 + xbS (13) 

on conformal space, where S is a continuous real function 
with degree of homogeneity - 4. (In addition, there are 
terms of the formx 2Tb, to keepatyb = o invariant. We don't 
need them for our argument here.) 

This current gauge freedom is not in contra<i,iction to 
the inhomogeneous Maxwell equation on conformal space, 
if the gauge function ba obeys 

aabo = - ts (14) 

instead of Eq. (7a). 
J"au = 0 in the potential formulation of Eqs. (5) can no 

longer be valid outside conformal space as it transforms un
der Eqs. (7) and (14) like 

J"a~ = J"aa + 2x°ba + x 2aaba . 

So our inhomogeneous Maxwell equations on conformal 
space are Eqs. (9)-(12) and 

(IS) 

(16) 

(17) 

We choose xUaa = c = 0 as there is no physical relevance of 
this constant known to us. 

3. ELECTRODYNAMICS IN EINSTEIN SPACE-TIME 

Another coordinate system in conformal space is (s" 
a,p) with 

Xi = E..Si' i = 1,2,3,5; X 4 = P sina; X6 = P cosa; 
R 

P ~ A p; S'Si = R 2; aE[0,21T). (18) 

Allowing aE( - 00, + 00), one obtains the universal cover
ing or S 3 X R 1, which is the closed static Einstein spacetime, 
if we impose the metric 

ds2 = - R 2da2 + ds'asi . (19) 

Equations (18) determine the transformation of the 1-
formA: 

(20) 

DecomposingAi into a radial partsiA i and tangential terms 

(21) 

we get 

a i = !i (,{ + +SkAk ), 

p SSt 

1(. iA . A ) a4 = - smas i - P sma p - cosaAa , 
p 

ab = -..!..- (cosasiAi - P cosaAp + sinaAa). (22) 
p 

In just the same way the vector a ° is transformed into ai' a a' 

and ap ; the transition from the I-form components]a to 1;, 
J", and Jp has an additional factor l/p2 at the right side to 
make Ji,a (Si ,a) independent of p. 
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Now the field equations (9-12) and (15-17) can be giv
en in the new coordinates, The notation becomes especially 
handy if one uses the field strengths 

- 1 k 
Fi} = Fi} - - S (SjFik - S,Fjk) 

s's{ 

We obtain from Eqs. (16), (11), (15), and (12) 

Ap =Jp =0, 

S'Ai = t(aaAa - R 2a'A;), 

R 2a i1; = aJa ' 
If we put a = i in Eq, (9), it follows that 

1,. = R 2at
Fji + aj\a' 

and with a = 4,6, we have 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

1;, Ja, F;j' F;a' and Eq. (25) stay invariant under conformal 
gauge transformations, but not Eq. (29): 

s'J I' = s'Ji + SiS, p 4S. 

So s'Ji is a pure gauge component of the conformal current. 
It can always be made to vanish with an appropriate confor
mal gauge transformation. Equation (29) then yields 

2 k . a k R a slFkj + as Fka = 0, 

and if one eliminates all s'A i terms with the help of Eq, (25), 

(R 2aiai 
- a~J(aaAa - R 2aj~) - 4JaAa = O. (30) 

This is the conformally invariant gauge condition, which 
corresponds to OavAv = 0 in Minkowski spacetime6

; togeth
er with Eqs, (23), (27), and (28) it forms conformal electro
dynamics in Einstein spacetime, Equation (26) is the con
tinuity equation for the current. 

In the usual generalization of Maxwell's equations into 
curved spacetime, the Lorentz condition gets A V;I' = 0, or in 
the present notation 

aCtAa - R 2a i,{ = O. (31) 

with our conformal gauge condition this yields 

JaAa = 0, R 2a'if; = 0, (32) 

which in general cannot be obtained with a gauge transfor
mation, So the covariant generalization of the Lorentz con
dition cannot be imposed on the conformal electrodynamics 
in Einstein spacetime, 

4. CHARGE OF THE UNIVERSE 

If there is one charge in an otherwise empty Minkowski 
spacetime, one can imagine the electrical field as rays going 
to infinity. This is impossible in the closed Einstein space
time; the field lines have to end at an opposite charge; the 
total charge must be O. Is the naive picture correct? To de-
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cide this question one can integrate Eq. (28) over S 3 directly 
or use polar coordinates 

SI = r sinX sint? c0S<p; S3 = r sinx cost?; 
(33) 

S2 = r sinX sint? sinq?; S5 = r cosX' 

They give in an unique way formulas for ax' F ta , etc. Equa
tion (28) becomes 

sin2X sint?Ja 

= ay (sin2x sint?Fra ) + a,,(siniJFila ) = a'P( -._I-F'Pa), 
smt? 

and integrating over space S 3: 

Q = R 3 L, sin2x sint?J" dX /\ dt? /\ dq? 

= R 3 ( [(Sin2x sint?Fya) dt? /\ dq? Jas 1 

(34) 

+ (sint?F,jcl) dq? /\ dX + ( _.1_ F'{'a )dX /\ dt?] = O. 
smiJ 

(35) 

Here we used Stokes theorem for forms S s,dq? = S as,q?, and 
the fact that the boundary of S 3 is ¢J. 

One could have obtained this result more easily from 
the usual covariant generalization of Maxwell's equations: 

FI"',,, = J
" 

or d *dA = *J. (36) 

However the conformally invariant spin 0 equation in Min
kowski spacetime will yield q? '''", = 0 in Einstein spacetime if 
one follows the covariant generalization procedure7

, and this 
is not the conform ally invariant equation q?'",v - (lIR 2)q? 
= O. A similar discepancy from Eq. (36) would not amount 

to the total charge O. 
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5. CONCLUSIONS 

We have shown how, in a conformally invariant gauge 
theory, global topological properties of the underlying spa
cetime can fix the global charge connected with an inner 
symmetry group. 

Simultaneously, the original aim to find classical solu
tions of the coupled Maxwell-Dirac equations cannot be 
achieved. This is so because the charge density of the Dirac 
current is definite, and so the "total charge" of a non vanish
ing spinor cannot be O. The same problem, which leads to 
quantization with anti commutators, doesn't allow (commu
tating) c-number solutions. 

A last remark: Every charge in Einstein spacetime can 
be assigned to an opposite charge. Thus, it is possible to for
mulate electrodynamics in a more symmetric way without 
electric monopoles, using electric and magnetic dipoles only. 

This has been pointed out to the author by L. Castell, 
with whom many discussions are acknowledged. 
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The low-temperature internal energy and specific heat of a hard sphere Bose gas confined to a 
general cuboidal enclosure are calculated under periodic boundary conditions. The special cases 
of a film and a channel geometry are considered in some detail. It is shown that, in the 
appropriate limits, one recovers the recent results of Pajkowski and Path ria, and of Zasada and 
Pathria, for a system of phonons confined to different geometries. Systematic applications of the 
Poisson summation formula enable us to obtain strongly convergent expansions, in both AIL « 1 
and AIL ~ I regimes, and to see how the magnitude of the finite size corrections in the 
asymptotic limit (LIA~ 1) is directly linked with the dimensionality of the system. Special 
attention is paid to examining the combined influence of the dispersion in the phonon spectrum 
of the system and the finiteness of the enclosure. 

\. INTRODUCTION 

Recent interest in the study of finite size effects in var
ious physical systems, notably superfluid helium, has 
prompted several workers into carrying out theoretical in
vestigations of such effects in a Bose-Einstein gas. Most of 
these investigations have centered on a gas of noninteracting 
particles confined to a cuboidal geometry and subject to a 
variety of boundary conditions. H Clearly, the relevance of 
these studies to the problem of actual superfluid helium is 
bound to be limited unless one includes the influence of in
terparticle interactions. The first indirect step in this direc
tion was taken by Padmore6 who suggested that the finite 
size effects in superfluid helium may be analyzed within the 
framework of Landau's quasiparticle picture, provided that 
the smallest dimension of the container is much larger than 
the healing length, which is of the order of 1-2 A. In this 
spirit, he and other authors7

-
9 have examined the thermody

namics of a phonon gas in different geometries under various 
boundary conditions; the results thus obtained should be of 
direct relevance to liquid helium below 0.5 K. In the same 
spirit we undertook to investigate the thermodynamics of a 
hard sphere Bose gas confined to an arbitrary cuboidal en
closure. This investigation is based on the energy spectrum 
derived by Brueckner and Sawada,IO and emphasis is laid on 
examining the combined influence of the dispersion in the 
phonon spectrum of the system and the finiteness of the 
enclosure. 

II. PRELIMINARIES 

The Brueckner-Sawada spectrum for a hard sphere 
Bose gas is of the form 

€(k) = fz
2
k (k 2 + 2<7 Sin(ka») 1/2 , (1) 

2m a2 (ka) 

where m is the particle mass and the parameter <7 (which is a 

"Work supported in part by the Natural Sciences and Engineering Re
search Council of Canada. 

function of the particle density p and the hard sphere diame
ter a) is given by the implicit relation 

Loo x sin2x 
4r?pa3 = <7 . dx. 

o x 3 + <7 smx 
(2) 

If the mean momentum of the excitations is so small that the 
term sin(ka)/(ka) is only slightly different from unity, one 
deals with a monotonic, dispersive spectrum, viz., 

€(k) = :~ (fz2k 2 + r)I12, 

where 

r = 2<7(fz/a)2 rt ; 

(3) 

(4) 

here, rt denotes the mean value of the oscillating term 
sin(ka)/(ka) averaged over an assembly of the excitations in 
question. Since we are interested in the low-temperature 
properties of the system, we can safely assume Eq. (3) to be 
the operative form of the energy spectrum. In the phonon 
limit, 

rt = ! (- Inn + 1) t (2n + 3) (~)2n (A = kfu:
T

) 
II~O t(3) A 

1 [ ( a
2)--2] ~1 - t(3) 1 - 1 + J2 ' 

(5) 

(6) 

which is essentially equal to unity because, for all practical 
purposes, (alA) ~ 1. The speed of sound c is related to the 
parameters of the spectrum through the relation 

c = lim [€(P)I p] = (<7/2)'12(fz/ma) rt 1/2
; (7) 

p .0 

however, the temperature dependence of rt is so weak that we 
may neglect it throughout this analysis and use, for c, the 
empirical value of 238 m/sec 11 for liquid 4He. 

We can now write down thermodynamic expressions 
for the internal energy U and the specific heat C v of these 
excitations, viz., 

U = I €(k) {exp[,8€(k)] - l} - I (8) 
k 

2559 J. Math. Phys. 20(12), December 1979 0022-2488/79/122559-08$01.00 © 1979 American Institute of Physics 2559 



                                                                                                                                    

and 

(9) 

where €(k) is given by (3). The bulk situation has been stud
ied in detail by Pathria and Singh, 12 who obtained the follow
ing results: 

tTVr oc 

U = -- L [SS12 (nx) - S3/2 (nx) - 2Sl!2 (nx)] 
16mh 3 n ~ 1 

and 

tTVr oc 

C v = --- L (nx)[C7I2 (nx) - CS/2(nx) 
32mh 3T n ~ I 

- 3C3/2 (nx) + 3Cl/2 (nx)], 

(10) 

(11) 

where S, (z) and C, (z) are the Lommel functions, defined 
by" 

S,(Z) = f" exp( -zsinht)sinh(vt)dt = -S~,(z) 
(12) 

I 

III. THE CUBOIDAL GEOMETRY (L 1 X L2 XL:;) 

and 

C,(z) = roc exp( - z sinht) cosh(vt) dt = C .. (z), (13) 
Jo 

while x = r 21 4mkT. In the weakly dispersive region (x~ 1), 
one may employ the asymptotic expansions 

S,(z) = v (J.- _ (22 - v) + (22 - v)W - v) _ ... ) 
Z2 Z4 Z6 ' 

(14) 

C,,(z) = (~_ (12~V) + (12-V~~32_V) _ ... ), 

(15) 

and obtain 

U = V 4tTS(kTt [1 _ ~ ~ ( kT )2 + ... J 
ISh 3e3 21 me2 (16) 

and 

el' = C v = 16tT
s
k

4

T
3 

[1- ~~ (kT)2 + ... ]. (17) 
V ISh 3eJ 14 me2 

The leading terms in these expressions represent the bulk 
situation in a standard phonon gas while the subsequent 
terms represent the bulk dispersive corrections. I

'.
ls 

For finite systems, we must aim at evaluating the discrete sum-over-states appearing in Eq. (8) in a manner which yields 
the result as a bulk term plus a set of finite size corrections. The method most suited for this purpose is the application of the 
Poisson summation formula (PSF) which, in a d-dimensional space, states that 

(18) 

where 

CT ~ 2TTiq·r d f
oc 

Y(ql, .. ·,qd)= ~oo/(r)e d r. (19) 

It can readily be seen that the term with q = 0 on the right-hand side of (18) is precisely the result one would obtain by 
replacing the original summation over n by an integration. It then follows that the term YeO) would correspond to the bulk 
situation while terms Y(q) with q=i=O would give the finite size corrections. An added benefit of the PSF is that, almost 
invariably, it converts a slowly convergent sum into a rapidly converging one. For instance, Jacobi's imaginary transforma
tion for theta functions is just an application of the one-dimensional PSF to the summand/en) = exp( - n 2t), viz., 

t e ~ n'l = (tTlt )112 t e- "VII. 
n = - 00 q= --00 

For small values of t, the left-hand side of this identity converges quite slowly while the right-hand side converges very rapidly. 
For further examples, see Chaba and Pathria. 16 

Returning to the problem at hand, if we subject our system to periodic boundary conditions, we have 

k i = (2tTILi) ni, n i = 0, ± 1, ± 2,... (i = 1,2,3). 

Accordingly, Eq. (8) becomes 

f3U = tTA 2 f f n'(n'2 + r)l12 exp[ -tTjA 2n'(n'2 + r)I12] , 
j=1n1.~.1=-OC 

(20) 

whereA = h 1(2tTmkT) 112, r = rlh = 2melh and n' = (nl ILl' n21L2 , nJIL3)' Application of the three-dimensional PSFto 
this expression gives 

f3U IV = 2tTA 2 jtl q" ,t ~ oc ;, i oo 

5 2( 5 2 + r)1I2 exp[ - tTA ]5 (5 2 + r)1/2] sin(2tTq'5) d5, 
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where q' = (ql LI ,Q2L2 ,q}L}). Substituting f = Y sinh(~t), this becomes 

(3u = : A 2y4 j~1 q", ~ _ oc ;, LX> sinhZt exp( - jx sinht) sinI21Tyq' sinh(~t)] dt, 

where u = U /Vandx = (1T/2) A Zy = ?/4mkT = mcz/kT. This integral is not tabulated but, through the useofthegenerat
ing function for Bessel functions, we can establish that 

sin [21Tyq' sinh(4t )] = 2 f (- 1 t 12k + 1 (21Tyq') sinh(k + 4) t, (21) 
k=O 

where I,,(z) are the modified Bessel functions. Employing this expansion along with Eq. (12), we get 

(3u = ~A 2y4 f ~ f f (- l)k 11k + 1 (21Tyq') [Sk + S/2(jx) + Sk _ 3!l(jX) - 2Sk + 1/2 (jx)J . (22) 
8 ql.2.3= - 00 q j= I k=O 

As expected, the (q = 0) term here is precisely the bulk result, Eq. (10), of Pathria and Singh. 
While Eq. (22) is exact for a hard sphere Bose gas with energy spectrum (3) its utility is limited because of the several 

summations yet to be done. However, if we expand the Lommel functions appropriately, thej and k summations can actually 
be carried out. We will do this only for the leading dispersive corrections to the phonon results although, in principle, this can 
be carried through to any order in the dispersion parameter l/x. For x> 1, we have 

and 

a _ 4v (~ _ 2(22 - v1
) + 3(22 - v)(4

2 
- v) ) 

C,._I(x)-C,,+I(x)=2 ax S,,(x) = x3 XS x7 - ... 

a s, + 2 (x) + S,._ 2 (x) - 2S,,(X) = 2 - [Cv _ l (x) - C,,+ 1 (x)] 
ax 

= 8v (_1._3 _ 2.5.(22 - v) + _3._7'..;...(2_
2 

_-_v-,-)-,--( 4_2 _-_v--,-) _ ••. ). 
X4 x 6 x 8 

Using (24), thej-summation in (21) can be readily carried out: 

)tl {S,. +2 (jx) + Sy _ 2 (jx) - 2S
y
(jx)} = 8v (~; ; (4) _ 2.5'(2~6- v) ; (6) + 3.7.(2

2 - ~)W - v) ; (8) - .. .); 

in our problem v = k + 4. For carrying out the k-summations, we have to consider the sums 

.l'p(Z) = f (- I)k (2k + I?P+ 1 IZk+ 1 (z) (p = 0,1,2, .. ·). 
k=O 

These can be done by using successive differentiations of the identity (21). The final result can be summarized as 

Lp(Z) = ~ (_ lY 1 2"(2p+ I) (~)21+ 1 

I.?O (21 + I)! 21 + 1 2 ' 

where 

2"~~Pt-+II) = mto (- l)m CI
; 1) (21 + 1 - 2m)2p + I. 

(23) 

(24) 

(25) 

(26) 

Some of the coefficients 2"~~P++ll) have been tabulated in Table I; they are sufficient for evaluating the first six .l'-polynomials. 
We get 

.l'o(z) = 4z, 

TABLE I. Values of .'/W,', "/(2! + I)! 

P,\ 0 

0 
1 
2 
3 
4 
5 

4 
40 
364 
3,280 
29,524 
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2 

16 
560 
15,456 
399,520 

3 

64 
5,376 
325,248 

4 

256 .1 

42,240 

5 

1,024 
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..1'1 (z) = !(z - z'), 

..1' 2 (z) = !(z - lOz 3 + ZS), 

..1'3 (Z) = !(Z - 91z3 + 35zS 
- Z7), 

..1'4 (Z) = !(Z - 820Z3 + 966zS 
- 84z7 + Z9), 

..1'S(Z) = !(Z - 7,381z' + 24,970zS 
- 5,082z7 + 165z9 - Zll). 

These polynomials are sufficient for determining the finite size effects in a system of phonons as well as the leading contribu
tions to finite size effects attributable to dispersion. 

Substituting the foregoing results into Eq. (22), we finally obtain 

/3u = (f3U)bulk + ~ A 2y (~r L,,~ 'x [1.3.t (4) - 2.5·t(6) (7 q'Y + 3.7.t(8)( 7 qJ -... J 

_ ~ I' [2.3.4.52t (6) - 4.5.6.72·t(8) (1TY q,)2 + 6.7.8.92.t(1O) (1TY q,)4 _ ... J + ... }. (27) 
16x qL.2.'~ -00 x x 

The leading set of correction terms here is of the form 

(~/2)A 2Y(Y/X)4 I' J «1TY/X) q'), (28) 

where 

J(a) = ~ I (- 1)"(2n + 2)(2n + 3) t(2n + 4) a2n = _1_ (X y2 (I (_ 1)" (ay)2n t I) dy 
2n~o 2aJo (e Y -l) n~O (2n+I)! 

= _1_ (00 y
2
sin(ay) dy = _1_ (~ _ 

2a Jo (e Y -l) 2a a3 
1TJ coth(1Ta) CSCh2(1Ta») . (29) 

Similarly, the second set of terms is of the form 

(30) 

where 

K (a) = I (- 1)"(2n + 2)(2n + 3)(2n + 4)(2n + 5? t (2n + 6) a2n = (00 yS cos(ay) dy + -±- (00 y4 sin(ay) dy 
n -() Jo (e Y - 1) a Jo (e Y - 1) 

12 161Ts 
= - + -- (2 coth1Ta csch41Ta + cothJ1Ta csch21Ta) 

aO a 

- 41T6(11 coth21Ta csch41Ta + 2 coth41Ta csch21Ta + 2 csch61Ta). (31) 

Now, in terms of the mean thermal wavelength of the phononsA (= fzc/kT), we have A 2 = 21TA1/X and y = x/1TA, where 
x = me 2/kT. Employing these relations in the foregoing equations, we finally obtain 

(32) 

Here, (f3u )bulk is precisely the bulk result given by Eq. (10), the second term is precisely the finite size correction obtained from 
an ab initio calculation for a standard, nondispersive phonon gas (E = pe) in a cuboidal enclosure under periodic boundary 
conditions," while the subsequent terms represent finite size corrections arising from the dispersive nature of the energy 
spectrum (3). Since the finite size corrections in the standard phonon gas have been discussed at length by Pajkowski and 
Pathria' and by ourselves,9 we shall concentrate here mainly on the dispersive effects. 

IV. DISPERSIVE EFFECTS IN A FILM GEOMETRY (00 X 00 XL) 

In the limit of a film geometry, the summations appearing in (32) become one-dimensional, so that 

1 ( kT)2 ( 3 (A )0 00 { (A) 
(f3U)disp = - V me2 2~ t (6) L + q~1 21T' L 

X C coth«1TL / A )q) csch
4
«1TL / A )q) ; coth

3
«1TL / A )q) csch

2
«1TL / A) q») _ ~4 [ 11 coth2 (1Tf q) csch4 (1Tf q) 
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+ 2 coth4 (1Tt q) csch2 (1Tt q) + 2 csch6 (~ q)]}) + .... (33) 

Expression (33) is especially useful in the regime (A IL< 1), which is customarily known as the asymptotic regime. Here, the 
sums may be truncated at just the leading) rms, with the result 

(e) = 2~k [{1+60[1_3(~)]e-21rLIA}_ ~~(~)2 
" film 15..1 3 21TL 14 me2 

X{I-168[1- (~) - +(:L)]e-21rLIA} + ... ]. (34) 

For AI L-O, we recover the bulk behavior as obtained by Path ria and Singh,12 see Eq. (17). If, on the other hand, we assume 
that kT<me 2, we recover the corresponding expression ofPajkowski and Pathria8 for a standard phonon gas in a film 
geometry. 

In order to obtain a useful expansion for the complementary regime (A 1 L'> 1), we expand the hyperbolic functions in (33) 
as exponential series, such as 

cothx = 1 + 2 ! e - 2kx , 

k~1 

etc. We can then sum over q, with the result 

(f3U)disp = __ 1 (~)2 [_3 ; (6) (~)6 _ (21T)3 (~) ! k 41n(1 _ e- 2lTkLl)') 
A 3 me2 2~ L L k ~ I 

- 4# k~1 k 5(e21TkLlA - 1) - I] + ... (35) 

This intermediate step is necessary as a preparation for the application of the PSF, for otherwise the extension of the 
summation in (33) to all values of q is problematic at q = O. That expression, as a whole, is well behaved (in fact, the q = 0 term 
corresponds to the bulk result); however, each sum separately diverges, thus making a direct application of the PSF rather 
questionable. No such difficulty arises when our expression is written in the form (35) and the PSF can be readily applied, with 
the result 

(f3u )diSP = (~~ y ; 3 { ~;: (~ y _ ~4 (~ y 
X Jtl [ 11 coth

2 
( ~ i) csch

4 
( ~ i) + 2 coth

4 
( ~ i) csch

2 
( ~ i) + 2 csch

6 
( ~ i)] 

- 21T"(~YJ~/-1 [coth3(~ i)cSCh2(~ i)+2coth(~ i)CSCh4(~ i)] - 21T2(~) 

XJtl i- 2 [coth
4 

( ~ i) + 2 coth
2 

( ~ i) csch
2 

( ~ i)] - 61T J~I i -3 coth (~ j) csch
2 (~ j) - 6 (~ ) 

~. 4 h2(1TA.) 6 (L)2 ~. 5 h(1TA .)} X .£... ] - csc -J - - - .£... ] cot -J + ... , 
J~I L 1T A J~I L 

(36) 

which converges rapidly for AIL,> 1. Retaining only the leading exponential terms, we get 

(e,,)film = 1T~~L (;(3) + 2[ 1 + 2 (~) + 2(~ Y + ~ (~ Y]e- 21rAlL - 10 (~~ Y{;(5) + 2[ 1 + 2 (~) 
+ 2 (~ Y + ~ (~ Y + ~ (~ r + 1~ (~ r + 1

2
5 (~ r]e 2rrAlL} + ... ) . (37) 

For kT <me 2, this expression reduces to the corresponding one obtained by Pajkowski and Pathria8 for a phonon gas in a film 
geometry. On the other hand, if A IL-oo, the system behaves as ifit were a two-dimensional bulk system, with specific heat 
per unit area given by 

- ;(3)-10;(5) - + ... , 3k [ ( kT)2 ] 1TA 2 me2 (37a) 

which is indeed expected. 
Figure 1 shows the ratio of the actual specific heat, as given by Eqs. (34) and (37), to that of an assembly of non dispersive 

phonons in the form of a film. It may be mentioned here that although the expressions (34) and (37) are supposed to apply only 
towards the extreme ends of the range of AIL, the convergence of the sums involved in the parent expressions (33) and (36) is 
so rapid that, in practice, we encounter an overlapping range of validity such that, taken together, these expressions constitute 
an almost complete description of the specific heat of the system. This overlap is rather important because for typical values of 
Land T, namely 10-100 A and 0.2-0.5 K, the parameter A IL indeed lies in the intermediate range, with values of order unity. 

It will be noted that in Fig. 1 we have only plotted ev down tOA / L = 0.4, despite the fact that the relevant approximation 
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(34) becomes better and better as we proceed in the direction of decreasing ,,1,/ L. The reason for this is that we must as well 
satisfy the criterion of weak dispersion, viz., x = me2/kT = (meL /11)(,,1, /L)~ I, which has been assumed in dropping the 
subsequent terms of (34). Using the mass of an 4He atom and e = 238 m/sec, this implies that, for a 25 A film, we must have 
A / L~O.03. This restriction is not, in fact, serious because we are operating at sufficiently low temperatures anyway. 

V. DISPERSIVE EFFECTS IN A CHANNEL GEOMETRY (00 XLXL) 

In the limit of a channel geometry, the summations appearing in (32) become two-dimensional, with the result 

(f3U)di'p= - ,,1,\ (~~rC~(~r8(3)+ qll~ '{1Tl(~)q '[coth3(~Lq) 
X csch

2 (1Tf q) + 2 coth (~L q) csch4 (~L q)] _ :4 [ 11 coth2 (~L q) 

X csch
4 (~ q) + 2 coth

4 (~L q) csch2 (1Tf q) + 2 cscho (~L q) ]}) + ... , (38) 

where q = q~ (qD'!2 and 
X' 

8(s) = L' (l/q') = 4; (s)/3(s), (39) 
41,}. --

8 (s) being the Hardy sums and/3 (s) the DirichletL-series 'l:~ 0 ( - 1 )"(2n + 1) '. Again, retaining only the leading exponen
tial terms in these summations, we get 

(e,,)ch'"wel = 2~k ({I + 120[1 _ 3 (~)] e - 2TTLIA} _ ~ ~ (~)2 
. 15A. J 21TL 14 mel 

X{I-336[1- (:L)- +(~L)]e-2TTL/A} + .. -) (A/L~I). (40) 

Comparing this with (34), we find that the finite size correction due to dispersion in the case of a channel geometry is twice that 
in the case of a film. This was also found to be the case for finite size effects in a standard phonon gas. 9 We can see that this 
phenomenon is directly related to the dimensionality of the summations in Eqs. (33) and (38); in fact, we can argue that in a 
cube the finite size correction due to dispersion will be a factor of three larger than in a film. This indeed bears out the intuitive 
notion that the greater the degree of finiteness of the system, the larger the finite size correction. 

To examine the complementary regime (A /L~ 1) for the channel, we transform (38) by applying the two-dimensional 
PSF to obtain a rapidly convergent result. This formula is now embodied in the identities 

1T 
- coth(1Ta) -
2a 2a2 (41) 

and 

(42) 

These identities, along with their relevant derivatives, can be used to re-express (38) after a somewhat tedious but straightfor
ward calculation as 

(f3U)di'p = ~ ( k~)2 [51T
4 

+ _1_1 1T3 (~)2 + 70 (~)3! ! ' q: K2(21TnqA /L) 
A - me 126 126 L L" ~ I q" ~ - x n 

1!11T(~r"~lq,,~_'_~ ~:K3(21TnqA/L)-3~(~r"t,q"2t_'oc ~4K4(21TnqA/L) 
+ ! 1T

3
( ~ r "~I q,,~' oc q

5
K5 (21TnqA /L)] . (43) 

Due to the presence ofthe modified Bessel functions K" (z), these sums converge rapidly when A / L~ 1. Retaining the requisite 
number of terms in the asymptotic expansions of the K,,(z), we finally obtain 

~({1 +481T(~)5/2 [1 + ~(~) + ~(~)2 
3AL 2 L 8 21TA 128 21TA. 

+ ~ (~)3 _ ~ (~)4] e-2TTAIL} _ 3~ (~)2 {I + 160~ (~)"/2 
128 21TA. 512 21TA 10 me2 L 

X [1 + l..- (~) + 697 (~)2 + 18621 (~)3 + 1431675 (~)4 
8 21TA. 128 21TA 1024 21TA 32768 21TA 

3686445 ( L )5] 2nAIL} ) + -- e + .... 
65536 21TA 

(44) 
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For kT <me 2, expressions (40) and (44) again reduce to the corresponding ones obtained by Pajkowski and Pathria8 for a 
phonon g~s in a channel geometry. For;1, I L-o, expression (40) reproduces exactly the three-dimensional bulk result (17); 
however, III the other extreme (when;1, I L-+ 00 ), expression (44) shows that our system behaves as if it were a one-dimensional 
bulk system, with specific heat per unit length given by 

1Tk [1 _ 3r ( kT)2 + ... ] , (44a) 
3;1, 10 me2 

which is indeed expected. Note that the bulk expressions (17), (37a), and (44a) are special cases of the general d-dimensional 
result, viz., 

k [, d + 2 ( kT )2 ] 2d-I~/2(dI2)_1)Ud (d+l).;(d+l)--8-(d+3)!;(d+3) me2 +"', (45) 

with d = 3, 2, and 1, respectively. 
Figure 2 shows the ratio of the actual specific heat, as given by Eqs. (40) and (44), to that of an assembly of non dispersive 

phonons in the form of a square channel. 

VI. CONCLUDING REMARKS 

As can be seen from the figures, significant deviations 
from the standard phonon behavior develop when the mean 
thermal wavelength;1, is of the order of the system dimension 
L. This is quite a reasonable expectation on physical 
grounds, for dispersion is due in part to multiphonon pro
cesses and one expects these processes to be inhibited if the 
system size is much smaller than the mean thermal wave
length of the phonons. For a typical value of L, say 25 A, the 
foregoing condition implies that T5. 0.7 K, which is precise
ly the regime in which the thermodynamic behavior of li
quid 4He is dominated by phonons. 

Unfortunately we do not have at this stage sufficient 
experimental data on the low-temperature specific heat of 
liquid 4He in restricted geometries to offer a meaningful 
comparison with our calculations. In addition, the problem 
ofthe quantitative determination of the intersticial geometry 
in customarily used media must be improved further so that 
reliable estimates could be made of the finite size effects ex
pected on theoretical grounds. We hope that the calculations 
presented here will prompt further experimental work in the 
directions indicated. 

1.00 I~~~--'-~~--=::r:======:::!::=====j 

2 

0.95 

0.90 o:------oL.5-----I.Lo-----.J1.-5---~2.0 

AIL 

FIG. I. Ratio of the low-temperature specific heat ofa weakly interacting 
Bose gas to that of a gas of nondispersive phonons, as a function of Ii / L for a 
film of thickness L. Curve I: L = 50 A; Curve 2: L = 25 A. ' 
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In conclusion we wish to remark that the boundary con
ditions employed in this paper are only one of the many that 
can be imposed on the system. In the absence of an a priori 
reason to choose any particular boundary conditions in pref
erence to others, we decided to analyze the problem under 
periodic boundary conditions which are indeed the simplest 
to work with; any other choice would have made the math
ematics even more cumbersome. Our previous experience 
with such investigations tells us that while the results ob
tained by using Dirichlet or Neumann boundary conditions 
may differ in some important respects from the ones ob
tained under periodic boundary conditions, the use of the 
latter does provide us with the first explicit glimpses of the 
situation expected to arise in a finite system. This would not 
be the case if one approached the problem by simply adopt
ing a density-of-states appropriate to the given boundary 
conditions and carrying out integrations, instead of summa
tions, over states. In that case the periodic boundary condi
tions would not give any finite size effects whatsoever where
as Dirichlet and Neumann boundary conditions would. 17 

Such an approach leaves one with the (erroneous) impres
sion that the periodic boundary conditions are rather unreal-

1.00 I~~~--'---~-=:=:':====~======_---' 

2 

0.95 

0.90 '---___ L-. ___ --..l ____ ---L ____ --.J 
o 0.5 1.0 

)'/L 
1.5 2.0 

FIG. 2. Sal!1e as in Fig. I, for a square channel of cross section L X L. Curve 
I: L = 50 A; Curve 2: L = 25 A. 
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istic and, at best, an artifice to circumvent the presence of 
boundaries. Our work over the past few years has, however, 
shown very clearly that if the summations over states ap
pearing in the expressions for the various physical quantities 
pertaining to the system are evaluated rigorously, then peri
odic, as well as Dirichlet and Neumann, boundary condi
tions lead to finite size effects which are quantitatively deter
mined by the surface-to-volume ratio of the system. This 
provides the essential motivation with which the calcula
tions reported in this paper were carried out; it also indicates 
the spirit in which these calculations should be viewed. Of 
course, if there exists an a priori reason to employ a particu
lar set of boundary conditions in preference to others, one is 
well advised to do so right in the beginning. 

In passing, it appears worthwhile to note that the finite 
size effects reported here should be distinguished from the 
effects arising explicitly from the surface modes, if any, of 
the given system. The former are a consequence of the dis
creteness of the bulk modes which in turn owes to the finite
ness of the enclosure; they depend rather strongly on the 
choice of the boundary conditions imposed on the wavefunc
tions and do not depend critically on the interparticle inter
actions. The latter, on the other hand, are a (true) surface 
phenomenon associated with interfacial tension; they de
pend rather strongly on the interparticle interactions and do 
not depend critically on the boundary conditions. Whether 
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one type of effects are more important than the other de
pends on the system under study and on the properties under 
investigation. 
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The non-Markovian relaxation process as a "contraction" of a 
multidimensional one of Markovian type 
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A new approach for obtaining the Fokker-Planck equation to be associated with the 
generalized Langevin equation is discussed. By using the Mori expansion of the 
"memory kernel," it is shown that any information of interest may be provided by a 
suitable multidimensional Fokker-Planck equation of Markovian type. A suitable 
"contraction" process, furthermore, enables us to find the same two-point conditional 
probability as the one recently obtained by Fox. This approach may be useful to 
overcome the Markov approximation which is present in the stochastic Liouville 
equation theory. 

I. INTRODUCTION 

The generalized Langevin equation' in the monodimen
sional case reads 

du l' -- = - (3 (t - s) u(s) ds + J(t ), 
dt 0 

(1) 

wherej(t) is related to the fluctuating forcej'(t) by: 
jet) =j'(t)lm. As usual, we assume that <I(t» = 0 and 

<I(t)j(s» = Li '(3(lt - sl) (Li' = KBT 1m). (2) 

The possibility of obtaining a Fokker-Planck equation to be 
associated with Eq. (1) has been the subject of recent investi
gations. 2

-
4 Adelman' succeeded in deriving from the general

ized Langevin equation' a sort of generalized Fokker
Planck equation under the general assumption of Gaussian 
stochastic forces. His equation looks like a usual Fokker
Planck equation but with time dependent friction coeffi
cients. Similar results were obtained by Fox by using a differ
ent approach. J 

More recently .. Fox built up in a rigorous way the two
point distributions to be associated with the generalized 
Langevin equation. Such a distribution was shown to satisfy 
a Fokker-Planck-like equation which exhibits a two-time 
dependence and does not appear to be endowed with the 
nonstationary, Gaussian, Markov nature of the one pre
viously found. The only feature shared with the Markovian 
processes has to be seen in that both the two-point distribu
tion and the higher order ones depend upon a single two
time function, the velocity autocorrelation 

(3) 

In the present paper we shall show that it is possible to 
replace the monodimensional form ofEq. (1) with a multidi
mensional Langevin equation of Markovian type in such a 
way that the autocorrelation function involving the compo
nent of interest of the multidimensional vector is just the 
autocorrelation function of Eq. (3). The multidimensional 

alTo whom any correspondence should be addressed. 

Langevin equation we shall find is of the same kind as the one 
studied by Fox and Uhlenbeck' some years ago. As a conse
quence, both the problem of finding its bona fide Fokker
Planck equation and the one of evaluating the time evolution 
of the two-point multidimensional distribution does not pre
sent any difficulty provided that the Gaussian assumption is 
performed. It is very interesting to remark that the two-point 
monodimensional distribution found by Fox can be derived 
from the multidimensional one through a suitable "contrac
tion" process. It appears, thus, that whereas Fox is able to 
express everything by the two-time function xit, - (2), Eq. 
(3), we can express any relevant physical property by using 
both an approximate expression for X, and our multidimen
sional two-point distribution. A significant advantage of the 
present theory may be seen in that it affords a straightfor
ward method of evaluating even the relaxation processes of 
"multiplicative"" type which depend on fluctuations of non
Markovian nature. 

The leading idea of the present paper is the one already 
outlined in Ref. 7. According to Wang and Uhlenbeck,7 in 
fact, any non-Markovian process can be considered as a 
"projection" of a more complicated Markov process. How
ever, it is only the more recent theory by MoriS which makes 
it possible to actually obtain the main results of the present 
paper. 

II. THE MULTIDIMENSIONAL LANGEVIN 
EQUATION OF MARKOV TYPE 

According to Mori,8.9 the Laplace transform of the 
"memory kernel" (3 (t ), Eq. (1), can be written as follows: 

P~)= __________ A~~-~I ________ _ 

A ~-2 
P + -------..-::..---=-------

A ~-3 
P + ------=---=----

A~ p+ ... ---~--
A1 

p+ ----
p + (3(n)~) 

(4) 
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We shall show below that truncating such a continued frac
tioll with the assumption that t3 (n)(p) be independent of 
p«(3(n)(p) = y), as suggested by Mori,s is equivalent to re
placing the monodimensional Langevin equation of non
Markovian kind, Eq. (1), with the following multidimen
sional Langevin equation: 

d -
dt v + Av + Sv = F(t), (5) 

where A = 

0 OJ I2 

0 

0 OJ 32 

0 0 

0 0 

and 

0 0 

0 0 

S= 
0 0 

o 0 

0 0 

OJ23 0 

0 OJ3. 

0 

0 

OJ n _ 1n _ 2 0 

0 W nn _ 1 

o 
o 
o 

o 

(6) 

(7) 

The vectors v and F are column matrices defined as follows: 
v = (vhv2, ... ,vn)andF(t) = (F;(t),o, ... ,O). The constant y ap
pearing in Eq. (7) is related to F;(t) by 

<F;(t) F;(s» = 2y.1 28(t - s), (8) 

in such a way as to satisfy the "ftuctuation-dissipation" 
relation 

<F(t) F(s» = 2.J 2&5(t - s). (9) 

By now we have used a kind of averaging with respect to the 
stochastic force, denoted with the symbol < .. -), and one with 
respect to the initial velocity of interest, Vn (0), denoted with 
the symbol ! ... j. We have followed the same notations as the 
ones introduced by Fox' according to Ornstein and Uhlen
beck. 10 In the following we shall need also a new kind of 
averaging with respect to the initial velocities of noninterest. 
Such a new kind of average will be denoted with the symbol 
[ ... J. Any velocity distribution will be assumed to be 
Maxwellian. 

In order to demonstrate the equivalence between the 
monodimensional generalized Langevin equation and the 
multidimensional one of Markovian type, we shall follow an 
induction method. For n = 1 the usual Langevin equation 
may be written in the following way: 

vl(t) = - r (31(t - T) VI(T) dT + ~(t), (10) 

where the Laplace transform of (31 is given by 

p~n)(p)=y. (11) 

With the symb?l Pn (P), n = 1,2,. .. , we denote the approxi
mate value of (3 (P), Eq. (4), obtained by replacing (3 (n)(p) 
with the constant value y. In the (n - 1 )-dimension case we 
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assume that the variable of interest, vn _ I (t), satisfies the 
generalized Langevin equation 

vn_ 1 = - L(3n-l(t-T)Vn_ I(T)dT+Jn_l(t). (12) 

We have now to show that such a property is true also in 
the n-dimension case. For we assume the theorem be true in 
the (n - I)-dimension case, the two last components of v can 
be given the following expression: 

vn _ I = - i' (3n - I(t - T)Vn _ I(T) dT - OJn _ I nVn 

(13) 

(13') 

Performing the Laplace transform of such a system and 
eliminating the variable vn _ I (p), we obtain 

_ vn(O) + (p _ OJ» It - }OJ»_ In) Vn(P) 
p + (3n- 1(P) 

~nn-l ~ 
= - fiX (P) [vn_I(O)+fn_I(P»)' (14) 

p+ n-I 

We can identify the previous equation in the Laplace trans
form of the nth order aproximation to the generalized Lan
gevin equation, provided that 

OJnlt_IOJn_ln 

p + Pn - 1(P) 
(15) 

and 
A OJn n 1 A 

fn(P) = A - [vn_I(O)+fn_I(P)]' 
p + fin - 1(P) 

(16) 

From a comparison with Eq. (4) we also obtain 

(17) 

If we also assume that 

(18) 

we obtain as many independent parameters as Mori math
ematical constraints. The matrix A is, furthermore, given a 
nondissipative character. In Appendix A for any n-dimen
sion case we shall show that also the constraint involved by 
the ftuctuation-dissipation theorem, Eq. (2), is satisfied, i.e., 
we shall obtain 

(19) 

We have thus demonstrated that, according to the idea 
outlined by Wang and Uhlenbeck' the expression of (3 in 
terms of continued fractions is equivalent to regarding the 
non-Markovian process expressed by Eq. (1) as a "contrac
tion" of a higher dimension Markov process. We would like 
to stress that the variables V"Vl"",Vn _ I can be regarded as a 
sort of simplified or "reduced" thermal bath II for our vari
able of interest. In Sec. IV, in fact, we shall show that any 
order of the Mori approximation can be given in interpreta
tion in terms of physical models. Though the replacement of 
the generalized Langevin equation with a Markovian one of 
finite dimensions involve an unavoidable approximation, the 
general demonstration of this section makes it clear that it 
can be accomplished within any desired degree of accuracy. 
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III. THE MULTIDIMENSIONAL FOKKER
PLANCK EQUATION 

The Fokker-Planck equation concerning the multidi
mensional Markovian Langevin equation (5) can easily be 
found by noting that Eq. (5) is of the same kind as the one 
studied by Fox and Uhlenbeck.' By taking into account that 
it is just our simple matrix S which enters the fluctuation
dissipation theorem, we obtain that Eq. (40) of Sec. 12 of Ref. 
12 directly provides for the multidimensional probability, 
P~M)(v(l)tl;v(2)t2) the following Fokker-Planck equation 

at 
,,_a_A (2)P(M) a (2) t av, (2) ijVj 2 + y av

l
(2) v l 

+.::12 _a_) P~M). 
avl (2) 

(20) 

Following Ref. 12, we could obtain Eq. (20) under the im-
portant assumption of stochastic Gaussian forces. In Appen
dix B we shall show that the multidimensional probability 
P~M) when suitably "contracted" becomes the two-point 
conditional distribution recently found by Fox.' Such a re
sult is in full agreement with the physical requirement that 
the generalized Langevin equation (1) univocally define its 
associated Fokker-Planck equation. 

IV. THE MORI TRUNCATION INTERPRETED IN TERMS 
OF PHYSICAL MODELS 

Any truncation of the Mori continued fraction can be 
given a physical interpretation through models. The first 
nontrivial truncation (n = 2), for example, provides just the 
stochastic harmonic oscillator studied by Fox and Uhlen
beck' [see their Eqs. (32) and (33)]. In such a case the vari
able of interest, apart from a constant factor, can be identi
fied in the position of the harmonic oscillator. 

As far as the truncation at n = 3 is concerned, we can 
show that the itinerant harmonic oscillator I 3 •• 14 can be re
garded as its "reduced" physical model. Such a physical 
model consists of a disk coupled through an elastic force 
with an external anulus which is the only component of the 
two-body system undergoing a fluctuation-dissipation pro
cess. The corresponding Langevin equation can be written as 
follows: 

iJ = (j = - A ~(8 - If), 

¢ = A i(8 - If) - Ytp + 1 (t). 

(21) 

(21') 

8 is the angular coordinate of the disk and If is the angular 
coordinate of the anulus. By identifying iJ with v) (the vari
abl~ of interest), :!z(8 - If) with v2, (A 2/A I )tpwith VI and 
A2A (t)1 A I with FI(t), we can replace the system ofEq. (21) 
with our multidimensional Langevin equation truncated at 
n = 3. We can also follow a direct approach. By performing 
the Laplace transform of Eqs. (21) and eliminating the irrele
vant variables, one can directly obtain the Laplace transform 
ofEq. (1) withfJtruncated at n = 3. It is interesting to notice 
that any odd truncation can be interpreted in terms of a 
generalized itinerant oscillator. In fact, one can easily show 
that adding a further anulus to the two-component itinerant 
oscillator corresponds to the Mori truncation at n = 5, and 
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so on. The itinerant oscillator as a physical model corre
sponding to the Mori truncation at n = 3 has already been 
discussed by Davies et al. l3b 

v. CONCLUDING REMARKS 
We have solved the problem of finding the Fokker

Planck equation to be associated with the generalized Lan
gevin equation in an alternative way with respect to the ap
proach of both Adelman2 and Fox.)" Furthermore, our the
ory could allow us to eliminate also the assumption of 
Gaussian stochastic forces. We could indeed express every
thing by using our multidimensional probability P~M) pro
vided that a Markov Fokker-Planck equation is defined in 
the absence of Gaussianness. As far as the non-Markovian 
nature of the Fokker-Planck-like equation found by Fox' is 
concerned, it can be easily reproduced in the context of the 
present approach by noticing that the Smoluchowski equa
tion is affected in form by the "contraction" process to be 
applied in order to eliminate the variables of noninterest. 

A significant advantage provided by our approach has 
to be seen in the possibility of exploiting the well-known 
stochastic Liouville equation theoryl,.16 in such a way as to 
includenon-Markov stochastic processes. Consider, in fact, 
the equation 

u = F(u,t,y(t» (22) 

where yet ) is a stochastic variable obeying the generalized 
Langevin equation. The theory developed in the present pa
per allows us to build up an enlarged set of stochastic varia
bles, ! A J, includingy(t ), in such a way that the "contracted" 
dynamics only involvingy(t ) is the same as the one provided 
by Eq. (1). However, the probability density II (! A J ,t) con
cerning the enlarged set of variables obeys the Markov mas
ter equation 

fl(!A J,t) = WII(!A J,t), (23) 

where W is our multidimensional Markoff diffusion opera
tor. By following the basic idea of the stochastic Liouville 
equation theory,I,,16 we notice that the multidimensional 
variable (u,! A j) is again a Markov process which according 
to Ref. 16 obeys the following master equation: 

a a 
at &(u,IA J,t)= - au [F(u,y) &] + W9. (24) 

Equation (24) can be regarded as a generalized stochastic 
Liouville equation avoiding the approximation of Markov 
relaxation over the stochastic variable y. 

The possibility of using a Markov diffusion process like 
the one of Eq. (24) has already been stressed by Kubo. 17 He 
asserted, 17 in fact, that any stochastic variable y may be sup
plemented with additional variables to form a complete set 
of Markovian variables. The theory of this paper shows how 
such a task may actually be accomplished. 

The initial motivation for the present study has to be 
looked for in our desire that the "reduced" model theoryll 
may be given a solid support. Though the present investiga
tion is classical in nature, its extension to a quantum-me
chanical formalism does not involve, in our opinion, any 
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difficulty. It seems, thus, that the molecular radiationless 
theory, which is the subject dealt with in Ref. 11, may be 
formulated in a very rigorous fashion along the lines illus
trated in the present paper. 

It should be emphasized, furthermore, that any finding 
of the present paper was allowed for by an intensive exploita
tion of the results reported in the excellent review by Fox l2 as 
well as in his recent papers.3,' 

APPENDIX A: PROOF OF THE FLUCTUATION
DISSIPATION THEOREM19 

We recall an important result reported by Fox' about 
the double Laplace transform, which can be written as 
follows: 

(X dl
2 

(00 d/
l 
e-Pt'e-P't'/(I/I _ t

2
1) 

Jo Jo 

= rJ(P) + j(p')]I(p + p'). (AI) 

For n = 1 the fluctuation-dissipation theorem reads 

<];(/1)];(/2» = 2.1 iro(1 II - 12 1) =.1 ~PI(I II - /2 1), (A2) 

We assume the theorem be satisfied in the (n - I)-dimen
sional case and be written as 

[<1' .. 1 (II)};, .1 (/2»] =.1 ~-IPn-1 (III - 121) (A3) 

By using Eq. (AI) the Laplace transform ofEq. (A3) can be 
written as 

[<i:, .. 1 (s)/;, - 1 (P»] 

=.1 ;. 1 [tln. 1 (P) + tln- 1 (s) ]/(s + p). (A4) 

For the n-dimension case, by exploiting Eqs. (15) and (16) 
we can write the double Laplace transform of 

[<1,(/I)};,(/2» ] (AS) 

in the following way: 

[<i:, (p)/;, (s» ] = (w n _ 1 n)- 2p" (P) PIl (s) 

(A6) 

In order to obtain the previous relation, we exploited the 
kind of averaging denoted by the symbol [ ... ]. By using (A4) 
we can write 

[<i:, (p)/;, (s» ] 

= .1;'_1 (tlll(P)tlll(l+~"-I(S) +tlll(P)tlll(S)P+~1l 1(P») 
(s + p) w" _ 1 " WIl - 1 " 

-.12 tl,,(P)+tlll(S) (A7) 
- ,,·1 (s + p) . 

By applying the inverse double Laplace transform we can 
write 

(AS) 

The parameters .1 i used in the course of this demonstration 
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are defined by 

.1 7 = [v,{O)v,{O)] (i < n), 

.1 7 = ( v,{O)v,{O) I (i = n). 

(A9) 

(A9') 

Equation (AS) results in the desired theorem provided that 
.11 =.1 2 = ... .1 1l =.1. 

APPENDIX B: PROOF OF THE EQUIVALENCE 
BETWEEN THE TWO-POINT CONDITIONAL 
PROBABILITY OBTAINED BY "CONTRACTION" 
AND THE ONE BY FOX4 

Even this demonstration will be performed by using a 
mathematical induction method. The lowest-dimension case 
is well known. For the (n - I)-dimension case we assume 
that our two-point "contracted" probability, 'i3 (P2) , satisfies 

(6 (P ~M)(' 2IV,/2;( Ilv,tl») 

where we used the result by Fox: Following his formalism 
the single Laplace transform of X n' (t) is 

(B2) 

In the n-dimension case we can remark that the multidimen
sion Langevin equation (5) can be written as 

(B3) 

Equation (23) expresses also the generalized Langevin equa
tion for the harmonic oscillator. J Fox, J,12 found the solution 
of this problem in the following form: 

P «2Iu 1'« IU I) = ( II [1 - M(/2 - II)M+(/2 - 11)]"111)1/2 
2 , 2, " (21T.1 2)2 

xexp { - _1_[ I2Iu - M(t2 - tl)lI'U]+ 
2.1 2 

X [ l2lu - M(t2 - t,)(IIU ]}, (B4) 

where the vector u indicates the following bidimensional 
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vector, 

U = (vn,vn _ 1)' (B5) 

The matrix 0 is defined by 

( 
0 

iO= 
- Wn - 1 n 
" 

Wn - 1 n) 
o . (B7) 

and the single Laplace transform of the matrix M(t) is de
fined as The matrix <P (P) is the Laplace transform of the matrix 

" " M(P) = [Pl- ill + cI»(p)]-I. (B6) (BS) 

The matrices 0 and cI» are involved by Eq. (B3). In order to obtain ({;' (P ~M l) we must use the following identity 

-ffd(2' d(I' W«2' (2' t·([' (I' t) - Un 1 Vn __ I 2 Vn , Vn - l' 2, Vn , Vn - 1 , 1 

= ffd(2'V d(I'V W«I'V (I'V )P«2'V (2'V t·(I'V (I'V t) n - 1 n ~- lIn' n -- 1 2 n' n -- I , 2, n' n - l' 1 • (B9) 

It is convenient to remark that any probability function concerning Eq. (B3) has been denoted with capital letters. By writing 
in an explicit way M(P) and using the identity (15), we can obtain the following expression for M(tl - t2): 

( 1) Xn (t2 - t l) - --(fJn *X,.)(t2 - t1) 
(J),z - 1 11 

M(t2 - t l) = 1 d I . 
--(fJn*Xn)(t2 - t1) -;;-(-2--) (fJn*Xn)(t2 - t1) 
Wn-In t Wn_In 

(BlO) 

The symbol (a *(3 )(t ) has the following meaning: 

(a *(3 )(t ) = i'a(t )(3 (t - r) dr. 
() 

We define the matrix A(t2 - t l ) through 

A-l = (: ~) = I - M(t2 - tl)M+(t2 - tl), 

(Bll) 

(BI2) 

where a, b, andc are suitably defined when M is given its explicit expression, Eq. (BlO). A is the matrix of the coefficients of the 
quadratic form appearing in the exponential of Eqs. (B4). W2 is proportional to such an exponential. By integrating W2, Eq. 
(B9), we now obtain 

(B13) 

where L1 v n is defined by 

(BI4) 

Up to this point, by writing Eq. (BI3) in an explicit way we 
obtain 

f W2d (2'Vn _ I 

ex:exp { - _1_(2'v - (I'V X (t - t) 2L12 n nn21 

- -_1_(fJn*Xn)(t2 - t1) (['vn _1]2 
(i)n-ln 

X 1 } 
1 - x~(t2 - t1) - L11!w~ _ 1 n [(fJn *Xn)(t2 - t1)]> 
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X exp( - 2~ 2 « 1 'V~ _ 1 + (1 'V~) ). (B 15) 

We have now to integrate Eq. (B 15) over ( I 'vn _ 1 • We may 
then write 

f
Wd (2'V d (I'V ex: fd (['v 2 n-l n-l n-l 

X exp{ - _I_[(2)v2 + (I'V2 - 2 (2)v (I'V X (t - t )]2 L12 n n fl n n 2 1 

X [(1 _X2)112 (I'V _ _ (fJn*Xn) (2)v 

n n 1 2 1/2 n 
a n- 1n (1-Xn) 

+ Xn(fJn*Xn)'I'Vn ]2}. 
Wn _ In(1 - X~)I!2 (BI6) 

We wrote Eq. (BI6) in such a way as to allow for its integra
tion in aneasy way. By actually performing such an integra-
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tion over (! )un _ I and by recalling the relation between W2 

and P2, whose explicit form is given in Eq. (B9), we obtain 

( 
I [(2)Un -Xn(t2- tl)(!)Unl 2) 

a: exp - --2 2 ' 
2..::1 I-Xn(t2- t!) 

(BI7) 

which is just the result by Fox, which was assumed to be true 
in the (n - I)-dimension case, Eq. (BI). 
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We consider a system perturbed by an external field and subject to dissipative processes. From 
the von Neumann equation for such a system in the weak coupling limit we derive an 
inhomogeneous master equation, i.e., a master equation with dissipative terms and streaming 
terms, using Zwanzig's projection operator technique in Liouville space. From this equation the 
response function, as well as expressions for the generalized conductivity and susceptibility, is 
obtained. It is shown that for large times only the diagonal part of the density operator is 
required. The various expressions are found to be in complete harmony with previous results 
(Part I) obtained via the van Hove limit of the Kubo-Green linear response formulas. In order 
to account for the properties at quantum frequencies, the evolution of the nondiagonal part in the 
weak coupling limit is also established. The complete time dependent behavior of the dynamic 
variables in the van Have limit is expressed by B (t) = exp[ - (Ad - iL ~t] B, where Ad is the 
master operator and L 0 the Liouville operator in the interaction picture. The cause of 
irreversibility is discussed. Finally, the inhomogeneous master equation is employed to obtain as 
first moment equation a Boltzmann equation with streaming terms, applicable to quantum 
systems. 

1. INTRODUCTION 

In a previous paperl of the same title, Part I, a reinter
pretation of Kubo's linear response theoryl was given, by 
considering a system with a partitioned Hamiltonian H 
= HO + AVand by applying the van Hove limit3 to the 

Kubo-Green formulas for the various transport functions 
and transport coefficients. Here H ° is the Hamiltonian of 
what we consider the "motion proper" in the system, where
as A V represents an interaction which causes random transi
tions between the states of H 0, thus giving rise to dissipation. 
The new expressions showed a clear convergence and ap
proach to equilibrium for t~oo. The general behavior of the 
diagonal parts of the Heisenberg operators was found to be 
of the form B ~(t ) = e - Ad'B d' where the superscript R (for 
reduced operators) indicates the result after the van Hove 
limit; A d was an operator associated with the transport oper
ator of the master equation. Specifically, we had, with ( I r) J 
being the eigenstates and! €1' J being the eigenvalues of HO, 

I Ir) <rl [Wy"y Dy" - Wyy"Dy]Kd , (1.1) 
1'1'" 

where 

(1.2) 

and where Kd is an arbitrary diagonal operator'; Wrr" is the 
transition probability due to the dissipative processes A V: 

Wyy" = (21TA211i)1 <rlVlr") I 28(€y -€Y')= Wy"y' (1.3) 

The equality of the first and the third member expresses the 
property of microscopic reversibility. 

The method followed in Part I is indicated by the ar
rows (a) and (b) of the summarizing scheme of Fig. 1. Start
ing with the full Liouville or von Neumann equation, the 
response functions were obtained as in standard linear re
sponse theory, arrow (a); then these results were reinterpret
ed by evaluating the van Hove limit of these expressions, 

arrow (b). Presently, we will follow a different route. First, 
from the von Neumann equation we derive, by projection 
operator techniques, a new inhomogeneous master equation 
for the density operator or specifically for its diagonal part 
Pd' pertaining to the states of HO [see arrow (c)]. This equa
tion differs from the standard master equation in that it has 
streaming terms relating to the applied external fields. Next, 
we employ this equation in order to obtain the response and 
the transport coefficients [arrow (d)]. However, the new lin
ear response theory, indicated by (d), operates entirely within 
the subdynamics of HO; no reference whatsoever is made to 
the Heisenberg operators and the full microscopic evolution 
of the original von Neumann equation. The inhomogeneous 
master equation contains all the information for the evolu
tion of Pd [HO]. 

Since we will try to make this article largely self con
tained, we review some points which were stated in Part I. 
First, by the van Hove limit for weakly interacting systems 
we meant 

A--o, t /r,~oo, A 2t finite. (1.4) 

This indicates that, when the scaling factor A of the interac
tion goes to zero, the time interval over which the system 
must be considered, scaled with respect to the time for tran
sitions to take place, T, -;;::,liI8€, becomes very large. Howev
er, in this limiting process, terms of order A 2t must be main
tained. This is easily seen as follows: The reciprocal time for 
relaxation of the distribution function is of the order of Wrr" 

i.e., T,- I = constant XA 2. The time interval over which the 
distribution is observed, on the other hand, is to be scaled 
with respecttoT" i.e., t IT, is bounded, sothatt-l = K.const. 
XA. 2. Thus, A. 2f is finite. 

Secondly, we noted in Part I that for asymptotic times 
all macroscopic operators which are somewhat coarse 
grained (see Sec. 2 for details) behave as near-diagonal oper
ators, i.e., they (almost) commute with the Hamiltonian H 0. 
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Liouville or 

von Neumann 
to) 

Kubo -Green 

equation r -, Inear response formulas 
for P (H) 

Projection 
( c) operators In van Hove (b) 

liouville 
space limit 

~ II 

Inhomoge neoul (d) stochastic 
master equation -, response 

for Pd (H") 
new linear formulas 
response 

FI<;J. 1. Scheme of methods employed. Arrows (a) and (b) refer to the deri
vatIOns of Part I, arrows (c) and (d) to the derivations of this paper. 

This presents problems for the response formulas which in
volve commutators of macroscopic and usually unbounded 
operators. In Part I this was alleviated by considering mainly 
the classical frequency limit, defined by 

fllJJf3~ or t 111/3-00 ([3 = l/kT). (1.5) 

In the present paper we will see that the occurrence of these 
commutators requires ajudicial application of the projection 
operators which select diagonal parts. We will, however, go 
beyond the limit (1.5) and also investigate the behavior for 
quantum frequencies. To this end we derive an evolution 
equation for the nondiagonal part of the density operator 
Pnd' It will be shown that for classical frequencies the effect 
ofpnd (t) is usually negligible with respect topAt). However, 
for quantum frequencies the nondiagonal parts are not negli
gible; in particular, these parts are necessary in order to es
tablish the full fiuctuation-dissipation theorem, including 
the quantum correction factor. 

This paper is divided as follows: In Sec. 2 we discuss 
some mathematical preliminaries. In Sees. 3 and 4 the diag
onal and nondiagonal evolution equations, are developed 
and the van Hove limit is carried through. In Sec. 5 we dis
cuss the impact of these derivations for the phenomenon of 
irreversibility. We show that the assumption thatp(O) is in
variant with respect to translation over the dimensions of the 
system, together with the application of the van Hove limit 
to the partitioned Hamiltonian H = H 0 + A V, is sufficient to 
arrive at irreversible, dissipative behavior. 

Further, in Sec. 6 we establish the new response formu
las for classical frequencies and in Sec. 7 some results for 
quantum frequencies are discussed. 

Finally, in Sec. 8 we deal with another application of the 
inhomogeneous master equation, in that we derive a Boltz
mann equation with streaming terms for quantum systems. 
Our developments here parallel those of van Hove' for the 
Boltzmann equation without streaming. 
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2. SOME MATHEMATICAL PRELIMINARIES 

A. Diagonal and nondiagonal parts 

The state space pertaining to the sUbdynamics of HO be 
JY'; the eigenstates of H 0 spanning this space are denoted as 
Ilr> }. The wave mechanical form of these states will be de
noted by r(lqk l) = (Iqk llr>· For rwe assume periodic 
boundary conditions over the macroscopic volume of the 
system, such as is customary in solid state physics for sys
tems capable of carrying steady state currents6

• We also as
sume that JY'is part of a bigger space .Y in which the scalar 
product is still defined as in JY', but without the restriction of 
periodic boundary conditions for the wave mechanical form 
<I> f qk Dofitselements 1<1> ). LetKbean arbitrary operator of 
.Y. Using the closure property for the states Ilr) }, we can 
generally write 

K = L Ir> (riK Ii) (y'l = L Ir) (YIK Iy) (yl 
ry r 

+ L Ir) (YIK Ii) (il = .9 K + (1 - .9)K, (2.1) 
rolf 

where the two expressions of the middle member define the 
diagonal part Kd = .9 K and the nondiagonal part Knd 

= (1 - .9)K. From the definition for .9 and from Eq. (1.2) 
it follows that 

.9 K = L Iy) (ylK Iy) (yl or .9 = L Iy) <rIDr. (2.2) 
r r 

By 1 - .9 we mean everywhere J - .9, where J is the 
identity operator. Expressions like .9 K and (l - .9)K indi
cate that .9 and 1 - .9 are superoperators which act on the 
operators K. As indicated by Fano/ this description can be 
formalized by picturing all operators K as elements of an
other Hilbert space, called the Liouville space. Superopera
tors will then represent transformations of K in the Liouville 
space. All superoperators will be represented by script let
ters, except A. Besides the superoperators .9 and J, we will 
also meet the superoperators 2" (Liouville operator corre
sponding to H), 2"0 (Liouville operator corresponding to 
H 0), and the master operator Ad (Sec. l). All superoperators 
have a tetradic representation (see Appendix A), due to the 
fact th~t the Lio~ille space is isomorphic with the space 
JY' ® JY', where JY' is the dual of JY' and where ® denotes 
the direct product. In Part I we also introduced the diagonal 
Liouville space, being the subspace containing only diagonal 
operators ....... K d . Clearly the superoperator .9 is the identity 
operator I of diagonal Liouville space as is seen by compar
ing the second expression ofEq. (2.2) with Ref. 1, Eq. (6.7). 

The projecti, ,n operators .9 and 1 - .9 satisfy the fol
lowing properties: 

.92 = .9, .9(1 - .9) = 0, (1 - .9)2 = 1 - .9. (2.3) 

For the proofs, consider 

.9 2K = L Iy) (yJ! L Jy') (ilK Ii) (iJ J Jy) (rl 
r Y 

= L ly)t5ry (y'JK Iy') (yl = .9 K. (2.4) 
ry 

The other properties of Eq. (2.3) follow from the above. 
From the definition of .9 K as the diagonal part it is clear 
that the commutator with H 0 vanishes: 
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(2.5) 

Though our developments in this paper will not require 
coarse graining, we will nevertheless make some comments 
on coarse graining in order to vindicate the method of Part I 
and to make the connection. To that end we show that slight
ly coarse grained macroscopic operators have vanishing 
nondiagonal part for large times or small enough frequen
cies, i.e., in the classical frequency limit (1.5). In general, 
such coarse grained operators defy the proper observance of 
quantum effects, for which the nondiagonal parts are essen
tial (see Sec. 7). Let Z (y) be the density of states for systems 
in which y can be considered to be a near continuous set of 
quantum parameters that label the states. Employing the 
energy as one of the labels, we also write Iy) = laE). Thus, 

9K= I Iy) (yIKly) (yl 
l' 

= f dy Z (y)ly) (YIK Iy) (yl 

= f dE f da Z (a,E)laE) (aEIK laE) (aEI· (2.6) 

If the energy is coarse grained, i.e., measured in cells .JE; 

(being an energy spread which has macroscopically no sig
nificance), we need the number of states Z (a,E;) 
= S 4E,Z (a,E)dE. We then obtain the "fuzzy diagonal part" 

of K. The complementary fuzzy nondiagonal part will be 
made up of states of different a and (or) different energy 
cells. We may argue that for the majority of contributions 
the energies will be different. The time-dependent operator 
of the fuzzy nondiagonal part is then rapidly oscillating8 

KnAt);::::,e;HOllliII laE;) (a€;IKla'€j) (a'Ejle-iHOII1; 
aa'i=14 

= I I /(E, - E,)111i laE;) (aE; IK la'E) (a'E) I. (2.7) 
aa'i=j::j 

Since (€; - E)t If!> 1, the exponential represents rapid os
cillations. In linear response theory we need the Laplace 
transformed operators for which 

roo e - S1/(E, - E)I Iii dt = i 
Jo (E; - Ej )/f! + is 

if! ;::::, -- + 1T"'IW(€; - E), lsi small. 
Ei - E) 

(2.8) 

For E;*Ej the delta contribution yields zero and the princi
pal part is very small. For large tor small lsi we can therefore 
often dismiss the nondiagonal contributions. An exception 
occurs when the diagonal part is zero. This we encounter in 
the quantum mechanical description of the Hall effect, on 
which we will report in a future paper on applications. 

B. Some theorems for projector algebra 

The Liouville operator for quantum systems is defined 
by 

.2"K = (lIfl)[H,K]. 

Since H = H 0 + A V, we write accordingly .2" = .2"0 
+ A.2"I. Thus, we also have 
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(2.9) 

.2"°K = (l/fl)[H°,K], jPIK = (l/fl)[ V,K]. (2.9a) 

The following exponential identity is well known: 
Theorem 1: 

ei..'/tK = eiHt lliK e - iHI Iii; 
e;..'/°tK = e;H·r /liK e - iH·, Iii. (2.10) 

The prooffoUows directly from integration of the Heisen
berg equation of motion, dK (t)1 dt - i.2" K (t) = o. The 
above statements are also valid for complex t = t[ + it2• 

Theorem 2: We have the following operator identity in
volving diagonal parts: 

I 11') (1'lf(1') 
e Y = I Iy) (ylef(1'). (2.11) 

l' 

This property was used in Appendix B of Part I. There is a 
similar property for the exponential superoperator. 

Theorem 3: 

= (exp{ - ~ Iy> (YI[Wy-yDy• - W1'y.D1']t})K 

= I Iy) (yle - Mr (ylK Iy), (2.12) 
y 

where M is the master operator in the function space for 
functionsf(y): 

Mf(y)= - I [Wy.J(y")- Wyy·f(y)]· (2.13) 
1" 

The prooffollows by series expansion, using also the closure 

property Ily) (yl = 1. 
y 

The following two theorems are necessary for the pro-
jection operator calculus of the sections which follow. 

Theorem 4: 

e - ir(1 - &)..'/(1 - 9)K = (1 - 9)e - iIY"(1 - :f')K. 

(2.14) 

It is to be born in mind that 9 or 1 - 9 always works on 
everything to its right, except when indicated contrary by 
the use of parentheses. The proof of Eq. (2.14) follows by 
series expansion: 

e - il(1 - ;f')Y" (1 - 9)K 

= [1 - it(l- 9).2" + Wt)2(1 - 9).2"(1 - 9) 

X.2" + ... ](1 - 9)K 

= [(1 - 9) - it(I - 9).2"(1 - 9) + !(itf 
X(I - 9).2"(1 - 9).2"(1 - 9) + ... ]K 

= (1 - 9)[1 - it.2"(1- 9) + ... ]K 

= (1 - 9)e - il..'/(I - !7')K. 

Theorem 5: 

e - il(1 - '>')..'/K = [e- it..'/O + O(A »)K, 

providing 

The proof is simple, since 

e - il(1 - '-?)YK = eil(1 - "")..'/°K + 0 (A). 
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However, 9 .2"°K = 0 if Eq. (2.17) is satisfied. 
At this moment it may surprise the reader that the con

dition (2.17) is necessary. Since 9 cannot work on HO, 
which is diagonal already, it seems that Eq. (2.17) is identical 
to Eq. (2.5), so that the condition (2.17) is superfluous. The 
problem involves here the validity 0/ the Dirac notation, 
which assumes that there is no boundary term arising from 
Green's theorem, which in turn implies that no states occur 
that go outside of the space Jf'determined by H ° and the 
boundary conditions. To appreciate this difficulty, we re
state the Dirac matrix elements in terms of the standard 
algebraic notation; we have 

(r/> I (K Itf) l-(Ktf,r/», (2. 19a) 

and 

(2.19b) 

Now, 

(2.20) 

where QK (tf,r/> ) is the bilinear concomitant involving r/> and tf 
at the boundaries of the volume under consideration. The 
associativity of the Dirac bilinear form, i.e., the equality of 
the left hand sides ofEqs. (2. 19a) and (2.19b), depends criti
cally on the condition that QK O. Only in this case can we 
equally well operate to the right (in state space) as to the left 
(in dual space). When this property of associativity is guar
anteed we have - -(rl [K,HO] Ir) = (rIKHOlr) - (rIH OK Ir) 

= (riK Ir)€r - €r (riK Ir) = 0, (2.21) 

so that 

9 [K,HO] = I Ir) (rl [K,HO] Ir) = o. (2.22) 
l' 

However, if it is not a priori clear that the bilinear concomi
tant vanishes, the following more general statement is prov
en in Appendix B: 

Theorem 6: 

(2.23) 
l' 

where QHO is the bilinear concomitant associated with the 
operator HO. Similarly, if K1 ... K n are arbitrary operators 
and if Ld is a diagonal operator, 

9 [K1···Kn,Ld] = - I Ir) (rIQL
d
(K1 .. .Kn r,r)· (2.24) 

l' 

Concordant with these results we must in some cases 
modify the general rules for projector algebra. From the 
Dirac form for the diagonal part [Eq. (2.2)], one finds for a 
succession of operators 

9(K1 ... KnLd) = 9(K1 .. .Kn)Ld = Ld 9(K1 ... K n), (2.25) 

where in the matrix element (rIK\ .. .K.Ld Ir) the operator 
Ld worked to the right. Similarly, one obtains 

(2.26) 

where in the matrix element (r1LdK1 · . .Kn Ir) Ld operated 
to the left. This operation is, however, not equivalent to the 

2576 J. Math. Phys .• Vol. 20, No. 12. December 1979 

previous operation if QLd :i:0. It can then be shown that Eq. 
(2.25) remains valid, but that (2.26) contains an extra term: 

9(LdK 1··.Kn) = Ld 9(K1···K n) 

(2.26') 
l' 

One notes that Eqs. (2.25) and (2.26') result in Eq. (2.24). 
In view of these difficulties, two options are open. Ei

ther we can do the entire computation in standard algebraic 
notation, which is not appealing since no simple form for the 
projectors I r) (rl exists in that case, or we can clearly delin
eate under which circumstances the Dirac projector algebra 
involving the usual results (2.22), (2.25), and (2.26) isAalid. 
These circumstances are easily stated. Since operators like 
HO and Ld are fully self-adjoint (not just Hermitian), the 
boundary conditions on tf and the dual boundary conditions 
on r/>, necessary for the bilinear concomitant Q (tf,r/> ) to van
ish, must be identical. Thus, Q (K1 ... K. r,r) = 0 if K1 ... K. r 
satisfies periodic boundary conditions. We conclude that the 
standard Dirac projector algebra is valid whenever the opera
tors K1 ... K. are invariant against translation over the dimen
sions o/the system. This will turn out to be the case in most 
instances, though exceptions will be met. 

C. Adjointness of superoperators 

In Part I, Sec. 8.2, we defined the scalar product in 
Liouville space by (A,B 1 = TrAB t. Generally, any super
operator acting in Liouville space can be written as 

(2.27) 

where the first arrow indicates that Pi works to the right, 
while the second arrow indicates that Qi works to the left 
(see also Appendix A). The adjoint is defined by 

(A,YtB) = (Y A,B ). (2.28) 

This is satisfied if 

(2.29) 

The proof is simple: 

(2.30) 

and 
cycLpenn. 

(YA,B 1 = I TrPiAQiBt I TrAQiBtPi' (2.31) 

The superoperators.f (unit operator) and 9 (projection 
operator) are self-adjoint, the proof of which is trivial. Like
wise, the Liouville operator is self-adjoint: 

.2"t = (1!1i)[Ht~ ~I - I~ Ht] 

= (1!1i)[H-~ ~I - I~ -H] =.2". (2.32) 

Also, the master operator Ad is self-adjoint: 

A~ = - I [Wr"rlr") <rl~-Ir) (r"l 
IT" 

- Wrr"lr> (rl~ +-Ir> (rl] 

- I[Wrr·lr> (r"I~-lr"> (rl 
1'1'" 
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- W ~'Y" Iy> (yl~ +-Iy> (yl] 

= - L [Wr"rly> (y"I~+-ly"> (yl 
Yr" 

- Wrr"ly> (yl~+-IY> (yl] =Ad' (2.33) 

where we changed the summation indices in the first sum 
and used microscopic reversibility W Yr" = Wr"r' 

3. THE KINETIC EQUATIONS FOR THE DIAGONAL AND 
NONDIAGONAL PARTS OF THE DENSITY OPERATOR 
FOR SYSTEMS IN AN EXTERNAL FIELD 

Let H be the system Hamiltonian and - AF (t ) the ef
fect of an external field, whereA is an operator in the system, 
such as the charge moment e~ri' and whereF (t ) is a complex 
function which denotes an external field. We assume that the 
field is switched on at t = 0. The von Neumann equation 
then reads 

Jp + i:.t' P = Jp + (i.--) [H,p] 
at at Ii 

= (~ )U(t )F(t )[A,p], (3.1) 

where u is the unit step function. We split 

P =Pd +Plld' (3.2) 

Then, by application of the projection operators 9 and 
(1 - 9) on Eq. (3.1), we obtain 

apd 'u/) (P 'u!J U? -- + 1./ o.Z Pel + l;7 ..z Plld 
at 

= (illi)F(t)9 [A,Pd] + (illi)F(t)9 [A,Pnd]' (3.3) 

apnd + i(1 - 9):.t' Pd + i(1 - 9):.t' Pnd 
at 

= (ilfi)F(t )(1 - 9)[A,pd] + (ilfi)F(t) 

x(1 - 9)[A,pnd]. (3.4) 

The following simplifications can be made: For the second 
term on the left of Eq. (3.3) we have 

9:.t' Pd = (l/1i)9 [H°,pd] + (A lli)9 [V,pd] = 0, (3.5) 

That [HOPd] = ° is obvious. For the second term we have 
9 [V,pd] = [9 V,pd] since the bilinear concomitant QPd 
(Vy,y) vanishes, the potential Vbeing invariant against 
translation of all q; [typically, Vis a two-body interaction 
potential ~i>j veri - r) (see Sec. 8 for examples)]. Further, 
we set 9 V = 0; if V would have a diagonal part, we incorpo
rate it in HO, which is to be chosen as the largest sub-Hamil
tonian that can be diagonalized. 9 In accord with the above, 
the second term on the left of Eq. (3.4) becomes simply 
i:.t' Pd' Further, it was found, in view of the later lineariza
tion, that it is best not to split up P in the field dependent 
terms. 10 Thus, Eqs. (3.3) and (3.4) simplify to 

apd + i9 :.t' Pnd = (i.--)F(t)9 [A, P], 
at Ii 

(3.3') 

apnd + i:.t' Pd + i(1 - 9):.t' Pnd = (i.--)F(t )(1 - 9)[A, p]. 
at Ii 

We first solve formally Eq. (3.4'). The Green's "func
tion" (more precisely the Green's superoperator) for Eq. 
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(3.4') is defined by 

a~(t,t') +i(l- 9):.t'~(t,t')=.f8(t-t'). 
at 

(3.6) 

The solution is 

~(t,t') ~(t - t') = u(t - t ')e - ;(, - (')(1 - ;;I')Y'. (3.7) 

With this Green's function the solution of (3.4') is 

P nAt) = ~ (t,O)p nAO) 

+ L dt' ~ (t - t ') 

X { - i2' pAt') + (ilfi)F (t ')(1 - 9)[A, p(t')]}. 
(3.8) 

This result is now substituted into (3.3'); we then arrive at 
the integro-differential operator equation 

~ + 92' dt' ~(t - t ')2'Pd(t') a i' 
at ° 

= (~)F(t)9[A'P(t)] + (!) 92' 

X Sa' dt 'F(t ')~ (t - t ')(1 - 9)[A, p(t')] 

- i9 :.t'~(t.O)PnAO). (3.9) 

Equations (3.8) and (3.9) give the full evolution of the diag
onal and nondiagonal parts. These equations are fully equiv
alent to the original von Neumann equation, though the oc
currence of PnAO) indicates that a fixed direction in time has 
been introduced. Note that we do not make an initial ran
dom phase assumption. The equations are still non-Marko
vian in that they contain all memory effects as evidenced by 
the time convolution integral. 

We now make the standard simplification of linear re
sponse theory; i.e., in the field terms of (3.8) and (3.9) we 
replacep(t) by Peq' wherefor the present,peq is the canonical 
(or grand canonical) distribution in the full dynamics, 

P =e-f3Hlz z=Tre- f3H /3=l/kT. eq , , (3.10) 

Thus (3.8) and (3.9) become 

~ + 9:.t' dt'~(t-t')2'Pd(t') a l' 
at ° 

= (~)F(t)9[A,Peq] + (!) 9:.t' 

X Sa' dt 'F(t ')~(t - t ')(1 - 9)[A. Peq] 

- i9 2' ~ (t,O) PnAO), (3.11) 

Pnd(t) = Sa' dt' ~ (t - t') 

X { - i2' Pd(t') + (~) F(t ')(1 - 9)[A, Peq ]} 

+ ~(t,O)PnAO). (3.12) 

In the next section we shall carry through the van Hove 
limit. This will have two results: The equations for Pd and 
Pnd become decoupled, and the equation for Pd will become 
Markovian. 
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4. THE VAN HOVE LIMIT 

A. Kinetic equation for the diagonal part 

The memory term [second term on the lhs ofEq. (3.11)] 
is basically treated as in Zwanzig's paper.11 However, we will 
show the explicit emergence of the operator Ad for this term. 
We notice in advance that the only operators occurring in 
this term are H 0, P, and V. Of P and V we assume that they are 
invariant against translation over the dimensions of the sys
tem. Since P is a bounded operator,12 we can let the system 
become very large, so that the assumption of translational 
in variance is no ultimate physical restriction. As to V, usual
ly it is a two-body interaction potential so that it is transla
tionally invariant; note that translation means a shift in the, 
say, x coordinates, of all the particles involved in HO. Be
cause of the above assumptions, the rules of Dirac projector 
algebra fully apply. To start with, we have 

£ pAt') = 11£ Ipd(t ') = (11 If!) [V ,pAt')], (4.1) 

since £oPd = 0. Next we use Theorem 5; thus, with Eq. 
(3.7) we find 

~(t - t')£pAt') = 11 [~o(t - t') + 0(11 )]£lpAt '), 
(4.2) 

where 

~ 0 (t ) = of u(t )e - iyol, (4.3) 

As indicated above, condition (2.17) is fulfilled, We must 
now operate on Eq. (4.2) with 9 £ = 9 £0 +119 £1; we 
have 

9 £ O[rhs of Eq. (4.2)] 

= (11 If!) 9 [HO,~ o(t - t ,)£lpd(t')] = 0, (4.4) 

since 9 £lpAt') = 0. We are thus left with 

119 £ I [rhs ofEq. (4.2)] 

= (11 2 Ifz2) 9 [V, ~ o(t - t')[ V,Pd(t') n (4.5) 

We now employ the explicit form for 9 [Eq. (2.2)], we sub
stitute for ~ 0 from Eq. (4.3), and we use Eq. (2,10); we thus 
arrive at 

9 £ (' dt' ~ (t - t ')£ pAt') = I Ir) (rl(11 21fz2) (' dt' (rl[V,e - iHo(l_ 1 ')11i [ V,pAt') ]eiHO(t - 1')IIi]lr) , 
Jo y Jo (4.6) 

The matrix element is, withp(r,t) = (rlpd(t)lr), 

(rl [V, ... ] Ir) = I {(rl Vlr")e-iEy.(I-I')IIi[ (r"l Vlr)p(r,t') - p(r",t ')(r"l Vir) ]eiEy(I-I')I1i - e- iE,{I-I')11i 
y" 

X [(rl Vir" )p(r" ,t') - p(r,t ')(rlV Ir") ]eiEy(l- 1')IIi(r" IV Ir)} 

= 2 I I (rl Vir") 12cos [(Cy" - Cy)(t - t ')Ifz] [P(r,t') - p(r" ,t ')]. (4,7) 
y 

Thus, the memory term becomes from Eq. (4.6) and (4.7), denoting it as (aPdlat)mem' 

( (}a'Pd) = Ilr) (rl U 2

2
1(rlVlr"W ('dt'cos[(cy" -cy)(t-t')lfz][p(r,t')-p(r",t')], 

t memo yy" fz Jo (4.8) 

with Laplace transform 

«P(s) = I Ir)(rl ~22 l(rlVlr"W 2 s 2 2 [P(r,s) -P(r",s)]. 
yy" Tl s + (cY" - cy) Ifz 

(4.9) 

Now, for small lsi, i.e., large t in the van Hove limit, 

s 1 [ 1 
S2 + (cy" - c)Ylfz2 = 2i (cy" - cy)lfz - is -

Hence, 

«P(s):::::; I Ir) (rl [Wyy"P(r,s) - WY"yP(r",s)], (4.11) 
yy' 

where we used Eq. (1.3). Transforming back, we obtain for 
the memory term 

(aPd ) 

at memo 
I Ir)(rl [Wyy"p(r,t) - Wy"yp(r",t)] 
yy" 

I Ir)(rl [Wyy.Dr - Wr"yDY"]Pd 
ry" 

=AdPd' (4.12) 

with Ad being the master operator (1.1). We noted before 
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(4.10) 

that Ad gives the effect of the interaction 11 V which deter
mines the transition probabilities Wyy" of this operator. So in 
the van Hove limit the memory term leads to the occurrence of 
relaxation due to the interaction 11 V. 

We now turn to the two terms on the rhs of Eq. (3.11). 
SinceA = A (! q I) is generally not invariant against a transla
tion of the system, we must be careful with the projector 
operations; in particular we note that 9 [A, Peq ]*0. We 
will make two assumptions on A: 

(i) A commutes with the interaction potential 11 V. This 
is the case for all conductivity problems for which A = eLri 

is a position operator, For spin relaxation phenomena the 
assumption entails that we neglect the commutator with the 
nonsecular part of the spin-spin interaction Hamiltonian. 
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(ii) i is translational invariant. Again, this is certainly 
true for conductivity problems where 1 represents the total 
momentum; in magnetic problems in periodic structures this 
is likewise fulfilled. 

For Peq we have the limit 

P -lime-l1Hlz-e-!3HolzO zO=Tre- PH o. (4.13) 
eq - A--+O - , 

The first term on the right-hand side of (3.11) is calculated 
from Kubo's lemma 

(A,e-flHJ= - J: d{3le- EH (AH(-ifl[3'),HJ 

- iii J: d{J' e-PHA H( - ifl[3'). (4.14) 

The limit A-G yields for [A,exp( - (JH)J: 

&> [A,e- EH"] = - iii foP d{J'&>e- PH"efll3 'Y''A. 1(0) 

= - iii f: d{J'e- flH "efll3'f"(A I(O»d ' (4.15) 

where A I (t) is the interaction operator, see (2.10), 

(4.16) 

The 9 operator could be carried through the diagonal oper
ators in the second member of (4.15) because of assumption 
(ii) above. Since exp(f1[3 ':£, oleA )d = (A )d (as seen by series 
expansion), the integration over d{3 I can be carried out. So 
the relevant term of (3.11) becomes 

(i/fz)F(t)9 [A,Peq] = {JF(t)Peq(A )d' (4.17) 

[Note we write (A )d to indicate that the differentiation 
comes prior to the diagonal part projection; whereas (A )d 
=1=0, we have Ad = (d I dt)Ad = ° due to the Heisenberg 
equation of motion.) 

Next we consider the second term on the rhs of (3.11). 
This term represents the effect of relaxation due to collisions 
on the field-caused motion (streaming). For Peq we cannot 
immediately use the limiting form (4.13) since this term in
volves a time integral, so that the van Hove limit must be 
carried out judiciously. The commutator of A withPeq is 
again written with the aid of Kubo's lemma (4.14), i.e., as an 
integral over A. The 9.!.t' in front of the term is split into 
&> .!.t' a + A 9 :£' 1. For [1 we write [1 0 + O(A ) with [1 0 

being diagonal, see (4.3). Because of assumption (ii), the &> 

of &> .!I'0 can now be carried through all factors till it meets 
1 - &> which it annihilates. Thus the 9.!1' 0 operation 
yields zero. We therefore arrive at 
second field term 

= - (l/Ii)A&>:£,1 f dt 'F(t ')[e-iY'°(t- t') + &(A)] 

X(I- &» J: d{3le- EH (AH(-ifl[3'),HJlz. 

(4.18) 

The limits e - EH --+e - EH 0, Z--.ZD can safely be taken, so 
(l - &» is moved in front of the commutator. In accord 
with the rules developed in Appendix B, we must evaluate 
the commutator prior to nondiagonal projection. We thus 
write 

(l - g1i)(A H ( - iii {3'),H] 

= fzi(1 - 9)A H( - ili{3') 

= fziA H ( - ili{J ') - fzi(A H ( - ili{J '»d 
= [A H ( - ili{3 '),H] - [A 7( - ili{J '),A V]. (4.19) 

Now for classical frequencies w<kT the quantum correc
tion factor due to the argument - iii {3 I does not apply, see 
Paper I, Sec. 9. Thus in (4.19) we make the approximation 

[A H ( - ili{J '),H);:::; [A H (O),H 1 
= [A,HD] + [A,A V 1 = [A,H°]' (4.20) 

where we used assumption (i). Thus, 

(1 - 9)[A H ( - ili{3 '),H] 

;:::; [A,H O] - [A 7( - iii {3 '),A V] 

;:::; [A,HOl - [A ~( - ili{J '),A V], (4.21) 

the last equality being justified, of course, for small A. We 
further note A ~( - ili{J ') = ef"lifJAd = Ad' Substituting 
the last term of (4.21), labelled (b), into (4.18), we find 

second field term (b) 

= A zp 9 (V, (' dt 'F(t ')e - iY"(t -I')e -PH"[A d, V]] 
liz° Jo 

(4.22) 

where terms &( 3
) are ignored. We now use the explicit 

form for 9 of (2.2). We then obtain 

second term (b) 

= :22~ Ilr) (rl {(rl V Ir") (' dt 'F(t ') exp[ - iEy" (t - t ')/Ii] exp( - (JEy") 
Tl Z 1'1''' Jo 

X [<r"IAd Ir") (rillY Ir) - (rillY Ir> (rlAd Ir> ]ei~J(I- I')/Ii 

-L dt 'F(t ')e - iE,11 - I')/lle - E., [(rIAd Ir) (rl V Ir") - <yl V IY") <r"IAd Ir") ] exp[iEy' (1 - t VIl] (r"l Vir)} 

U 2(3 il = ~ 2.: IY) <rll(rJVlr")1 2 dt'F(t ' ) cos [(E1'" -Ey)(t-t')/Ii] 
TlZ n a 

X [(r"IAdlr") exp( -(JEy") - (rIAdlr> exp( -(3Ey)]. (4.23) 
The Laplace transform is 

U 2{J 
x(s)=~Ilr)(rll(rlYlr"WF(s) 2 s 2 2 [(r I IAdlr")exp(-{JE",,)-(rIAdlr)exp(-(3€)]. (424) 

Tl Z n" S + (Ey" - €y) Iii r . 
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With the limit expression (4.10) we obtain upon transforming back, using also (1.3), 

second term (b) 

= /3F(t) Ily) (yl Wyy. [(y" lAd Iy") - (YIAd Iy) Je -f3Cy
/ zo 

yy. 

= -/3F (t)Peq A dAd' 

We can now do the same for part (a), the first term on the 
right-hand side of(4.21). We obtain, 

second field term (a) 

= /3Aizo L dt 'F(t ')[V,e- f3H 'A ~d(t' - t)]. (4.26) 

The term is of order AAnd . It is a non diagonal contribution 
which can be dismissed in the diagonal result. In the full 
theory it is still negligible, being of order A, compared to the 
non diagonal field term (4.34). 

Finally, there is the third term on the right-hand side of 
(3.11). 51' and ~ are written as 2"0 + d(A) and ~o 
+ & (A ). Since P is assumed to be invariant to translation 

over the dimensions of the system, 9 can be moved to the 
right tiII is annihilates Pnd (0). Thus this term does not con
tribute. We conclude that for the equation for the diagonal 
part an initial random phase assumption is not necessary. 

Both field terms, (4.17) and (4.25), are now combined to 
read 

field terms 
= /3F(t )PC4 ( - AdAd + (A)d) = /3F(t )Peq(A R)d' (4.27) 

where we introduced the reduced derivative operator or cur
rent operator,IJ 

JA •d (AR)d= -AdAd+(A)d' (4.28) 

The reduced derivative operator is, of course, defined as 

A R = h~ /I (t) 1,'0 + ' (4.29) 

where limA•r denotes the van Hove limit. The result (4.28) 
follows from I Eq. (6.37).14 The quantity J A is the macroscop
ic current associated with the transport A . The two parts will 
be labeJIed pondermotive current [second term of (4.28)] and 
collisional current [first term of (4.28)]. This latter type of 
current has not yet generally been recognized as existing. 
More will be said on this in Sec. 8 (see in particular Eq. 
(8.4 7a)]. [We stilI note that the second contribution of( 4.28) 
is due to A not being translationally invariant. For operators 
B which are translationally invariant, this term does not oc
cur, for then (B)d = (lHii)9 [B,HO] 
= (l/m)[9 B,Hol = O. Thus (4.28) is not incontradiction 
with (6.6).1 

We now collect the various results, (4.12) and (4.27). 
For sufficiently small fields F, the diagonal equation is found 
to be 

ap:(t) R . -- + AdPAt) =/3F(t)Peq [ - AdAd + (A)d]' (4.30) 
at 

We can also write this in terms of pR (y,t ) = (yl p~(t ) I y); 
with the explicit expressions for Ad Eq. (1.1), we find 
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r 
(4.25) 

apR (y,t) + MpR(y,t) = /3F(t )Peq(y){yl(A R)d Iy), (4.31) 
at 

where 

MpR(y,t) = I [Wyy .. pR(y,t) - Wy .. ypR(y",t)]. (4.32) 
y. 

The left-hand side of (4.31) is as in Zwansig's paper." The 
streaming terms are new. The operator form (4.30) is more 
lucid for the application of linear response theory. 

The formal solution is with the initial density operator 

p(O) = Peq' 

p:Ct) =Peq +/3u(t) L dt 'F(t ')e-A,!r- r')Peq(A R)d' (4.33) 

The second part will be denoted as iJpAt). 

Equation (4.30) or Eq. (4.31) will be referred to as the 
inhomogeneous master equation. These equations give the 
effect of the interaction A Vas evidenced by the relaxation 
term, as well as of the external field. In the absence of the 
field it reduces to the ordinary (homogeneous) master equa
tion. This equation is Markovian and exhibits irreversibility, 
on which we comment in Sec. 5. 

B. Kinetic equation for the nondiagonal part 

The first term of(3.12) is easily seen to be of order A so it 
will be dismissed. For the second term of(3.12) we use again 
Kubo's lemma. So we obtain 

(i//i) 50' dt'F(t')~(t - 1')(1 - 9)[A,Peq] 

= So'dt'F(t')e-iI"(I-r') 

X f: d/3'PeqeyOfif3'(A)nd + &(A). (4.34) 

The reduced non diagonal operators show no relaxation and 
we have 

(4.35) 

the extreme rhs being the Schrodinger operator.' The final 
nondiagonal result thus becomes 

P~d(t) = So' dt 'F(t') s: d/3'e - i/ "(1- 1')Peq 

Xe/"fi/3'(AR)nd +e-iY"'Pnd(O). (4.36) 

Differentiating, we obtain 

ap;t(l) +iyop~d(t)=F(t)Peq s: d/3'e f "fi/3'(;iRtd' 

(4.37) 
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We find thatpnAO) drops out again. We note that now P~d 
became decoupled of p~. Thus, in the van Hove limit p~ and 
P~d evolve independently. While the behavior for p~ became 
Markovian, this is not so for the behavior of P~d' On the 
contrary, Eq. (4.37) has the structure of the original von 
Neumann equation; in particular, we note that it is time
reversible. We will refer to Eq. (4.37) as the inhomogeneous 
interaction equation. In the absence of an external field, Eq. 
(4.37) will be called the (homogeneous) interaction equation. 
We further note that we did not use the asymptotic time 
property of the van Hove limit. Indeed, there is no necessity 
for this in the nondiagonal part. 

C. Kinetic equation for P~lal in the van Hove Limit 

Lastly, we find a kinetic equation for the totalpR
• To 

this effect we first note that Ad destroys any nondiagonal 
operator', 

In particular, AdP~d = O. Thus, Eq. (4.30) also reads 

a R(t) 
~ +AdPR(t) 

at 

= F(t )Peq f: d{3 'e lifJ
' f"(A )~. 

For (4.37) we also have since !fop: = 0, 

a R (t) 
'Pod + i!f0 R (t) 

at P 

= F(t )Peq f: d{3 'eli
f3' Y"(A R)nd' 

Upon adding we obtain 

(4.38) 

(4.39) 

(4.40) 

ap;t(t) + (Ad + i!f°)pR(t)=F(t)Peq f: d{3'e lifJ 'f"AR. 

(4.41) 

The total kinetic operator is of the damped oscillator type; 
we thus established [compare Eq. (4.41) with (3.1)] 

limi!f = Ad + iY°=A. 
A,I 

(4.42) 

More correctly, the time dependence must be brought in, 
i.e" 

lim exp( ± iYt) = exp [( - Ad ± i!f°)t ] 
A.I 

= exp( - A (t)t), 

or in terms of the resolvent 

lim = ------
A,s ± i!f - s ± i!f° - Ad - S 

(4.43) 

-A<tl-s 
(4.44) 

Thus, the van Hove limit has drastically altered the time 
behavior of p(t) and also of all Heisenberg operators B H (t), 
as we discuss in the next section. In Eq. (4.41) all references 
to diagonal and nondiagonal parts have disappeared. This 
separation can therefore be seen as a mere expediency to 
obtain the evolution operator A of the van Hove limit proce
dure. Equation (4.41) is the complete inhomogeneous evolu
tion equation. 
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5. RESULTS IN THE ABSENCE OF AN EXTERNAL FIELD; 
IRREVERSIBILITY 

A. Time dependence of p~(t} and 8 R(!) 

We consider in this section the behavior in the absence 
of an external field, denoting the density operator for this 
case aspsp (sp for spontaneous). Then for the original opera
tor of the full von Neumann equation we have the well 
known result 

Psp (t) = e - iH, Iflp(O)eiH' Iii = e - dlp(O), (5.1) 

while for the Heisenberg operators of the dynamical varia
bles we have 

(5.2) 

whereBH(O) = B S 

Next we consider the solution of the complete evolution 
equation (4.41) for F= O. We find 

p~p(t) = e-(Ad+iY"),p(O), (5.3) 

To obtain the form for B R(t), where B R (t ) is a reduced Hei
senberg operator, we write the average (B > both in the 
Schrodinger and the Heisenberg picture; this gives 

Tr[p(O)B R (t)] = Tr[B e - (Ad+ iY''')'p(O)]. (5.4) 

We now use Lemma 5 of Appendix C; this carries Eq. (5.4) 
over into 

Tr [p(O)B R (t )] = Tr [p(O)e - (Ad - iy'(')'B ], 

which shows that15 

(5.5) 

B R (t) = e - (Ad - d")'B. (5.6) 

Though the behavior of Eq. (5.3) or (5.6) suggests that of a 
damped oscillator, we may not conclude that P~p or B R ap
proaches zero for t- 00. In this respect the superoperators 
are treacherous. The point is that for any t we can write 

- (Ad ± iY")'K _ - Ad'K + "F i.!/'O'K e - e d end' (5.7) 

as is easily found since exp (=r i!f° t )Kd = Kd and 
exp( - Adt )Knd = K nd . To find the asymptotic limit of Eq. 
(5.7). we must make a spectral resolution of Ad and !fo (cf, 
Part I, Sec. 8). Ad has an isolated eigenvalue zero, which 
leads to the asymptotic (equilibrium) form of Pd.sp and B~; 
the nondiagonal part does not show convergence, except in 
the Riemann-Lebesque sense; compare I, Eqs. (4.3) and 
(4.4). 

B. On the cause of irreversibility 

We now discuss the cause of irreversibility. First we 
restate the well known fact that there is no entropy production 
and thus no dissipation for the full microscopic system de
scribed by the total H. The proof is simple. With S 
= - k Tr(p logo) we have from the von Neumann 

equation 

dS 
-= 
dt 

-kTr[(1 + logo) t ] 
k' 

= - ~ Tr{(l + 10go)[p,H]} = 0, 
Ii 

since by cyclic permutativity of the trace 
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Tr[(l + 10gp)pH J - Tr[(I + 10gp)Hp] 

= Tr[p(logp)H J - Tr[(logp)Hp] = 0. (5.9) 

We must now carry out the determination of dS / dt for 
the p of the equations in this paper. First suppose we takep as 
given by Eqs. (3.8) and (3.9), with F = 0, prior to the van 
Hove limit. Clearly, if we use both equations, the entropy 
production is still zero, since these equations are fully equiv
alent to the original von Neumann equation. Suppose we 
now make an initial random phase assumptionpnd(O) = 0. 
This has no effect; for if, in the full evolution equations of 
Sec. 3, we setpnd = Oat t = 0, then at any tl > O,PnAt l )*0; 
the time tl can be taken as new reference point, which nulli
fies the initial random phase assumption. 

More remarkable, however, suppose we make a repeat
ed random phase assumption Pnd (t )-0. Now the Green's 
integrals in both Eqs. (3.8) and (3.9) are zero, showing that 
apd/at = 0. Asaconsequence,dS /dt = 0. Thus, contrary to 
common belief, the quantum mechanical developments of 
this paper show that a repeated random phase assumption 
without further statements produces no irreversibility. 

When we now come to the results after the van Hove 
limit we find that there is entropy production associated 
with Pd; thus, for the "diagonal entropy" 

dSd/dt>O. (5.10) 

The proof was given in Part I, Sec. 8.1. We thus proved the 
following: 

(i) A partitioning of the Hamiltonian H = HO + A. V, to
gether with application of the van Hove limit and the large 
system limit, yields irreversibility, as evidenced by a positive 
definite entropy production; (ii) the entropy production stems 
solely from the diagonal part of the density operator. 

Of course, we have not proved that the van Hove limit is 
necessary for irreversibility. In fact, we conjecture that the 
partitioning of the Hamiltonian, together with some limit on 
A. n, n arbitrary but finite, will do the trick. This has not as yet 
been proven. 

6. RESULTS IN THE PRESENCE OF AN EXTERNAL 
FIELD: LINEAR RESPONSE FOR CLASSICAL 
FREQUENCIES 

We continue the original goal of the paper, viz., to ob
tain new linear response formulas. With reference to Fig. 1, 
we note that the inhomogeneous master equation, path (c) of 
that figure, was obtained in Secs. 3 and 4. In this section and 
the next one we complete path (d) of that figure, i.e., we will 
obtain new linear response results. Thus, we will obtain the 
response of a quantity B (t ) to an external field, and deter
mine the response function, the relaxation function, the gen
eralized susceptibility, and the generalized conductivity. Ba
sically, we will proceed as in Kubo's theory, though the 
equation for the evolution of the density operator is no long
er the von Neumann equation, but the inhomogeneous mas
ter equation which resulted from the van Hove limit. Also, 
the B (t ) to be considered are the macroscopic, reduced oper
ators B R(t). Note that BR = B S = B, butl/R = JB*J!Js 
[see (4.28)J, so the t = 0 operator B R need not to be super
scripted, but the operator J!J R does need to be. 
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A. The interaction form 

In the present section we restrict ourselves to linear re
sponse at classical frequencies. We can then neglect the non
diagonal contributions (except for some cases, cf. Sec. 2.A, 
last paragraph). Thus, we use the evolution of the diagonal 
density operator p~(t) in the presence of an external field 
perturbation, turned on at t = 0; the result was given by Eq. 
(4.33): 

p:(t)-Peq =p L dt' F(t')e-A"{'-")Peq(AR)d (t>O). 

(6.1) 

The response of a dynamical variable B-;:;;;Bd is then 

(.dB (t» = Trp~(t )Bd - TrpeqBd 

= p f dt' P(t ')Tr(Bd e -A,,(t- ")Peq(A R)d)' 

(6.2) 

Formally, we write 

(L1B (t» = f dt' F(t ')¢ ~At - t '), (6.3) 

where ¢ ~A is the classical response function for B due to the 
external field Hamiltonian - P(t)A. Comparing Eq. (6.2) 
with (6.3), we see that the response function is given by 

¢ ~A (t) = /3 Tr(Bd e - Adpeq(A R)d). (6.4) 

We now use again Lemma20f AppendixC. Then Eq. (6.4) is 
carried over into 

¢~At) =/3 Tr(peq(A R)de-Ad'Bd )· 

Also, with 

e - AdlBd = B:(t) 

we have 

¢~A(t) =,BTr[Peq(A R)dB~(t)]. 

(6.5) 

(6.6) 

(6.7) 

We now take the Laplace transform of the convolution inte
gral (6.3) and write 

b (s) = X (s)f(s), (6.8) 

where 

b (s) = 1= e - sl (.dB (t »dt, 

f(s) = 1"" e-S'P(t)dt, 

XBA(S) = f"e-sr¢~A(t)dt. 

(6.9) 

(6.10) 

(6.11) 

Here X is the generalized susceptibility. In the frequency 
domain we have for s = iUJ + 0 the complex susceptibility 

XBA(iOJ)= f3 1= dte-i"JtTr[peq(AR)dB~(t)]. (6.12) 

While this has in appearance the same form as Kubo's result 
[Part I, Eq. (3.22')], the time dependence (6.6) of the reduced 
time dependent operators is entirely different from the time 
dependence of the Heisenberg operators occurring in the 
Kubo formulas; Eq. (6.12) converges and can, in fact, be 
expressed in the resolvent of the master operator Ad: 
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XBA (im) = /3 Tr{peq(..4 R)d [im + Ad] - lBd}. (6.13) 

As in Kubo's linear response theory, we can also seek 
the response of a quantity B. Analogous to Eq. (6.2) we find 

(.1B(t» =/3 .L dt' F(t')Tr[(liR)d e - ,1.,('-'·)Peq(..4 R)d] 

= /3 .L dt' F(t ')Tr \peq(..4 R )d e -,1.,(t- t')(B R)d ]. 

(6.14) 

We now introduce the relaxation function. It will be defined 
by 

(6.15) 

{To prove that this function gives the relaxation after a force 
is turned off, we must establish that 1[1 ~A (t ) is the time inte
gral of tP ~A (t) [see Part I, Eqs. (2.17) and (2.18)].] With Eq. 
(6.15), the expression ofEq. (6.14) can be written as 

(.1B (t» = .L dt' F(t ')I[I~A (t - t '), (6.16) 

where 

I[I~A (t) = /3 Tr \Peq (..4 R )d e -- ,1,;1 (B R)d ]. (6.17) 

We take again the Laplace transform ofEq. (6.14), which 
leads to 

Ii (s) = L (s}f(s), (6.18) 

where Ii (s) is the Laplace transform of (.1B (t», and where 

(6.19) 

is the generalized conductivity. In the frequency domain we 
have for s = im + 0 the complex conductivity 

LBA (iw) = /3 LX> dt e - iU>'Tr [Peq (..4 R )d(B R )d(t)]. 

(6.20) 

This can also be expressed in the resolvent 

LBA (iw) = /3 Tr{Peq (..4 R)d [iw + Ad ] - I(B R)d}. 
(6.21) 

Equations (6.13) and (6.21) are the main new results. 

We make some additional remarks. First, it is noted 
that the equilibrium expectation value of a flux..4 R (t ) is 
zero, which is the same feature as in the Heisenberg descrip
tion [Part I, Eq. (3.24)]. The proof for the present case is as 
follows: we have, see Eq. (4.28) 

(..4 R(t»Cq = - Tr(PeqAde- A"'A d) 

+ (l/zo) Tr[e - "HOe - ,1,,1 (A )d ] 

- Tr [(e - A"'Ad )Ad Peq ] 

+ (l/zohi)9 Tr{Ae-A", [HO,e-1JHO]J = 0, 
(6.22) 

where we used Lemmas 1 and 2 of Appendix C, and the 
result 

21TA 2 

AdPeq = -rz- ~ Iy) (yll(ylVly"W 

X8(E)' - E),,, )(e -/3< - e - ,,< )/Zo = O. (6.23) 
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Ajortiori, 

(..4 R )eq = lim (..4 R(t»eq =0. (6.22') 
I-oc 

Defining now .1..4 R (t ) = A R (t) - I (A R ) eq' we see that at 
all times LlA R (t) = A R (t). 

Finally, we will apply Theorem 3 [Eq. (2.12)] to the 
reduced time dependent operators. This gives 

(6.24) 
y 

where M is the master operator in function space given in Eq. 
(2.13). Equations (6.13) and (6.21) are now carried over in 

XBA(iw) =/3 L [Peq(y)(yIJA Iy)(iw + My)-I(yIB Iy)], 
y 

(6.25) 

= /3 L [Peq(y)(yIJA Iy)(iw + My) - I (yIJB Iy) ]. 
y 

(6.26) 

This gives X and L in terms of the resolvent of the functional 
master operator M. 

B. The SchrOdinger form 

We will obtain another result in which the time depen
dence is vested in pR (t) rather than in B R (t) or B R (t). To 
this purpose we solve directly Eq. (4.31). We define the 
Green's function g(y,t;y' ,t ') of the master operator (a / at) 
+ M in function space: 

a 
at g(y,t;y',t') + Mg(y,t;y',t') = 8(y - y')8(t - t '). (6.27) 

The solution ofEq. (4.31) is then in terms of this Green's 
function: 

pR (y,t) = Peq (y) + /3 L + 0 dt' 

X f .1y'F(t ')Peq(y')g(y,t;y',t ')(y'l..4 R Iy')· 

(6.28) 

As in Part 1,.1 y denotes Z (y)dy, where Z (y) is the density of 
states for the quasicontinuous quantum variables y. We still 
write (y' 1..4 R I y' > =..4 ~, . For the response of a variable B we 
obtain, writing also (ylB Iy) = By, 

(LlB (t» = L [pR (y,t )By - Peq (y)By] 
y 

= f Lly[pR(y,t)-Peq(y)]By 

=/3 1'+0 dt' f f LlyLly'F(t')Peq(y') 

xg(y,t;y',t ')A ~,By. (6.29) 

We note that g(y,t;y',t') = g(y,t - t ';y',O) [cf. Eq. (6.27)]. 
Thus, Eq. (6.29) is again a convolution integral. The re
sponse function is therefore 

tP ~At) =/3 f f LlyLly'Peq(y')g(y,t;y',O)A ~.By. (6.30) 
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The complex susceptibility is the one-sided Fourier trans
form of 4>, i.e., 

X BAiUJ) = /3 LX> dt e - iwt J J .j y.j y'p eq (y')g(y,t;y' ,0) 

XA ~By. (6.31) 

Let G (y,s;y') be the Laplace transform of g(y,t;y' ,0). Then, 
Eq. (6.31) results in 

XBA(iUJ) =/3 J f .jy.jy'Peq (y')G (y,iUJ;y')A ~By. 
(6.32) 

In a similar way we could have obtained the response of a 
quantity E, which leads to 

LBAiUJ) = /3 J J .jy.jy'Peq(y')G (y,iUJ;y')A ~E:. 
(6.33) 

The results (6.32) and (6.33) could also have been ob
tained from the previous results (6.25) and (6.26), for the 
resolvent (s + M)-l can be shown to be the integral operator 
associated with the Green's function G (y,s;y'): 

(s+My)-1(y) = J .jy'G(y,s;y')f(y'). (6.34) 

Finally, we put the expressions for X and L in a form 
which shows the stochastic nature of our present results. We 
recall that the Green's function g is also equal to the condi
tional probability of the homogeneous master equation [see 
Part I, Eq. (7.12)]: 

g(y,t;y',O) = Psp(y,t ly',O). (6.35) 

We now introduce the two-point probability 

W2,sp(y,t;y',0) = Psp(y,t I y',O)Peq(y'). (6.36) 

Then, Eqs. (6.32) and (6.33) read also 

XBA(iUJ) =/3 LX> dle-ifut J J .jy.jy'W2.sp (y,I;y',0)A :,By 

(6.37) 

and 

LBA(iUJ) =/3 i oo 

dte-iwtJ J .jy.jy'W2.sp(y,t;Y',0)A~E:, 
(6.38) 

respectively. The W2 ,sp introduced here is the standard two
point probability which measures the deviations from the 
equilibrium state, as we show explicitly in the next 
subsection. 

C. The correlation function 

The correlation function for fluctuations from the equi
librium state of two variables CtJ and fiJ is defined by 

<PcD (t)-(.:lCtJ(t).j9(0»eq = !([.:lCR(t),.jD] + )eq 

= !{Tr[peq.:lCR(t).jD] + Tr[peq.:lD.:lCR(t)]}. 
(6.39) 

In the classical frequency range C and D can be replaced by 
Cd and Dd, respectively, and the anticommutator is of no 
effect; thus, 

<P ~D(t) = Tr [oeq (e - Adt.:l Cd ).jDd ]. (6.40) 
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We now use Theorem 3 [Eq. (2.12)]; this yields, if we evalu
ate the trace in the representation [I y) J, 

<P~D(t) = Tr[Peq t Iy') (y'l (e-M"t (y'I.jCdly') ).jDd] 

= IPeq(y)(e-M,J(yl.jCdly»(yl.jDdly). (6.41) 
y 

It is readily shown that exp( - My I) is a Green's integral 
operator 

e - Ml!(y) = J .:ly'g(y,t;y',O}f(y') (6.42) 

[note that Eq. (6.42) is the Laplace inverse ofEq. (6.34)]. 
Thus, Eq. (6.41) yields, 

<P~D(t) = J J .jy.:ly'Peq(y)g(y,t;y',O).jCy.jDy 

= f J .jy.jy'W2.sp(y',t;y,0).jCy.jDy (6.43) 

[where we still used the symmetry property 
g(y,t;y',O) = g(y',t;y,O)]. Equation (6.43) is the standard 
definition of a two-point correlation function in stochastic 
theory. We thus showed full equivalence of the van Hove 
limit form or reduced Heisenberg form (6.40) with the sto
chastic form or Schrodinger form (6.43). This development 
parallels the procedure of Part I, last paragraph of Sec. 9.2. 
However, in the present discussion we stayed within the sub
dynamics of HO. 

7. THE LINEAR RESPONSE RESULT FOR QUANTUM 
FREQUENCIES 

We give some brief results for the linear response coeffi
cients L and X for the case that the nondiagonal correlations 
are included. The solution of the kinetic equation for the full 
P, [Eq. (4.41)], reads 

pR(t) =Peq + u(t) f dt' F(t') 

- (Ad + i/'O)(I - 1 ') l{3 d'{3 , fV3 ,:/oA' R 
Xe Peqe. 

o 
(7.1) 

Again we look for the response of an operator B: 

(.:lB(t» = L dt' F(I')Tr( Be-(Ad+i.!"O)(r-I') 

X J: d/3' Peq e
fV3 '.Y"'A R } (7.2) 

this leads to the response function 

4> BA (t ) = J: d/3' Tr (B e - (Ad + iY''lpeq efV3 'Y"A R ). 

(7.3) 

Next we use Lemma 5 of Appendix C. We then obtain the 
form 

4> BA (t) = J: d/3' Tr ~eq (efV3 '/,"A R)e - (Ar iY')'B ]. 

(7.4) 

This is the interaction form. We can also split it into diagonal 
and nondiagonal contributions. Using Eq. (5.7), we have 
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B R (t) = e - (Ad - iY')tB = e - AdtBd + eiyOtBnd 

=B:(t) +B~At), (7.5) 

where 

B ~At)=B ~d(t), while also (B R )nd -(lj l)nd' 
(7.6) 

Further, 

eM'yoA R = (A R)d + (A R ( - if1/J '»nd' (7.7) 

Hence, as an alternate form for tP we obtain 

tPBA (t) =,8 TrfPeq (A R )dB ~(t)] 

+ f: d,8' Tr[Peq(A R)nd( - if1/J')B~d(t)]. (7.8) 

Thus, tP is the sum 0/ the diagonal part (6.7) plus a K ubo 
expression/or the nondiagonal part. Likewise for the relax
ation function, 

IJI B..i (t) =,B Tr [Peg (A R )AB R )At)] 

+ [d,B' Tr [Peq (A R )nA - if1/J ')(B R td (t )]. 

(7.9) 
For X and L we have the following general formulas, 

based on the compact form (7.4): 

XBA (iw) = LX> dt e - iwt f: d,8' Trfpeq(eM'YOA R) 

X e - (Ad - ;1"')tB 1 

= 1'3 dP' Tr[peq(eM.yoA R) 

X I B J (7.10) 
Ad -i'yo+iw ' 

LBAiw) = f" dte- iwt 1'3 d,B' Tr/Peq(eM,yoA R) 

Xe - (A d - i'Y'')'B R ] 

= f: d,B' Tr[Peq(eM.YOA R) 

X 1 B R J. (7. 11 ) 
Ad - i.Y° + iw 

We also have the more explicit form based on Eqs. (7.8) and 
(7.9): 

XBAiw) = 100 

dte-i<V1{,BTr(Peq(AR)dB:(t)] 

+ f: d,B' Tr( Peg (A R )nd( - ifi/i')B ~d(t)]} 
=PTr[Peq(A R)d I. Bd] 

Ad +IW 

+ f: d,B' Tr[ Peq(A R)nA - iM') 

X 1 B] 
_ i.Y0 + iw nd 

+ 1T f: d,B' Tr[Peq(A R)nA - i~') 
X 8(w - 'yO)Bnd 1, (7.12) 

LBA(iw) = loo dte-i«Jf {,BTr(Peq(A R)d(BR)At)] 
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+ f: d,B'Tr[Peq(AR)nA-i~')(BR)nAt)]} 

=,8 Tr[Peq(A R)d A I . (BR)d] 
d +IW 

+ f: d,B'Tr[Peq(AR)nd(-i~') 

X ';'0 . (ljR)nd] 
-I +lW 

+ 1T f: d,8' Tt[Peq(A R)nd( - i~') 
X8(w - 'yO)(BR)nd]. (7.13) 

The Schrodinger forms are obtained as in the previous 
section. The following result is then found: 

XBA =,8 f f AyAr'Peq(y)G(r',iw;Y)(YIA R Iy) (r'IB Iy') 

+lhrffAYAr' Peq(y)-Peq(y') 8(Iiw+Ey -Ey') 
Ey' - Ey 

X (YIA R Ir') (y'IB Iy) 

+ Iii f fAYAr' Peq(y) - Peq(Y') 
Ey' - Ey 

X Iiw ~ ) (YIA R 1r')(r'IB Iy), (7.14) - + Ey' - Ey 

where integrals involve the Cauchy principal value. A simi
lar result holds for LBA with B R replacing B. 

Finally, we make some remarks on the fluctuation-dis
sipation theorem. The correlation function (6.39) splits into 
two parts 

<PeD(t) = Tr[peqAC~(t)ADd] 

+ !Tr{Peq [AC~d(t),ADnd L}, (7.14) 

where []. is the anticommutator. These functions can now be 
coupled with the relaxation function or with the response 
function. Using the same manipulations as in Part I, one 
obtains the following four fluctuation-dissipation theorems: 

S~Aw)= -4kT.l{[x~~(w)]S-i[XtAUI)]a}, (7.15) 
w 

S~~ (w) = - 4~(w,T).l {[x~~d(UI) Y - i[x;;(UI) ]a}, 
w 

(7.16) 

S~Aw) = 4kT [ (L tA (w) Y + i[L ~~ (w) ]0), (7.17) 

S~~(w) = 4~(w,T){[L ;~(w)Y + i[L ~~d(w)]a}. (7.18) 

It is evident that the quantum correction factor occurs only 
in the nondiagonal contributions. Thus, the total spectra do 
not satisfy the exact fluctuation-dissipation theorem. This 
can be seen as a flaw of the van Hove limit results. Two notes 
are in order, however, to understand the nature of this flaw. 
First, the van Hove limit required that the times were as
ymptotically large, or the frequencies small. Therefore, the 
results must be stretched in order to be valid at quantum 
frequencies. We also note the approximation made in Eq. 
(4.20). Secondly, we observe that the diagonal spectra go as 
H(A d ± iw) - Ill, which goes to zero for very high frequen
cies. Thus, one can expect that at quantum frequencies near-
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ly all the noise stems form the nondiagonal parts. In this 
sense, then, the usual ftuctuation-dissipation theorem with 
inclusion of the quantum correction factor is approximately 
confirmed. 

8. DERIVATION OF A QUANTUM BOLTZMANN 
EQUATION 

The Boltzmann equation, dealing with the kinetic de
velopment of the one-particle distribution function, can be 
obtained from the N-particle Liouville equation, by integra
tion over the coordinates and momenta of N - 1 particles. 
The classical derivation of H. Grad is well known. 16 For 
Boltzmann's own derivation and comments on the validity 
of it we refer to his book l

'. Since the Boltzmann equation is 
irreversible, it is clear that somewhere along the way a ran
domness assumption must be introduced. Our point of view 
is that such a randomness assumption is best made at the 
many-body level, such as we did in this paper. The many
body equation which then is the point of departure is the 
master equation. The first moment equation of the master 
equation is the Boltzmann equation. This was shown in prin
ciple by van Hove', but because of his restricted master equa
tion, the streaming terms were absent. Using our general 
inhomogeneous master equation, we will show that a full 
Boltzmann equation is easily obtained, without severe addi
tional assumptions; or, for that matter, we could derive a full 
hierarchy of moment equations, analogous to the BBGKY 
hierarchy, but we hope to do that elsewhere. The only as
sumption is a truncation rule. We assume that, in the kinetic 
equation for a K-particle function, a K + I particle function 
can be factored. In particular for the present we assume that, 
in the equation for (n

t
), 

This amounts to the neglect of cross correlation, which is 
correct in a grand canonical ensemble but not exact in a 
canonical ensemble, though the correction is of order 
:l(nJ - I, i.e., negligible for large systems. 

Since our master equation is in quantum mechanical 
form, the Boltzmann equation to be derived pertains to a 
distribution over one particle quantum states. As we do not 
in this article wish to enter into quantum phase space ana
logs (Wigner distribution), our quantum Boltzmann equa
tion is only valid for homogeneous systems; thus, the spatial 
gradient term does not occur. On the other hand, the result 
to be derived is not tied to a momentum state or semiclassical 
k-space description. The force streaming terms which we 
obtain are fully quantum mechanical. The equation can thus 
be applied to situations which can not be described by the 
standard Boltzmann equation, such as transverse magnetic 
resistance (Landau levels)18, or conduction in aMOS field
effect transistor, which shows discrete transverse energy 
quantization under strong inversion19. A study of these ap
plications is being undertaken. 

In the derivation we must specify the interactions A V. 
Two cases will be considered. Two-body interactions of par
ticles with mass (fermion-boson or boson-boson) is dealt 
with in Sec. 8.A. For electrons in a solid, electron-phonon 
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interaction is taken up in Sec. 8.B. The derivations go most 
smoothly by using the formalism of second quantization. 

A. Binary Interactions of particles with mass 

Since we deal with two kinds of particles which only 
weakly interact (so we assume) with partners of their own 
kind, the Hamiltonian H ° commutes with the occupancy op
erators of the quantum states of each kind. We will first 
consider a system composed of fermions and bosons, with 
occupancy operators D, and N,/, respectively; here I;) refers 
to an ordered set of the one-particle fermion states and 
117) denotes a one-particle boson state. The many-body states 
of HOare taken as 

(8.2) 

where n, and N,/ are occupancy numbers, while H O is writ
ten as 

HO= ID,e, + IN,/E,/ , '/ 

I cJc,e, + I a~a,/E,/; (8.3) , '/ 

here e, and E,/ are one-particle energy eigenvalues, and the 
c's and a's are raising and lowering operators. The total Ha
miltonian is again H = H ° + A V, with the binary interaction 

HI =AV= I <;"17"IAVI;'17')ct"a~"a,/,c", (8.4) , ",',/",/' 

where v = v(r - R) is the two-body interaction potential. 
(Note the we use round bracket kets I) for states pertaining to 
one particle of each or both kinds, while we use angular kets 
I) for the many-body states.) 

As an example, consider the case offree particles treat
ed by van Hove'. Then I;) Ik) = eik.r/[J 112 and 117)-IK) 
= eiK.R / [J 112, where [J is the volume of the system. We have 

(k"K" IAVlk'K') 

= [J - 2 f f e - ik".re - tK".Rv(r - R)eik'.re,K'.Rd 3r d 3R. 

Let 

then 

v(r - R) = [J - I I ejq·(r - R)V
q

; 

q 

q 

so that 

V = I [J -1.5k",k·+q.5K",K'_qVqC~"Ck,a~"aK' 
k"k'K"K'q 

=[J -I I VqC~'+qCk,a~'_qaK" 
k'K'q 

in accord with van Hove. 

(8.5) 

(8.6) 

(8.8) 

We continue with the general case given by Eg. (8.4). 
We must compute the matrix elements (riA V I y) for the 
transition probabilities of the master equation. To that end 
we need the raising and lowering rules in the following form: 
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a~"I{ j,{NTJj) = V NTJ " + II{ j, ... ,NTJ" + 1, ... ), 

aTJ, I ( J,{NTJ j) = VN:;:-I ( J, ... ,NTJ' - 1, ... ), 

I(1,;" -I)", / 

c!"I{n;J,{ J)=(-I) v I-n,,, 
X 1· .. ,1 - n," , ... ,! j), 

I<l,,·-I) .. /-
c;·I{n,J,[J)=(-I) Vn,' 

X 1 .. ·,1 - n,., ... ,{ J). 

(8.9) 

(8.10) 

(8.11 ) 

(8.12) 

Here 1:(1,;) is the sum of all occupancies of states 1,2, ... ,;. 
There is a slight problem with the fermion operators, for 
which the square roots are often omitted, since for the occu
pancy operators n, = n~. For the present derivation it is de
sirable to maintain the square roots. This is briefly discussed 
in Appendix D, The occupancy numbers are n; = 0 or 1; 
thus, Eq, (8,11) yields only nonzero for n;" = 0, so that 
1 - n;" = 1 denotes a raising, while Eq. (8.12) yields only 
nonzero for n;, = 1, so that I - n,' = 0 denotes a lowering. 
From the above rules we find that the matrix element 
(yIAVly) = <tn, J,{NTJ IIAVI {n, j,{N" l> is nonzero on~ 
iffor given; 1/,; ',1'/,', and 1'/, and for given Iy), we take Iy) 
such that 

n, = n" for ;=1=;' or ;", } 
(8.13) 

nf;" = I-n," and n,' = I-n" 
and 

NTJ = NTJ' for 7]=I=r]' or 7]1/, } 

N TJ" =NTJ" + I and N,." =NTJ, -1 ' 

the latter statement can also be summarized by 

NTJ + 8,.,'1' = NTJ + 8,.,."", 

(8.14) 

(8.14a) 

(We still note that always; "#' and 1]1/=1=7]', sinceAVis 
nondiagonal.) Thus, with each choice of S I/,s ',1]1/ ,1]' corre
sponds only one state IY) = IY,TTJ"TJ')' fixed by Eqs. (8.13) 
and (8.14). The value of the matrix element for the connect
ed states 1 Yn' ',.,"'1' ) and Iy) is 

(Y,T"'''TJ,IAVly) 
= ( _ I).l:(I,," - 1)( _ If(1", - I) 

X (; 1/7]I/IAvl; '7]')[(1 - n," )n,,(l + N.,," )NTJ, ]112, (8.15) 

since all other terms of the series (8.4) yield zero. The energy 
difference involved in this transition is 

8(EYn,q'q' -Ey) = 8(e, , -e,' +ETJ" -E.,,')' (8.16) 

For the transition probability we obtain, from Eqs. (1.3), 
(8.15), and (8.16), 

W 2'd
2

lfr l/ I/llr' ')/2(1 ) y,y,',""'" = -11- ~ 7] v':J 7] - n," n,' 

Let now 

X(I +NTJ ,,)NTJ ,8(e," -e(;, +ETJ" -E.,,')' 
(8.17) 

Q(; 1/7]1/;;'7]') = 21T: 2 1(; 1/7]"lvl;'7]'W 

X8(e;" -e,' +ETJ" -E,.,') (8,18) 

be the two-particle scattering probability per unit time. Then 

WY,Yn',,'q' =Q(;I/7]I/;;'7]')(I-n(;,,)n(;.(1 +NTJ,,)N.,," 
(8,19) 

The master operator expression Mp(y,t) of Eq. (4,32) now 
becomes, with Wyy = W yy , 

Mp(y,t) = L Wyy [p(y,t) - p(y,t)] = L WY'Yn'q'.' fp({ nd, {NTJ },t) - p({ n, J, {N." },t)] 
Y (;""'1",.,' 

L Q(; 1/7]1/;; '7]')(1 - n," )n;,(1 + N TJ" )NTJ, fp(! n; },{NTJ},t) - p( ... ,1 - n.;-" ... ,I - n;", 
;";''1'''1' 

... , ... ,Nr,. - I, ... ,NTJ" + I, ... ,!)], (8.20) 

where we substituted for! n, J and (NTJ I from Eqs. (8.13) and (8.14). We now make the adiabatic assumption that the bosons 
are close to thermal equilibrium at all times since we are intersted in the distribution of the fermions alone. Thus let, 

/l{{n, },t) = L p({n, j,{N." ),t), 
IN"I 

while also due to the adiabatic assumption 

p({ n, }, (N." },t) = P ({ N,., l,t I {n; },t};l({ n.;- },t )~P eq ({ NTJ l};l({ n, },t), 

so that 

and 

L (1 +N."")N,."p(/n;), ... ,N.,,, -I, ... ,N.,,- + I, ... ,t) = (N.",,(I +N""»eq/l({nd,t). 
IN"l 

We then find 

I Mp(y,t) = I Q(;"7]I/;;'7]')(I-7],,,)n;.[((1 +N."")N,,,·)eq/l({n,j,!)- (NTJ" (I +NTJ'»eq 
IN"I ''''''1''.,,' 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

X/l( ... ,1 - n", ... ,I- n(;", ... t)] . (8.25) 
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To obtain the first moment equation, we now multiply with n~. and sum over all ! n~ J. The first term in Eq. (8.25) yields, 
for the averaging of the factors containing n's, 

first term yields (n~o(l-n~-)n~,)" (8.26) 

where ( ) I means the nonequilibrium average at t. In the second term we find 

. {(n;on;-- (1 - n~.» I' if ;0=1=;" ,;', 
second term Yields . ° " ° , 

(I -n~o)n~-(l-n~,»" If; =; or; =; . (8.27) 

We write Eq. (8.27) also as 

(n~on~-(1 - n~,»,(l- 8~o;-_ - 8;-0;-') + «1 - n;-o)n;--(l- n;-,)},(8;-o~_ + 8;-0~.) 

= (n;-on,-(l-n;-.», +8;-o;-.(n;--(l-n;-,», -8;-o;-_(n;--(1-n;-,», +28;-o;-_(n;--(l-n;--)(l-n;-,», 

- 28;-0;-' (n;-.(1- n;.)n;-- )" (8.28) 

Since n;- = 0 or 1, the averages in the last two terms are zero. The first term ofEq. (8.28) cancels the term (8.26) ifin Eq. (8.25) 
we make in one of the terms the changes; , ~ ",; H ~;', 'TJ' ~1'/", and 1'/" ~1'/'. Thus, the remaining contributions ofEq. (8.28) 
give 

I n;-oMp(r,t)= I Q(;"1'/";;'1'/')[(n;--(l-n;-,)},8;-o;-- - (n;--(l-n;-.»,8;-o;-,](N,,-(l +N"'»eq 
IndlN,,1 ;--[;',,",,' 

= I [Q (; 01'/";; '1'/') (n;-o(l - n[;,)}, (N,,-(l + N"'»eq - Q(;'1'/';;°1'/")(n;-,(1- n;-o», 
[;',,',,-
X (N".(l + N,,- »eq]. (8.29) 

[The two Q 's in this expression are equal; see Eq. (8.18).] We 
also introduce the scattering kernel 

W;:",' = I Q(;°1'/";;'1'/')(N"" (1 +N"'»eq' (8.30) 
,,',( 

Then 

I n~"Mp(r,t) 
In.IIN,,1 

= .? [w;:"" (n,,,(1- ni;'»' - w, . .;-,,(n,,(1- ni;,,»,l 
, 

(8.31) 

where if denotes the collision operator. Equation (8.31) is 
the collision "integral" of the Boltzmann equation, provid
ing we still write, in accord with Eq. (8.1), 

(n,;,,(l - n;:.»,~(n,,,),(l - (nl;' ),), 

(n s·(1 - n,:;,,»,=(n, ),(1 - (ni;")')' (8.32) 

WedothesamefortheN'sinEq. (8.30). Using for (N )eq the 
Bose-Einstein distribution, we find for the scattering kernels 
the rule 

(3(£ ,,-E,-> 
Ws"i; = e' Wn ". (8.33) 

We must now find the first moment results for the other 
terms of the master equation (4.31). The time derivative 
gives the simple result 

a a 
Inc" -pOni; LIN,! J,t) = - (n t ,,),· (8.34) 

In,IIN,,1 . at at . 
The inhomogeneous terms are evaluated by writing 

(A R)" in the second quantization form 

(8.35) 
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where we used (4.28); D, = crt c!; and a and a are one-parti
cle operators of the Schrodinger picture (we assume that the 
external field does not affect the bosons). For the operator 
A"D, one may prove, by methods similar to those we used 
for the collision terms, 

(A"D")b = I I!n,j)(!n;l I M;.n,., (8.36) 
Inj 

where ( ) b denotes an average over the boson states, and 
where M is the Boltzmann collision operator as in (8.31). 

For the two streaming terms we have 

-(3F(t) IPeq(r)ni;" I(rIA"D!;, Ir) (;'!a!;'). 
y ;;' 

(8.37) 
For the first term we find 

first streaming term = (3F(t) I (n,,,n,. )eq (;'! a I; '), 
" (8.38) 

where the subscript "eq" denotes an average in a grand ca
nonical ensemble. To further reduce this we write, using 
(8.1), 

I (n,,,n,. )eq(;'!a!;') 

" 
I (nl;"n;:')Cq(b'!a!;') + (n~")eq(;O!a!;O) 

1;'*1;" 

;::; I (ni;")eq(n;)eq(b'!a!;')+ <n~")eq(;O!a!;O). 
I:;' -1-,'" 
. . (8.39) 

We now use (6.22') which leads to 

(A)eq = I (ni;')eq(;'!a!;')=0 (8.40) 
s' 

K.M. van Vliet 2588 



                                                                                                                                    

so that 

L (n';-')eq(t'lalt') = - (n.;-o)eq(t°laltO). 
;' 1-;" 

(S.40a) 
Equation (S.40a) into (S.39) yields 

~ (n;"nl;' )eq(t'la It') 
, 

= [(n~o)eq - (n,o);q](t°laltO). (S.40b) 

Now, according to statistical mechanics, 

(n~" )eq - (n,o );q = (.:ln~o )eq = (n!;O )eq [1 - (n,o )eq ]. 
(S.40c) 

The field term (S.3S) thus becomes 

first field term =(JF(t)(n;o)eq [1- (n;o)eq ](t°laltO). 
(S.41) 

The second field term is computed by using (S.36). Thus 

(y I (Ad n!;, )6 I y) = M!;, nt;, (S.42) 

and the term becomes, affecting a further average over the 
fermion states, 

second field term = - (JF(t) L (nt;oMt;,n" )eq (t'l a It '). 
t;' 
. (S.43) 

This result can be simplified as follows. We write 

L (t'la It ')[w;'s" (nl;"nt;,(1- n," »eq 
S '-FSO;;" 

- wl;",' (n!;OnS" (1 - nt;'»eq] (1) 

+ L (t°la It 0) [WI; 01; " (n~o(1 - n!;" »eq 
1;" 

- w!;"!;O (n,,,nl;" (1 - n!;o»eq]' (2) 

Term (1) we split in two parts and we use (S.l): 

(1)= L (t'lalt') L [wn,,(n!;")eq(nl;')eq(l-(n';-")eq) 
'::','.c;-" ';-"*;" 

-wl;,,;,(nl;0)eq(n''')eq(l- (nl;')eq] (la) 

+ L (t'!alt')[wn .,(n!;.,(1-n!;"»eq(nt;')eq 
;';: ;() 

- W,." , (n~" )eq(1 - (nt;, )eq)]. (lb) 

Using detailed balancing, 

wi;"!;' (n,::" )eq(l - (n.;-, )eq) = WI; 'I; " (nt;, )eq(l - (n.;-" )eq), 

we see that term (la) is zero. The restriction t '+~ ° in term 
(lb) can be omitted since w!;'.;-" = 0 for ~' = to. Term (2) is 
written as 

(2) = - L (t°la ItO)[wn,,(n~(l - n,;o»eq (ni;' )eq 
i;' 

- w';-O{;' (n~" )eq (I - (ni;' )eq)]. (2a) 

We now combine (lb) and (2a) to read 

L [(t' I a I ~') - (t°l a I ~ 0)] [w.;-,!;., (n.;-o(l - n!;o) )eq (n.;-, )eq 
t;' 

- w,o,' (n~")eq(1- (nl;' )eq)]. (3) 
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In these terms we write 

(n,,,(1-n,o»eq = (n,o)eq(l- (nl;0)eq)- (.:ln~o)eq' 
(S.44) 

(n~o )eq = (.:ln~o )eq + (nl;o );q . 

We then arrive at 

(3)= L [(t'lalt')-(t°laltO)] 
1;' 

X [wno(nl;o)eq(l- (nt;o)eq(n!;')eq 

- Wt;"t;, (nl;" );q(1 - (n; )eq)] 

+ L [(t ° I a I t ~ - (t 'I a I ~ ') ] 
1;' 

X [w!;"!;' (.:ln~" )eq (I - (n!;, )eq) 

+ wn0 (.:ln~o )(n" )eq ] . 

(3a) 

(3b) 

From detailed balancing, (3a) is seen to be zero. Thus the 
result is (3b). So finally the second field term (S.43) becomes, 
using also (S.40c), 

second field term 

= -(JF(t)(nl;")eq(l- (nl;")eq) 

XL [ (t 0 I a ItO) - (t 'I a It') ] 
!;' 

X [w,,,!;,(1- (n" )eq) + (Un" (nl;' )eq]. (S.45) 

We now collect all terms. The full quantum mechanical 
Boltzmann equation becomes, dropping the superscript zero 
on~O, 

a 
at (n,), -(JF(t)(nl; )eq(l- (n, )eq) 

X {(t I a It) + ~ [(t' I a It') - (t I a 10] 

X [WI;I;' (1 - (n,;-, )eq) + W,'I; (n" )eq ]} 

= L [W'"(n;, ),(1 - (n,;),) 
s' 
- Wt;t;' (nt; ),(1 - (n;, ),)]. (S.46) 

The above is easily carried over for the case that the particles 
for which the transport is needed are bosons. Repeating ver
batim the derivations, one finds that (S.46) only requires the 
changes 

(S.47) 

wherever it occurs. 
We remark that there are two streaming terms, (S.41) 

and (S.43) or (S.45), which correspond to the one classical 
term (F/I/)oVknk (the gradient term involving Vk °Vrn does 
not occur in a strict quantum treatment; it requires the intro
duction of the Wigner function). The term (S.45) indicates 
streaming as affected by collisions. Thus, the present Boltz
mann equation carries us beyond the first Chapman-Enskog 
approximation. In applications we will see that one or the 
other field term occurs. For ordinary conductivity without a 
magnetic field only the first field term has nonzero matrix 
elements. 

When we now employ the new Boltzmann equation to 

K.M. van Vliet 2589 



                                                                                                                                    

calculate a current (B R)d' we must realize that there are 
again two contributions, analogous to (8.35); using (8.36), 
we have 

(JB.d ) = «BR)d) 

= I pcq([n; D I 
InJ ;; 

X [ - i(n;(; lalS') + n;(; ItiIO] 

= ~ {( a~:) )COII(; lalO + (n;)(; ItiIO}. 

(8.47a) 

As noted in Sec. 4, the two terms of (8.47a) represent the 
collisional current and the ponderomotive current. Only the 
latter reflects the motion in the sUbdynamics of JY'0. For 
that reason the first term has usually been omitted, though it 
appeared in a hidden fashion in some treatments. I g (We note, 
in this respect, that in the full dynamics of JY' there is only 
ponderomotive current, J = ~iVi') Sirlce the Boltzmann 
equation pertains to the subdynamics of JYD, the collisional 
current cannot be overlooked. In fact, we will show in a 
future paper20 that it is the main current in transverse magne
to resistance phenomena, since the matrix elements (; IxlS') 
and (; I ylS') vanish for Landau states. 

We illustrate this result for the k-space formulation of 
electrons in solids subject to an electrical field. Then the field 
Hamiltonian is 

(8.48) 

where qi are the electron positions. and qiQ the positions 
prior to application of the field. Thus, F = - eE· and 
a = q - (qo )eq' The one-particle matrix elements are, if 
10 Ik) = exp(ik·q)uk(q) is a Bloch state, 

(k Iq - (qo )eq Ik) = (q)k - (qQ )eq = 0, 

(klqlk) = fz - Ivke(k), (8.49) 

where e(k) is the Bloch state energy. Employing for (n ) 
Fermi-Dirac statistics, the streaming term, Eq. (8.41) k eq 
becomes 

_ (J eE . 1 
fz ef3 [elk) ell + 1 e f3 [elk) - er] + 1 V'ke(k) 

= e: 'V'k [ ell [e(~) ed + 1] , (8.50) 

which is the standard result for the streaming term in the 
perturbation form of the Boltzmann equation. 
For the k-space formalism the states are dense and we can 
introduce the coarse grained density 

f(k,t) = (nk),Z(k), f f(k)d 3k=ff, 

where Z (k) is the density of states defined by 

I = f Z (k)d 3k = ~fd3k, 
k 41T3 

and where AI is the total number of fermions. Then Eq. 
(8.46) takes the usual form 

a 
at f(k,t) - (eE/fz)V'J:,q (k) 
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= f z(k)d 3 k I [ W k 'k f(kl,t ) [1 - f(k,t )/Z (k) 1 

- wkk'f(k,t)[ 1 - f(k/,t )/Z (k/) lJ. (8.51) 

B. Electron-phonon interaction 

For an electron-phonon system the interaction Hamil
tonian is21 

(8.52) 

where Ik) is an electron Bloch state, Iq) is is a phonon state, 
c,c t and a,a t are the annihilation and creation operators for 
electrons and phonons, respectively, and where F(q) is an 
interaction function depending on the model (deformation 
potential model, rigid ion approximation model, etc.). The 
states I r) are denoted as I [ n k J, [Nq J). The raising and low
ering rules are as in Eqs. (8.10)-(8.12). We divide A. Vin two 
parts A. VI and A. V2, where the first refers to the first term in 
Eq. (8.52), which is associated with phonon absorption, 
whereas the second refers to the second term in Eq. (8.52), 
which represents phonon emission. We find that matrix ele
ments (riA. Vllr) exist between states such that, for given k' 
and q/ of the summand ofEq. (8.52), we have 

ilk = nk , for k#:k' + q/ and k*k/, 

ilk' = 1 - nk' and ilk' + q' = 1 - nk' I q" 

Nq = Nq - Dqq, . 

The value of the matrix element in that case is 

- L L 
(h'.q' IA.Vllr) = (- 1) '( - 1) ,." iF(q/) 

X [(1 - nk, + q' )nk' Nq , ] 112. 

(8.53) 

(8.54) 

Likewise, matrix elements (riA. V21r) exist for states Irk' ,) 
connected to Ir) by .q 

ilk = nk , for k*k' - q/ and k*k/, 

ilk' = 1 - nk , and ilk' __ q' = 1 - nk , q' , 

Nq = Nq + Dqq,. (8.55) 

The value of the matrix element in that case is 

- L L 
(rk'.q' IA. V2 1r) = ( - 1) '( - 1) , "iF(q/) 

X [(1 - nk, _ q' )nk (1 + Nq,)] 1/2. (8.56) 

We introduce now 

Q (k,q_k/) = (21T/fz) IF (qWD (ek + Eq - ek , )Dk'.k + q 
(8.57a) 

and 

Q(k---+k/,q) = (21T/fz) IF (qWc5(ek - ek , - Eq)Dk'.k _g' 

(8.57b) 

The Q 's are reversible: 

Q(k,q---+k/) = Q(k/---+k,q). (8.58) 

For the transition rates we easily find 

W~,bi;,." = Q(k/,q/---+k' + q/)(1 - nk , I q)nk,Nq , (8.59) 
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For the master operator expression Mp(r,t), we now 
obtain 
Mp« nk j ,( Nq j,t) = I (Q (k/,q/_k' + q/)(1 - nk, + q,)nk,Nq, [PC( nk j,( Nq J ,t) - p( ... ,1 - nk, , ... ,1 - nk, + q" 

k'q' 
... ,Nq, - I, ... ,t) + Q (k/_k' - q/,q/)(l - nk, ~ q' )nk' (I + Nq ) [PO nk J,! Nq J ,t)] 
-p( ... ,I-nk'_q,,. .. ,I-nk,,. .. ,Nq , + I, ... ,f)]l. (8.61) 

Summing over the phonon states, this leads to 

I Mp(nkJ,(NqJ,t) 
IN"I 

= I (Q (k' ,q/ _k' + q/)(1 - nk, + q' )nk' [(Nq,) eq jl(l nk J,t) - (l + (Nq,) cq );1( ... , 1 - nk, ,. .. , I - nk' + q' , ... ,t ] 
k'q' 
+ Q(k/_k' - q',q/)(1 - nk, _q,)nk, [(1 + (Nq , )eq~«nk·l.t) - (Nq, )oq;l( .. ·,1 - nk'q,,· .. ,1 - nk,oo.,t)] J. (8.62) 

We now multiply with nk and sum over (nk I. This summation proceeds as in the previous subsection. We find 

I nkMp«nk J,(Nq l,t) 
I II, liN. I 

I (Q(k/,q/-k' + q')«l - nk· +q' )nk,nk), (Nq. )eq - Q(k',q/-k' + q')[ «I - nk , )nk' +- q,n k), 
k'.q· 
- Dk.k· +-q' (n k· +q,(1 - nk,», + Dkk· (n k, +q,(1 - nk, >,](1 + (Nq , )eq) + Q(k/_k' - q/,q/)«1 - nk, q,)nk,n k ),0 
+ (Nq. )eq) - Q(k/-k' - q/,q/)[ «l - nk,)nk, _q,nk >, - Dk.k'_q· (nk, -q.(1 - nk,», + Dkk· (nk, -q,(l - nk, », ] (Nq , )eq' 

There are four terms involving a Q factor and a triple correlation «1 - n )nn), . In the first term we substitute k' _k' - q/. It 
then cancels the fourth. In the third term we substitute k'-k' + q'; it then cancels the second. The remaining terms then yield, 
observing Eqs. (8.58) and (8.1), 

I nkMp(lnkl,!Nql.t)= -(~(nk)') = IQ(k,q_k+q)(nk)J(I-(nk+Q)J(Nq)eq 
11l,IIN,,1 at coil q 

-Q(k-q,q-k)(nk_qUI- (nkU(Nq)eq +Q(k-k-q,q)(nk>,(1- (nk q),)(1 + (Nq)eq) 
-Q(k+q-k,q)(nk+QUI- (nk),)(1 + Nq)eq)· (8.63) 

The four terms correspond to gain or loss due to photon absorption or emission. Introducing 

(8.64) 
q 

we find that Eq. (8.63) takes the same form as in the previous subsection-noting the Kronecker deltas in the definitions of the 
Q's [Eqs. (8.57) and (8.58)], 

(8.65) 

The field terms are identical to that of the previous subsection. Thus, the final Boltzmann equation is again Eq. (8.46). A proof 
of Boltzmann's H- theorem for the case of electron-phonon collisions was given recently.22 
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APPENDIX A: ON TETRADIC REPRESENTATION 

From the first equality of Eq. (2.1) it follows that the 
identity superoperator allows the symbolic notation 

J = I Ir> (rl-- ~Ir'> (r'l, (AI) 
yr' 
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where the arrows indicate that the first operator works on K 
to the right and the second operator works on K to the left. A 
similar notation holds for the Liouville operator 

it" = ~ [H " I - I ., H], (A2) 

where I is the unit operator of the state space which contains 
the dynamical variables. Clearly, the Liouville space is of 
dimension JY' ® JP (cf. Fan07

). Whereas ordinary operators 
have a dyadic representation Ka/3 = (aiK 113), the super
operators allow a tetradic representation. The four sub
scripts are arranged as follows: 

J a/3la'/3' = I (aUlr) (rllla') (/3'IIIr') (r'lll/3) 
yy' 

= I (air> (rla') (/3/lr/) (r'I/3/) 
yy' 

= r5 aet' D /3/3' • (A3) 
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Likewise, 

2'al3la'I3' = (IHi)«aIHla') (f3'IIIP) 

- (allla') (f3'IHIP» 

= (lIl7)(DI3I3' (alH la') - Daa, (f3 'IH IP» 
= (lIll)(D1313 ,Haa, - Daa' HI3 '13)' (A4) 

The superoperator rule is 

(YK)al3 = IYal3la'I3,Ka'P" (A5) 
a'p' 

For the identity operator we easily check that 

(fK)al3 = I Daa,DI3I3.Ka'I3' = K a13 , (A6) 
a'p' 

so that f K = K. Likewise for 2" we verify 

I 
= I - (Df3I3' H aa' - Daa,Hf3'I3)Ka,p , 

a'I3' 17 
= (lIl7)[(HKL/3 - (KH)a/3]' (A7) 

so that 2' K = (lIll)[H,K] in accord with Eq. (2.9). 

Finally, for the projection operator we have the 
notation 

9 = I Iy) (yl~ -Iy) (yl (A8) 
y 

and for Ad we have 

Ad = - I [Wy"yly) (y"l~ -Iy") (yl 
yy" 

- Wyy"ly) <yl~-Iy) (yl]· (A9) 

Thus, 

9 al3la'I3' = I (aly) (yla') (f3'ly) (yiP) 
y 

= Daa,DI3I3'/3al3' (AlO) 

in accord with Zwanzig's tetradic representation for 9. We 
note that 

(9 K )up = I Daa'DPI3,Daf3Ka'l3 , = DaI3K af3' 
a'f3' 

as expected. For Ad we obtain 

(All) 

Adaf3la'I3' = - I (Wya DaI3Da'f3,Dya' - WayDaa,DI3f3'DaP)' 
y 

(AI2) 

Whereas the above relations are at times useful to verify 
projector calculus rules, generally we find it preferable to 
work with an abstract Liouville space rather than its tetrad 
space realization. 

APPENDIX B: ON THE DIRAC BILINEAR FORM 

As shown in Sec. 2, the Dirac bilinearform <<fJ IK II/') 
presents problems if the bilinear concommitant is not equal 
to zero. Specifically, we have 

<<fJ I! K II/') l - ( (<fJ IK lil/') = (KI/',<fJ ) - (I/',K t<jJ ) 
= QK(I/',<jJ), (BI) 

where QK(I/',<jJ) is a surface integral. If K = Kt, the operator 
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K is Hermitian; if in addition the boundary conditions on <fJ 
and 1/', necessary for QK to vanish, are identical, K is self
adjoint. Because of the possible nonassociativity of the Dirac 
bilinear form, we must specify the matrix elements in a defi
nite way. Thus, we define 

Kn,,=<yJ[Kly')j = (Ky',y). (B2) 

The diagonal part of K will be written as 

(B3) 
y 

where yare the eigenstates and Ry are the projectors of HO. 
Though there is no easy notation for Ry in algebric notation, 
the concept is equally well valid as in Dirac notation (see, for 
example, Riesz and Nagy23). It follows the rule 

Ry<jJ = (<jJ,y)y. (B4) 

We now consider the diagonal part of a commutator 
[K,HO]. For the matrix element we have, using Eq. (BI), 

([K,HO]y,y) = (KHOy,y) - (HOKy,y) 

= (HOy.Ky) + QK(HOy,y) - (Ky,HOy) 

- QHo(Ky,y) 

= €y(y,Ky) + €yQK(Y'Y) - €y(Ky,y) 

- QH,,(Ky,y) 

= - QHo(Ky,y). (B5) 

So this only vanishes if Q H" (K y, y) vanishes, i.e, when K y 
satisfies the same boundary conditions as y. For the diagonal 
part we find 

(B6) 
y 

We now show the correctness of these results by two 
examples, involving the one-particle Hamiltonian 

HO = p2/2m + U(q). (B7) 

We consider the commutator [q,HO]. As is well known from 
the Poisson bracket relation, 

(B8) 

Let U (q) = 4aq2 pertain to an harmonic oscillator. Then, for 
the matrix element of the commutator (BS), 

([q,HO]y,y) = (fzilm)(py,y) = 0, (B9) 

since for an harmonic oscillator the matrix (py,y') has zeros 
for the diagonal y = y'. Thus, 9[q,HO] = 0 by the above 
direct calculation. It is also zero from Eq. (B6), for the bilin
ear concomitant vanishes since for the harmonic oscillator, 
all states, y, as well as K y, go sufficiently fast to zero at the 
boundaries q = ± 00 of the system. 

Now let U(q)be - Uo for - L 12<q<L 12 (particle in a 
box) and let y satisfy periodic boundary conditions. The ei
genstates are Iy> Ik), or in wave language 

L - 1/2 ik,q k 2 /L 0 ± 1 y = e, y = 1Tn , n =, , ... (BlO) 

For the commutator matrix elements we have 

([q,HO]y,y) = (fzilm)(py,y) = (~ilm)ky. (BII) 

Thus, the diagonal part of the commutator does not vanish. 
[Moreover, we note that, for the operator p, (py,y) 
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= (y,py) = (yIP I y) = associative, so that the same result is 
obtained, had we defined the matrix element Kyr' as (y' ,l(y) 
instead of by Eq. (B2); thus, the result is unique.] We next 
show that the same answer obtains from Eq. (B5). Since for 
the box particle H ° = ( - fi 12m)d 21 dq2 - Uo, we have by 
the one-dimensional Green's theorem 

QHo(l/J,t/J) = ~[l/J dt/J· _ t/J. dl/J ]Ll2. (B12) 
2m dq dq -LI2 

Thus, 

If [ iX,I1 d - ix,I1 - Q/J,,(qy,y) = - -- qe . -e 
2mL dq 

x d 'k]L!2 _ e - I ,II _ (q e'Il ) 

dq - L!2 

= (fz2Im)iky, (B13) 

which is the same as the result by Eq. (B 11). 

We have thus shown by examples and by general dis
cussion that the diagonal part of a commutator [K,H 0] is 
sometimes not zero, contrary to what routine application of 
the Dirac notation would suggest; the nonzeroness is caused 
by the non vanishing ofthe bilinear concomitant; the correct 
resultis always obtained ifwefirst evaluateKH ° - HOK = C 
and then find the diagonal matrix elements of C. 

The second example given above is actually quite illus
trative for the case oflinear response theory, in which we met 
the commutator diagonal part g; [A,e - PHD] for the field 
term. If the system were a one-electron solid subject to an 
electric field, then A = eq. The commutator is found to be by 
direct computation, as in the example (B8), 

(B14) 

[which concords with the result from Kubo's lemma (4.14»). 
The matrix element involved is (Iy) -Ik»: 

(ylply) = m(vk ) = (mIIZ)VkE(k), (B15) 

where (vk ) is the expectation value of the velocity in a Bloch 
state and where E(k) is the band energy of the Bloch state Ik). 
It is also clear that the matrix element should not vanish, for 
the expectation value of the current (J) = - e(vk ) should 
be nonzero for the situation envisioned in linear response. 

APPENDIX C: SOME LEMMAS 

In this Appendix we prove some lemmas pertaining to 
the superoperators Ad and i.:;eo, which were employed in 
Sec. 5-7. 

Lemma 1: For any two operators C and D we have 

(C1) 

Two proofs can be given. First, we use the notion of the 
scalar product in Liouville space: IA ,R } = TrAR t. Employ
ing the property (AdD ~t = AdD, which is immediately 
verified from Eq. (2.31), we see that the statement also reads 

IC.AdDt} = IAdC,Dt}, (C2) 

which is satisfied since Ad is self-adjoint (Sec. 2.C). The sec
ond proof follows from the fact that the master operator M in 
function space is self-adjoint. This operator was defined by 
Eq. (2.13). We now have 
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CAdD = - L Cly) (yll Wy"y(r"ID Ir") 
yy" 

- Wyy" (riD Ir) }, (C3) 

from which 

Tr(CAd D ) = - L (r'IC Ir)(rlr'){ Wy"y(r"ID Ir") 
yr'y" 

- Wyy" (riD Ir)} 

= f .:ir(rI C Ir)M (riD Ir) 

= «riC Ir),M (riD Ir». (C4) 

Likewise, one obtains 

Tr(DAd C ) = «riD Ir),M (riC Ir»· (C5) 

Using the self-adjointness of M, as proven in Part I, Eq. (8.2), 
the statement follows. 

Lemma 2: For any two operators C and D we have 

Tr(C e - Ad'D) = Tr(D e - Ad'C). (C6) 

The statement follows from series expansion of the exponen
tials and repeated use of the lemma (C1). 

Lemma 3: For any two operators C and D we have 

Tr(C.:;e°D) = - Tr(D.:;e°C). (C7) 

The proof can be given directly using the commutator form 
for .:;e°D and using cyclic permutativity of the trace. Or, we 
may notice that Eq. (6.4) is equivalent to the self-adjointness 

I C,.:;e°D t} = I .:;e°C,D t} (C8) 

providing we note that (.:;eo D t) t = _.:;eo D . 

Lemma 4: For any two operators C and D we have 

Tr(C e - WO'D) = Tr(D eWo,C). (C9) 

By series expansion we have 

(C e - i,Y"'D) 

= Trl C [1 - it.:;e° + Wt )2.:;e0.:;e0 - ... ]D } 

= Trl CD - Cit.:;e°D + C Wt)2.:;e0 .:;e°D - ... } 

= Trl DC + Dit.:;e°C + D ~(it)2.:;eo .:;e°C + ... ] 
= Trl D [1 + it.:;e° + Wt)2.:;e0.:;e0 + ... ] C ) 

= Tr(D eWo,C); (ClO) 

the changing of the terms involves repeated application of 
Lemma 2 and application of the cyclic permutativity proper
ty of the trace, e.g., for the cubic term 

Tr(C.:;e°.:;e° .:;e°D) = - Tr[ (.:;eo .:;e°D ).:;e°C ] 

= - Tr[(.:;e°C).:;e° .:;e°D] 

= + Tr[ (.:;eo D ).:;e°.:;e°C ] 

= + Tr[(.:;e° .:;e°C).:;e°D ] 

= - Tr(D.:;e° 2'0 .:;e°C). 

Lemma 5: We have 

Tr(C e(A d + w'')'D) = Tr(D e(A d - i,Y"),C). (C11) 

This lemma follows from the preceding ones, for we have 

Tr [c e(A" + i'y")'D ] = Trl C [1 + (Ad + i.:;e~t + ~t 2 

X (Ad + i.:;e~(Ad + i.:;e~ + ... JD ) 
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= Tr{ e [1 + (Ad + iYO)t + !t 2(AdAd + AdiYo 

+ iyoAd - yo Y~ + ... ]D J 
lemmas 1,3 

Tr{D [1 + (Ad - iYO)t + !t2(AdAd - iyoAd 

- AdiYo - yo yO) + ... ]e J 

= Tr{ D [1 + (Ad - iY~t + !t 2(Ad - iYO) 

X(A d - iYO) + ... ]e 1= Tr[De(Arif")te 1 (CI2) 

APPENDIX D: ON FERMION OPERATORS 

The usual results shown in the textbooks are 

I(l,;-l) 

c;ln 1n2 ... I; ... )=(-I) In 1n2 ... O; ... ), (D2) 

with cJl. .. 1; ... ) = Oandc;I.A;· ... ) = O. The fuller results of 
Eqs. (S.II) and (S.12), necessary for the present paper, are 
easily derived from the basic commutation rules 

(D3) 

c,c,; + c,;c; = 0, (D4) 

4 cJ + cJc~ = O. (D5) 

From Eq. (D3) we have 

(c;4) (c;c~) = c, (c~c; )c! = c; (1 - c;4)4 = c;c~ (D6) 

since by Eq. (D5) c~4 = O. The operator c,4 therefore has 
eigenvalues 0 and 1, so by convention we identify it with the 
operator 1 - 0;; hence, 0, = 4c;. Deootingtheeigenvalues 
of the operator 0, by n" we have denoting by I ( n I) an occu
pation number state 

0,1 ! n» = n, I ! n j), 

or dotting into (! n II: 

([ n Ilc~ c, II n j) = n;, 

(D7) 

(DS) 

showing that c,l! n I) is normalized to n,. Similarly, we find 

<! n J Ie, 41! n» = 1 - n;, (D9) 

showing 41 ! n I ) is normalized to 1 - n;. Considering now 
the repeated operations 0; 4 and (1 - o;)c;, we have 

0; ctl!nj) =ct(c; ct)l!nj) 
=4(1-0;)I!nj)=(1-n;)41!nj), (DIO) 

and 

(Dll) 

Subtracting from both sides c ,I ! n J ), this gives also 

0, c, I!n j) = (1 - n,)c, I!n j). (Dl1a) 

According to Eq. (D 10), the state ct I ! n I ) is an eigenstate of 
0; with eigenvalue 1 - n,. Hence, apart from a phase factor, 
411 n I) = const·I· .. I - n, ... ). The constant follows from 
the normalization statement derived above. Thus 

cJI!n» = (_I)uy 1- n; In 1 n2 ... 1- n, ... ). (DI2) 

Likewise, from Eq. (Dlla) it follows that c,1 (n I) 
= const.I ... l - n, ... ). With the normalization indicated by 

Eq. (DS) we find 
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(D13) 

The parameters a and/1 are fixed by requiring Eqs. (D4) and 
(D5) for ;#, and by considering the repeated operations 
c,c,; I!n J) andcJcJ I!n J). This leads toa =/1 = ~(1,; - 1), 
where ~(I ,; ) den toes the occupancies of all ordered one
particle states 11 ) ... 1;). Thus, we obtain the precise forms of 
Eqs. (S.II) and (S.12). The results are now in a form entirely 
analogous to those for boson operators. 

It may be argued that for fermions the square root signs 
make no sense since n, and n~ have the same store of values 
(0 and 1). However, only by maintaining the square root 
signs are we led to the Boltzmann equation in its simplest 
form which now is, moreover, very similar for fermions and 
bosons. 

There is another problem associated with fermion oper
ators in a canonical ensemble. The following rule was shown 
by Fowler24 using the Darwin-Fowler method: 

( ) 
J(n!; )eq 

.:in,.:ins eq = - /1 ---"--..2.. 

Je,; 

= (n;)eq(1 - (n;)eq)(8;,; - :~} (DI4) 

wheree,; is the energy ofa state Is )and,u is theelectrochemi
cal potential or Fermi level. (A similar relationship holds for 
bosons, replacing 1 - (n,) eq by 1 + (n,) eq·) For ;*s, the 
relation gives no problems; it then only indicates that the 
cross correlation is not zero as in the grand canonical ensem
ble. However, for; = S, it follows that (.:inp eq*(n!;) eq 
- (n,)~q, which entails that (npeq*(n,)eq' This is cer

tainly an anomaly. Whereas the correction term is very small 
for the microscopic variance (J,u/Je,; is of order l/v'V', 
where ~n; = JI/ is the canonical constraint), the correction 

becomes large for coarse grained occupancies Nk = ~f~ 1 

nr;' when Zk is of order JI/. Equation (DI4) with correction 
factor predicts correctly the noise (.:iN ~ ) eq of coarse 
grained occupancies such as the fluctuation of all electrons 
in the conduction band of a semiconductor. 

'K.M. van Vliet, J. Math. Phys. 19, 1345 (1978). 
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gonal part: DyK = (riK Ir> 
= (rIKdlr>· 
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JOIn a previous version of this manuscript we solved for the Green's function 
of (3.4), defined by 

a%(t,t') + i(l- cJ')Y %(t,t') - ~F(t)(l- 9)[A,%(t,t')] 
at Ii 

= f8(t- t'). 

The solution is 

ut" (f,f ') = u(t - f ')e ," <>, I , ) , 

xexp[i r drF(r)(1 - 9)'6',(f' - r)] 

where 'C A is a superoperator such that 

'6', (t)B = (l/1i)e "," '[A,e"" ,', B]. 

While this solution separates more completely the diagonal and nondia
gonal parts, it is of little value, for the linearized equations reduce again to 
(3.11) and (3.12). 

"R. Zwanzig, in Lectures in Theoretical Physics, Vol, III, edited by W,E. 
Britten and 1. Downs, Boulder, Colorado, 1960 (Interscience, New York, 
1961), pp. 106-141. 

IIp is bounded; for arbitrary tP of $' we have 

(PtP, PtP) = L I (</J,y) I '(p'y,y) < L I (tfJ,y) I '(py,y)<Tr p = I. 
J' " 

"We prefer the notation', over A R. However, to keep the equations in 
Kubo-form appearance, we mainly use the notation A R in Sees. 6 and 7. 

"In Paper I we computed B ~(df), where we assumed from the outset that B 

was diagonal. If this assumption is dropped, then I, Eq. (6.11) will read 
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<yl U«I)'BU"" I y) = <yIB I (dt) I y). In the higher order terms the diag
onal approximation is allowed. With this modification, I, (6.37) will read 
B R (dt) = B I (dt) - A<fB<fdt. By subtracting from both sides B (0), di
viding by d t, and operating with .-:1' , the statement (4.28) follows if we set 
B-'>A. In principle, we can also obtain (4.28) from the van Hove limit of the 
Heisenberg equation of motion. 

"We assume that B is a vector of 'ff' , i.e., translationally invariant over the 
dimensions of the system. 
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All spontaneously broken symmetries for noncovariant currents 
w. D. Garber.). b) 

Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540 
(Received 5 December 1978) 

For a current not covariant under translations, the associated symmetry can be 
spontaneously broken even in the case of a mass gap. The most general form of such a 
symmetry in a Wightman field theory is determined; it is shown that the symmetry 
generator can be evaluated on scattering states, commutes (as a form) with the S 
matrix, and has vanishing matrix elements between states whose particle number differs 
by more than one. 

1. INTRODUCTION 

In this paper, the study of symmetries induced by local, 
conserved currents (in the framework of a Wightman quan
tum field theory) is continued. In order to clarify the various 
assumptions made in the literature about such currents, it 
seems helpful to consider the following four examples: 

(1) JI'''(x): = :rpmaf1a~m - (~rpm)a~m:(x), (1.1) 

(2) /' "ix): = xj'ix) - xK? ,(x), (1.2) 

(3) /'(x): = c(l'rpo(x), (1.3) 

(4) /'(x): = h (x)(l'rP",(x) - (~h )(x)rpm(x). (1.4) 

Here rpm (x) denotes the free scalar field of mass m;;;>O, the 
double dots denote Wick ordering, the function It (x) in ex
ample (4) (which is due to Ref. 1), is asumed to be a real 
solution [in O.w(lR4)] of the Klein-Gordon equation for the 
same mass m as the field rPm (x), and c in example (3) is a real 
constant; in example (2),j"" denotes the current from exam
ple (1). 

All four currents are Hermitian, conserved, local, and 
relatively local with respect to the field rpm from which they 
are constructed. The associated generator, which one ex
pects to be 

Q = f jO(x)d 'x 

(all indices other than Jl having been suppressed), is ill-de
fined by this equation. However, considering "approximate 
generators" 

(1.5) 

with 

t7>(x): = t?(r" 'Ixl), t?E8, 

{ _{I, 0<S<1} 
8: = t7E.91 ([ 0,00 ])/t? (s) : , 

0, s;;;>2 
(1.6) 

1]EH, H: = {17E fz: (lR ')/ f 17(XO)dxO = I} (1.7) 

and defining the generator Q on states A [A: any polynomial 

a)On leave of absence from the Institute fur Theoretische Physik, U niversa
liil Gottingen, Bunsenstr. 9, Gottingen, Germany, 

b)Supported by a DAAD grant. 

in operators rpm (f) with fE£Z1 (lR 4); n: vacuum state] by 

QAn: = lim [Qr , A ]n, (1.8) 

we readily see that the action of Q in the four examples is 

(I )' i[Q",rpm(x)] = avrpm(x), (1.9) 

(2)' i[Q,., ,rpm (x)] = (x"aK -xKa,JrPm(X)' (1.10) 

(3)' i[Q,rpo(x)] = c, (1.11) 

(4)' i[Q,rpm (x)] = h (x). (1.12) 

The first two examples are thus the familiar generators of the 
Poincare group, and in the last two examples, a constant c 
resp. a function h (x) (which is a solution of the Klein-Gor
don equation) is added to the field. 

The curren ts in exam pIes (l) and (3) have the addi tional 
property that they are translationally covariant: 

U (a)l'(x)U ( - a) = l'(x + a) (1.13) 

[where U (a), aElR \ is the unitary representation ofthe trans
lation group]. Under the additional assumption of a mass 
gap, the structure of the generator Q corresponding to an 
arbitrary translationally covariant current constructed from 
interacting fields has been obtained in Ref. 2: Qcan be shown 
to be a symmetric (even self-adjoint) operator defined on the 
asymptotic (free) fields and acting on them as a polynomial 
in the linear momentum operator. Thus, a slight generaliza
tion of(1.9)(replacinga" by a polynomial inaK , K = 0,1,2,3) 
is all that can be obtained from such currents. The fact that Q 
is symmetric is equivalent to 

lim (n I [Qr ,A ]n) = 0, (1.14) 
r •. -;1:; 

where Qr ,A,n are as in (1.8), i.e., to the fact that the symme
try is not spontaneously broken. For a translationally covar
iant current, this is implied by a mass gap being present. 
Thus, in order to investigate spontaneously broken symme
tries in this case, one has to drop the mass gap assumption. 
Hence, it is no accident that in example (3) for which 

r - YO 

a mass zero field appears. 
Examples (2) and (4) show that the assumption of trans

lational covariance is, in fact, too restrictive, ruling out even 
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the generators of the Poincare group. It seems therefore nat
ural to investigate arbitrary translation ally noncovariant 
currents. However, now one can have a spontaneously 
broken symmetry in a theory with mass gap, as example (4) 
with m > 0 shows, for which 

lim(!J I [Q,.t,6m(x)]!J) = - ih (x). (1.15) 

The structure of unbroken symmetries for noncovariant cur
rents has been investigated in Refs. 3 and 4 under the as
sumption of a mass gap: The associated generator Q is again 
symmetric [by (1.14)], defined on the asymptotic fields, and 
acts on them as a polynomial in X K and av' K, v = 0,1,2,3. 
Thus, a slight generalization of examples (1) and (2) is all 
that can be obtained from an arbitrary noncovariant current, 
under the above assumptions. 

Since example (4) shows that there are cases ofsponta
neously broken symmetries in theories with a mass gap, one 
might inquire about the structure of such symmetries. It 
seems easier to ask that question in theories with a mass gap 
for which there are no infrared problems and the Haag
Ruelle scattering theory is available. However, it must be 
emphasized that no result for the translationally covariant 
case can be obtained by simply specializing the results of the 
present paper, as in the case of unbroken symmetries. In the 
following, the existence ofa mass gap is assumed, but (1.14) 
need not hold. 

There is an immediate difficulty if(1.14) is dropped: An 
operator Q could still be defined by (1.8), but since (1.14) 
does not hold, it is by necessity not a symmetric operator and 
as such has no chance of being the generator of a symmetry. 
Hence, the associated generator must be defined by another 
method. Since one is primarily interested not in the operator, 
but in its expectation values, a definition as a quadratic form 
seems even more natural: 

Q (rp I I/J): = lim (rp I Qr I/J). (1.16) 

Note that (1.8) and (1.16) do not agree for the examples (3), 
(4) of spontaneously broken symmetries. As no commutator 
is employed in the definition (1.16), one seems to be unable to 
use locality effectively; in particular, it is not even clear if Q is 
defined on the statesA!J used in (1.8). Nevertheless, (1.16) 
will be adopted as the definition of Q in the following, and it 
will be shown (in Sec. 3) that Q can be defined as a quadratic 
form even on (the usual dense set, cf. Refs. 3,4, of) asymptot
ic scattering states, commutes (as a form) with the S matrix 
and has a simple form on asymptotic states: It consists of a 
term bilinear in annihilation and creation operators, familiar 
from Ref. 3, to which is added a term linear in these opera
tors: the last term is responsible for the symmetry breaking. 
In particular, Q vanishes on asymptotic states t,6, ¢ for which 
the particle number differs by more than one. Section 2 con
tains some preliminary estimates. 

2. SOME PROPERTIES OF Q 

In this section, the assumptions on the current will be 
described in detail, and simple properties of Q will be 
derived. 
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Consider a Wightman quantum field theory given by a 
finite set of fields [¢>; (x) J with common dense domain D 
(stable and Lorentz invariant), vacuum vector fl, and trans
lations U (a). In addition to the translationally covariant 
fields I ¢>;(x) J, there is assumed to be given a noncovariant 
current density Jll(X) with the properties 

(11) Jll(X) is an operator-valued tempered distribution, 
defined on D and leaving D invariant; 

(J2) Jll(X) is Hermitian; 
(B)J fLex) is local and relatively local with respect to the 

fields [¢>;(x)j; 
(J4) JfL(X) is conserved: 

a 
a J!'(x): = - Jll(X) = O. 

I' axfL 

[In (J4), summation over the repeated index f.L is implied.] 
The tranlates of JI' , 

JfL(x,a): = U(a)J!'(x)U( - a) (2.1) 

are, by a regular transformation, distribution of x + a and x, 

f(x + a, x): = Jll(x,a) (2.2) 

and have the following properties, which follow immediately 
from (11)-(J4) and (2.1), (2.2): 

(jO) U(a)p'(y, x)U( - a) =P'(y + a, x); 
(j l)f(Y,x) is an operator valued tempered distribution 

iny and x, defined on D and leaving D invariant; 

(j2)!'(y,x) is Hermitian; 
(j3)!'(y,x) is local and relatively local with respect to 

the fields [t,6; J in the variable y, for all x; 
(j4)!'(y,x) is conserved: 

(~ + ~)f(Y,x) = 0 . 
ayfL axfL 

(2.3) 

So far, the assumptions are the same as those made in Ref. 4. 
As in Ref. 4, the following normalization condition is 
assumed: 

(j5) (fl Ir(y,x)!J) = 0, 

[equivalent to 

( J5) (fl IJfL(X)fl ) = 0], 

which can always be achieved by redefining 

l'(Y,x): = !'(y,x) - (fl If(y,x)fl); (2.4) 

ifjfL fulfills (j0)-(j4),l' fulfills (j0)-(j5). However, unlike 
the case of unbroken symmetries, where Q, as defined in 
(1.8), is not affected by this normalization, the quadratic 
form Q defined in (1.16) changes under (2.4). Nevertheless, 
(j5) will be assumed as it has the physically reasonable 
consequence 

Q(!J Ifl) =0. (2.5) 

Denote by PSL the algebra of strictly local operators 
generated by ¢>;(x) smeared with test functions from 
g?" (R 4).It will next be shown that the limit (1.14) exists even 
though it need not be zero: 

2.1 Lemma: For fixed I/J,¢>ED, the functional 

(2.6) 

has a limit, as r-+oo, for all AEPSL ' This limit, denoted by 
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q(A ), is independent of fJEe and 11Ell, as defined in (1.6) and 
(1. 7). 

Whenever the dependence of q, on the vectors t/I,¢, is 
important, this functional will be denoted byq,(A;t/I,¢). Oth
erwise these vectors are supposed to be chosen and kept 
fixed. 

Proof By locality, the limit is reached for finite 
r = ro (A) and thus independent of fJEe [cf. (1.6)]. Choose 
111 ,1hEll [cf. (1.7)] and consider 

11(X~ = 5:"00 [111 (y~ - 112 (yO) ]dyO , 

which has compact support by the definition of H. By cur
rent conservation, for r> r ° (A ), 

(t/I)I [j°(fJA111 -112»,A ]¢) = (t/ll [/(fJ,·Jo11),A ]¢) 

= (t/ll [/(J;fJ,'11),A ]¢ ) = 0, 

since fJ, is constant on the support of A. 0 
By the above lemma, for the translates 

A (x): = U(x)AU( -x), 

limq,(A (x» = q(A (x» 

for each fixed x and AEPsL ' It follows from the assumptions 
that q r (A (x» is, in fact, an OM function in x for fixed A. As a 
function in OM' it defines a tempered distribution. It will 
next be shown that q(A (x» is a tempered distribution also 
and that q,-q in the topology of Y'. A similar result was 
obtained in Ref. 5 for a restricted class of currents; the same 
proof holds, however, in general, and a slight change even 
gives the rate of convergence: 

2.2 Lemma: For all AEPSL and all positive integers N, 
there is some Y(R 4)-norm 11·llm.n with m = N + K and K,n 
constant such that, for allfEY(R 4), 

Iq,(A (f» - q(A (f» I <CN(I + r)-NllfIIN+K.n , 
(2.7) 

where 

A (f) = 5 A (x}{(x) dx 

and the constant C N depends on N .A,K and n, but not on r. 
The precise definition of IHlm.1! is given in the proof 

below [cf. (2.13)]. 
Proof Choose fixed vectors ¢,t/JED, cf. (2.6). By (JI), 
C(x,y): = (¢ I [JO(x).A (y)]t/I) (2.8) 

is a tempered distribution in x and y; hence, there are integers 
s,t with 

(2.9) 

for all g = g(x,y)EY(R 8). By (13), C (X,y) = 0 whenever 
x - y is spacelike to the support of A, Le., in particular if 
x - yEHb: = {zER41lzo 1- I/z ll < - b l forb large enough, 
where the size of b depends only on (the support of) A. Keep 
that b fixed. Let () be a function in OM which is zero on Hb 
and Ion the complement of Hb _ I (choose b > 1). Then 

C(x,y) = C(x,y)()(x - y). (2.10) 

By (2.9) and the definition of q, and q, it is thus enough to 
prove, for some m,n depending on s,t, and N, 
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II [fJ,(x) - 1J11(XO)() (x - y}f(y)lIs.t <C N(l + r) - Nil fllm.n . 
(2.11 ) 

This will now be proven for all s,t which implies, in particu
lar, thaty(x O)() (x - y}f(y) is in Y(R 8) so that q(A (f) is 
defined. Denote the function on the left side of (2.11) by 
h,(x,y) .. Then h,==I=O at most for I/xl/>r and x - y in the 
complement of H b , i.e., for Ixo - Yo I - /Ix - yll > - b 
which implies 

Iyl: = IYol + 1\ yll>lyo -xol-lxol- /ly - xII + IIxll 

> -Ixol-b + IIx ll> -d-b+ IIxll (2.12) 

>/lx/l - r/2>!lIxll, 

where the support of 11 lies in [ - d,d], and r has been chosen 
larger than 2(d + b). Now in 

IIh,(x,y)lIs.t: = sup II ynxlaD~D~ [(fJ,(x) - l)11(Xo}f(y) 
lal.;;s 
11'11" t 
X()(x - y)] I (2.13) 

the x derivatives are bounded by a polynomial in x and y 
independent of r; thexo derivatives are bounded by a polyno
mial inxo andyo' Hence [a = (ao,a»): 

IIh,(x,y)lIs.t <Csupll yla +rlxl a 
+ r[D~f(Y) ]e(x - y)1 

<C'lIflls+ lal + Iyl + Irl.t 

by (2.11) and Ixo I < d. Lastly 

Ilh,(x,y)"s.t« sup Ixl-Nlyl-N)lIh,IINHi 
(x.Y)Esupph, 

<CNr- N/lh,/iN +s.t 

since 21 yl > /lx/l > r, by (2.12), which establishes (2.11) with 
m = N + Irl + s + lal + Irl, n = t. Now choose the par
ticular values of (2.9) for sand t which implies (2.7) with 

K=s+a+ Irl + Irl· O 
In the construction of Haag-Ruelle scattering states, 

the algebra P QL of operators of the form 

A (f): = f AI (XI ) ..... AJ(x,}{(x] , ... ,x,)d 4x l • .. d 4x" 

Vl,fEY(R 4
), A;EPsL' (2.14) 

is used. Using the technique of the preceding lemma, it can 
also be shown that q, (B) converges even for BEP QL; the limit 
will again be denoted by q(B ): 

Corollary 2.3: LetA (f) be defined by (2.14), and t/I,¢ED. 
Then for all positive integers N, there is some Y(R4/ )-norm 
II /I N + K.n with K,n constant such that, for allfEY(R 4), 

Iq,(A (f);t/I,¢ ) - q(A {f);t/I,¢ )1 <C ~¢(1 + r) - Nil fllN + K.n· 

(2.15) 

If, in particular, t/I = B, (g\ )fJ,¢ = B2 (g2)fJ with B\ (g\), 
B2(g2)EPQU then 

C~¢<CNllg,lla.b IIg2I1a'.b· 

where the Y-norms II lIa.b' II lIa·.b· are independent of N. 
Proof Since 

q,(A (f);t/I,qJ) = f itl q,(A (x;);t/I;,qJ;)f(x , , ... ,x,)d
4
x l ,,·d

4
x, 
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with 

if!,: = A r-- I (x,_ J .... ·A r(x I )if!, 

CPi: =Ai+ I (Xi + I)' .•. . A,(x,)cp, 

one can reduce the proof to that of the last lemma by 
considering 

C,(x I , ... ,x/;x) = (if!, I [r(x),A,(x,)]cp,) 

which is a distribution in all variables X; XI , ... ,x/ and hence 

(2.16) 

for some Y - (JR 4(1+ I)-norm 1I·lIs(I),/(I)' Now replace, as be
fore, g by 

hr(x I ,,,,,x/;x): = [tJr(x) - l]1/(x<)O (x - x,)f(x l , ... ,x/), 

and sum (2.16) over i to get 

Iqr (A (f» - q(A (f))l <C Ilhr 115,/ , 
where s: = max s(i), t: = max t (l), and C: = max Ci • Now 
use (2.12) to bound IIhr IIs" as stated in (2.15). 

If if! = BI (gl )fl, cp = Bz (gz)fl, simply note that C, is 
now a distribution also in its dependence on gl' gz; thus 
(2.16) can be replaced by 

IC,(g;g1 ,gz)1 <K. IlglIs(I),,(O ·llgI lIa,b Ilgzlla',b" 0 
The last corollary turns out to be useful in proving that 

the quadratic form Q of(1.16) is defined on PQLfl XPQLfl. 
The crucial fact linking Q with q r is part (ii) of the following 
lemma which is a generalization of Lemma 4.1 of Ref. 2 due 
to Reeh; part (i) is Lemma III of Haag, Kastler, and Robin
son6 which critically uses the mass gal? assumption. 

2.4 Lemma: (i) For any BEP QL , there exists r(B)EP QL 

with 
Bfl - (fl IBfl) = Po r(B)fl (2.17) 

(Po: generator oftime translations); furthermore, r is a linear 
functional on P QL preserving hermiticity. 

(ii) For any BEP QL' 

2(fl IBQr fl) = (fl I [Q"B ]fl) + (fl I [[Qr'PO ],r(B)]fl ) 
(2.18) 

Proof (i) Consider the spectral decomposition 

U(x) = f e'Px dEep) + Eo ' (2.19) 

where Eo is the projector onto the vacuum state and dE (p) 
has no support for p2 < m 2 for some m > O. Choose a function 
g( Po )EO M (JR I) which is real, even, and equals Ipo I - I for lPo I 
>m. Define 

(2.20) 

the integral exists and is an element of P QL [cf. (2.22), (2.23) 
below for details]. ris a linear functional, and r(B) is Hermi
tian if B is, since g is real. Furthermore, 
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Por(B)fl = Po(J U(x<)g(x°)dxO)Bfl 

= Po(J e'P'YC"g(x~dxO dE (p)Bfl ) 

= J Pog(Po)dE(p)Bfl 
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= J dE (p)Bfl = Bfl - EoBfl, 

by (2.19) for x = 0, as asserted. 
(ii) By linearity, it is enough to prove (2.14) for 

B=B*EPQL : 

2(fl I[Q,B]fl) - (fl I [Qr,B ]fl) 

= (Bfl IQr fl) + (fl I QrBfl ) 
= (Po r(B)fl I Qrfl) + (fl I QrPO reB )fl ) 

= (fl Ir(B)[Po,Qr]fl) - (fl I [Po,Qr ]r(B)fl), 

since Pofl = O. 0 
This lemma is sufficient to prove that fl X P QL fl is in the 
domain of Q and even controls the rate of convergence: Con
sider, along with the given current "'(X) = r(x,x) the quan
tity /I'(x) = i[Po,JI'(x)] which again is a current fulfilling 

v 
(11)-(15). Thus, for the associated approximate charges Qr 
[cf. (1.5)1 and functionals qr.ij [cf. (2.6)J, all previously ob
tained conclusions hold. By the last lemma, for BEP QL and 
cp = if! = fl, 

2(fl IQrBfl) = qr(B) + iqr(r(B». (2.21) 

By Corollary 2,3, both terms on the right converge as r-+oo, 
and 

21Q (fl IBfl) - (fl I QrBfl )1 
<lqr(B) - q(B)1 + Iqr(r(B» - q(r(B»I· (2.22) 

Now if B = A (f)EP QL' then, by (2.20), r(A (f» = A (fj 
with 

F(x I ,.",x/): = J l(x l ,x~ - xO"",x I ,x~ - XO)g(x~ dxo . 

(2.23) 

However, 

(2.24) 

For the proof, note first that the space parts XI ,,,.,x, in IHlm.n 
are not affected by the replacement/~1 T, so they might as 
well be suppressed, and so will the upper index in x~ and X o . 
Next suppose I = 1. Then 

IIFlls" =supllxlsl(!)fT(X)!! 

<sup[J Ix - y + y15! (a(x ~ y»)f(X - y)! 

X Ig(Y)ldy] 

<,tCkSUP{lx-Yls-k!( a)' 
K=O x,y a(x - y) 

X I(x - y) IJ I ylk Ig(y)1 dy, 

by the binomial formula. Consider first the supremum of ! . J 
over x only, which is simply the translationally invariant 
norm II Ills _ k,1 and thus independent ofy. Next, the integral 
is finite: Since gEL z by construction, gEL z and, in particular, 
locally integrable, Since g is infinitely differentiable, g is of 
rapid decrease, i.e" 

IIFII",< i Ck II/lIs- k,' 
k=O 

w.o, Garber 2599 



                                                                                                                                    

which implies (2.24) since Y -norms are compatible. An 
analogous proof works for I> I. All this can be summarized 
in the following 

2.5Lemma: ForA (/)EPQL there are constants k,n such 
that, for all positive integers N, 

I Q (11 IA (/)11 ) - (11 I QrA (/)11 ) I 
<CN(l + r) - N II/IIN+ k.n 

with C N independent of r. 

(2.25) 

Proof Combine (2.22), (2.24), and Corollary 2.3. D 
Finally, to show that Q is defined on PQL I1 X PQL 11 , 

simply consider two operators A (I), B (g)EP QL and write 

(A (/)f1 I QrB (g)11 ) = (A (f)111 (QnB (g)]11 ) 

+ (111(A (/»*B(g)Qr 11). 

Corollary 2.3 and Lemma 2.5 imply that the right-hand side 
converges for r-oo and even give the rate of convergence 
which proves 

2.6 Theorem: For all A (f),B (g)EP QL' 

(A (/)I1IQrB (g)I1) 

converges, as r-..oo, to a Hermitian sesquilinear form Q. 
Furthermore, there are constants k,n and, for all N, a con
stant C N such that 

I (A (/)111 QrB (g)11 ) - Q (A (/)I1IB (g)11 ) 1 

<CN(l +r)-NIIfIIN+k,nllgIIN+k,n' 
As a corollary, Q is continuous in the Y -seminorms: 

2.7. Corollary: For all A (f),B (g)EP QL' 

IQ (A (/)I1IB (g)11 )1<CJlflkn Ilglkn 
for some.Y (R 4)-norm Illkn' 

Proof By the triangle inequality, 

1 Q (A (/)I1IB (g)11 ) 1 

<IQ (A (/)I1IB(g)I1) - (A (/)I1IQrB(g)I1)1 

+ I(A (/)I1IQrB (g)11 )1; 

the second term is bounded by (I + r)k 1I11I1,m IIgIII',m' since 
(A (y)11 IjO(x,x)B (z)l1) is a distribution in all variables, and 
the first term is bounded by eN 1I/Ikn IIglkn' by Theorem 
2.6, Choose r fixed to get the result, D 

3. SCATTERING STATES AND THE DOMAIN OF Q 

It is the purpose of this section to show that Q can be 
defined on (a dense set of) scattering states and to determine 
its form there, 

First, the Haag-Ruelle construction will be briefly re
viewed. Assuming isolated one-particle mass hyperboloids 
of mass m v , one can find operators BvEPQL normalized so 
that [cf. (2.19)]: 

(Bv 11 IdE (p)BI" 11 ) = O(p2 - m~)ovl"(T,.(p)d~ 

with a strictly positive, infinitely often differentiable func
tion (Tv. With the help of smooth solutions of the Klein
Gordon equation for mass m > 0, 
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I(x,t): = J exp! - i[w(m,p)t - px] Jf(p) 

X [w(m,p)]- Id 3p, 
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(3.1) 

/EY(R 3),[w(m,p)V = p2 + m2, 

define operators 

B(J,t): = J U(a,t)BU( - a,t)f(a,t)d'a. 

Then the state 

tp (t) 1 (t)11 tp", '" (fI , .. ·In;t): 

= B,., (fl ,t)· .. , .B1'" (fn ,t)11 

(3,2) 

(3.3) 

converges strongly, for t-.. ± 00, to some limit, denoted by 

(3.4) 

This state is interpreted as an outgoing or incoming free n

particle state characterized by quantu~ numbers v (in par
ticular masses m,.) and wave functions!,. [assumed normal
ized ~ith res~ct to dw(m"p)], where 

!,(p): =!,.(p)[a,,(p)r /2
• 

The reason is that 

out /".... out" /"'... 

(a ,.'n if,. »*rp, ..... ,." in U; , ... J,,): 

= lim B,.(j",t)B,.,(f!,t) ..... B""(f,,,t)11 (3.5) 
( . t x 

defines a free field creation operator 

(a,.exCf.,»* = S(a,."X)*(p1f.,(p)dw(m v ,p) 

with adjoint aC
'" ("ex" stands for either "in" or "out") satis

fying the usual commutation relations 

[a" eX(p),(a,. ex)*(q)] ± = 20"/IO(P - q)w(m" ,p), (3.6) 

such that 
A/"-./'... /'0.. 

rp", ... , "c'(jl , .. ,,!,,) = (al',eX(J., »* .... . (a ,,,ex(!',)*I1, 
(3.7) 

The Fock space constructed from a/I e"(a,, ex). will be denot
ed by Hex. 

There are assertions on the rate of convergence in (3.3), 
(3.4), Define the velocity support '2.(f) of a smooth solution 
of a Klein-Gordon equation with mass m by 

I (f): = !p.(p2 + m 2
) II2/pESUppfJ 

and denote the space generated by all states tp ~'.~ '''" (ft , ... ,In) 
such that the '2.(f) are pairwise disjoint by D" ex. For 
tp eXED e" the space generated by unDn ex, 

(3,8) 

for all N, where tp(t ) is a finite linear combination of states of 
the form (3.3). D eXul11 J is dense in Hex. This concludes the 
results that will be needed in the following. 

It is in considering Q on scattering states tht one sees 
most clearly the difference of the present approach to the one 
in Refs. 3 and 4, where unbroken symmetries were treated, 

If the symmetry is not spontaneously broken, Q, de
fined in (l.8), is a symmetric operator, hence closable. To 
define Q on scattering states, it is thus enough to prove that 
Qrp, converges in t. Once one knows this, and since one can 
also show that Q is the quadratic form limit of Qr, Q as a 
form on scattering states 1, l/J approximated by rp (t ), ¢(t) is 
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given by 

(t/lIQ'P) = lim lim (t/I(t )IQr 'P (I », (3.9) 
/ -~ ± 00 r- ....... oo 

in that order; this was done in Refs. 3 and 4. 
On the other hand, if the symmetry is spontaneously 

broken, Q, defined in (1.8), is not closable. For that reason, 
the quadratic form Q was defined from the outset as the limit 
of the form Q,. To show that Q is defined on scattering states, 
one has now to prove 

Q (t/lI'P) = lim (t/lIQr 'P) = lim lim (t/I(t)IQr 'P (I », 
r-_ co r-oo r_ ± 00 

(3.10) 

where the repeated limits are now in reversed order. 
The results of Ref. 3 lead one to suspect that even in the 

case of spontaneously broken symmetries, the limit (3.9) is 
easier to handle than (3.10). So the next task will be to prove 
that the limits (3.9) and (3.10) are equal also in the present 
case. 

This will follow from the estimates (valid for all N) 

1(t/lIQr'P) - (t/I(t)IQr'P(t»I<AN(1 + r)K(l + It I)-N 
(3.11 ) 

IQ(t/I(t)I'P(t» - (t/I(t)IQr'P(t»1 
<BN(I +r)-N(l + ItlyN (3.12) 

where 'P,t/IED ex [approximated by 'P (t ),t/I(t) as defined in 
(3.3)] and K,c are constants independent of N. To prove this, 
observe first that 

IIQr'P(t)1I 2<P(r,t), (3.13) 

where P is a polynomial in r and I; this follows simply by 
considering 

(B,,,(a l ,t)· .... By" (a" ,t)f1 Il(x,x) 

X l(y,y)B y , (b l ,I). '" .By " (bn ,t)f1 ), 

which is polynomially bounded in av ,b!L , t and a distribution 
in x andy, by the distribution properties of Wightman func
tions. Integrating over av and by with/v and over x,y with 
3, ® 1/ gives the bound 

IIQr'P (t )1I 2<Ck/(j PI (a l , ... ,an.J) 

,TIl Vy(ay,t )Id 3al ···d 3an ) 2' 113r ® 1/lil,[> 

where PI is some polynomial. But the IIlIk,/-norm of3r ® 1/ is 
bounded by a polynomial in r, and the integral by a polyno
mial in t (this follows from well-known properties of smooth 
Klein-Gordon solutions, see, e.g., Lemma 6.3 of Ref. 3). 
Thus, (3.13) is proved. 

To establish (3.11), observe that the left-hand side is 
bounded by 

I(t/I - t/I(I )IQr'P )1 + I (Qrt/l(t )Itp - 'P (t» I 
< IIt/I - tP(t)IIIIQr'P II + Iltp - 'P (t )IIIIQ,tP(t )11 

so that (3.13) and (3.8) imply the inequality. 
As for (3.12), note first that 'P (t) is, for fixed t, in P QL f1: 

Assume that in (3.2), BEPSL has the representation 

B = f A I (XI)' ... . A/(X/)g(XloooX/)d4XI···d4X/ 
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Then B (f,t ) has an analogous representation withg replaced 
by 

f g(xI - (a,t), ... ,x/ - (a,t}f(a,t)d 3a_g,(x l · .. x/). 

But any Y (R 4~-norm of g, is polynomially bounded in t: As 
in the proof of (2.24), 

IIg,lia.b\to Ckliglia-k.b f l(b,tWlf(b.t)ld
3
b, (3.14) 

where the integral is bounded by (l + It 1)2k + 3/2 (see again 
Lemma 6.2 of Ref. 3). Now Theorem 2.6 implies (3.12). 

Next,supposeQ (t/I(t ),tp (t »tendstoalimitast-oo;call 
/'-

that limit Q (t/lI'P). To show that (t/lIQrtp) tends to the same 
limit, note that by (3.11) and (3.12), 

'" IQ(t/lltp l- (t/lIQ,'P)1 
<IQ(t/lI'P) - Q(tP(t)ltp(t))l + IQ (tP(t)I'P (t» 

- (tP(t)IQ,tp(t»1 + l(t/I(t)IQ,tp(t» 

- (t/lIQ,'P)1 < 10' (t/lltp) - Q (tP(t)I'P (t))l 

+BN(l +r)-N(I + ItlyN 

+AN(l +rt(l + Itl)-N; 

choose N> K and It I = rll(C + I). For r big enough, the first 
term is small by assumption, while the last two terms are 
small~ince they are bounded by CN(l + r)K - N. This shows 
that Q= Q. 

To investigate the limit (3.9), the sesquilinear form 
Q (tP(t )Itp (t» will be expanded in truncated vacuumexpecta
tion values (denoted by ( ) 1). Suppose [cf. (3.3)] 

tP(t) = l]I(t)f1, 'P(t) = CP(t)f1 (3.15) 

and define 

Since (1]I*(t )Qr cP (t» Tis obtained by a finite number ofalge
braic operations from (f1 11]I*(t )Qr cP (t)f1 ), the results of 
Sec. 2 imply the existence of the r limit. Furthermore, the 
following generalization of Lemma 7.1 in Ref. 3 holds which 
will be proven in the Appendix. 

3.1 Lemma: Let 'PEDn ex,t/lEDm ex be approximated by 
vectorstp (t), tP(t ) of the form (3.3), andsupposen;;.20rm;;.2. 
Then for all N, 

!lQ(t/I(/)ltp(t»j T I<CN(1 + Itl)-N. (3.17) 

This leads immediately to 
3.2 Theorem: Let 'P,t/IED ex be approximated by vectors 

'P (t ),t/I(t) of the form (3.3). Then 

Q (t/lltp) = 2: I (t/ll (a; ex)*(q)ak ex(p)tp) 
i,k 

.Q «a; ex) * (q)f1 I(ak eX)*(p)f1 )dw(moq) 

xdw(mk,p) + ~ f (t/lI(a/X)*(q)tp) 

.Q «ai eX(q»*n 1f1 )dw(m;,q) 

+ .f f (t/llak ex(p)'P ) 

xQ(f1 I(a k eX(p»*.a)dw(mk,p)· 
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Note that the first term, bilinear in (a ex)*, is the one that 
appears in the case of an unbroken symmetry. The additional 
terms, linear in ae

" (aeX)* are the ones responsible for the 
spontaneous symmetry breakdown. 

Proof By the discussion before Lemma 7.1, 

Q(tPlcp)= lim Q(tP(t)lcp(t» 
t • -.t. ex 

= lim lim (tP(t) I Q,.cp (t» 
{ • _t 'X! r ·oc 

=, ~i~~ rli~J (tP(t)ljO(x,x)cp(t» 

X tJr(x)rt(xO)d 4X . 

Following Araki and Haag,' the expansion of the integrand 
in truncated vacuum expectation values yields five types of 
expressions: 

(i) <l>T'{I II < ... >T}, 

(ii) <lB/'l,(gk,(t»T{I II< .. ·>T}, 

(iii) <(B",(J;,t »*jo>T.{ I II<-··>T}, 

(iv) «Bv,(J;,t »*jaB1I, (gk,t »T.{ I I1< ... >T} , 

(v) (~I(Bvl(fi,t»%S~lB/'l,(gs,t) f{I II< .. ·>T} , 

with at least two factors either before or after j 0. (i) is zero by 
(jS), and the limit, as r-+aJ, of (v) vanishes in the limit t-+aJ 

by Lemma 3.1. The first factors in (ii), (iii), and (v) are all 
time independent and thus given by 

<l(a,,:x(gk»*>T, <a ",ex(li>.l>T, 

<a",ex(7)l(a
"

, eX(gk »*> 7', (3.19) 

where the superscript T can be dropped: The expansion of 
the truncated vacuum expectation values in untruncated 
ones always contains a factor (fl la eXfl) = O. The brackets 
\ ... J in (ii), (iii), and (iv) are independent of the integration 
variable x and thus independent of r. Integrating (3.19) 
yields in the limit r-+ aJ, 

Q(fl I(all,"'(gk»*fl), Q«a",ex(7»*fl Ifl), 

'" Q «av , exu; »* fl I (all, eX(gk »* fl), 

where the limits exist by Lemma 2.5 since (a v, (7»* fl 
- B

"
, (J; ,t)fl is in P QL fl. The t-dependent brackets \ ... J in 

(ii), (iii), and (iv) are, in the limit t-+ ± aJ ,just expansions in 
truncated vacuum expectation values of (tPlCPk ),(tP; Icp), 
(tP; Icpd where CPk> resp. tP;, is obtained from q?, resp. tP, by 
deleting (all,ex(gd)* resp. (a,,;CX(7»*. Note that, e.g., 

q?k = Ek all, eX(gk )q?, 

with Ek = ± 1 depending on the number ofanticommuta
tions required by (3.6) (recall that thegk have disjoint sup
port and are normalized), and similarly for tP;. Hence the 
brackets converge to 

Ek (tPla'l, eX(gk)cp), E; (,pI (a",VX(D)*cp ), 
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But 

I Ek (tPia/'l, eX(gk)cp ).Q (fl I (aI" eX(gk »*fl) 
k 

= ~ f (t/lia/X(q)q? )·Q(fl I(a/X(q»*fl)dw (m/>q) 

by (3.6), and similarly for the other terms. 0 
Note that, by previous results, (3.18) remains true if cp = fl 
or tP = fl. 

Thus, Q is a sum of a term bilinear in creation and anni
hilation operators and two linear terms; hence Q is zero be
tween states of D ex whose particle number differs by more 
than one. If the symmetry is not spontaneously broken, the 
linear terms are absen~y Lemma 2.4 and Q commutes with 
the number operator N(in the sense of forms) i.e., 

(3.20) 

This coincides with the results of Ref. 2. The converse is also 
true under additional assumptions; (3.20) implies that the 
linear terms in (3.18) are absent for all q?,I/JED e"ufl. Choose 
,p = (a"vx(g»*fl, q? = fl to obtain 

r-- '"" 00 

where ¢/x are the free asymptotic fields constructed from 
a/x. Assume asymptotic completeness and the existence of 
interpolating fields so that 

r • 00 

Takeg real: 

lim(fl 1 [Q,.,¢v(g)]fl) = 2i 1m lim (fl IQ,,¢,,(g)fl) = 0, 

where "1m" denotes the imaginary part. Thus, (1.14) holds 
for ¢" and hence for PSL ' In short, the symmetry is unbro
ken ifand only ifit does not change the particle number, and 
it is spontaneously broken if and only ifit has a non vanishing 
component changing the particle number by one. 

Note further that the integral kernels in (3.18) depend 
only on one-particle states which are the same for "in" and 
"out" labels. Hence, Q commutes with the S matrix: 

3.3 Theorem: For ¢illEf) in,q?0utEf) out such that 
S * tfJ!lEf) ou"Scp outEf) in, 

Q (¢in IScp out) = Q (S *,pin Iq? out). (3.21) 

Proof By the unitary of the S matrix 

(tfJllISa~utq? out) = (S *tfJllla~utq?0ut), 

and similarly for the other scalar products in (3.18). Multi
ply with the "ex" -independent kernels Q and integrate to 
obtain (3.21).0 

4. CONCLUSIONS 

The general form of spontaneously broken symmetries 
arising from translationally noncovariant currents in theor-
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ies with mass gap has been determined. The symmetry gen
erator exists as a form on a dense set of asymptotic states. 
commutes with the S matrix. and has the form given by 
Theorem 3.2. The results are incomplete in several respects: 
No conclusions can be drawn from them for spontaneous 
symmetry breaking in the case of no mass gap nor in the case 
of covariant currents (for which Goldstone's theorem then 
precludes the existence of a mass gap). Furthermore. restric
tions on the integral kernels in Theorem 3.2 must be expect
ed to be similar to those obtained in Ref. 3. However. for the 
present case it is not trivial to determine under what condi
tions [Q.c,bvex(x)] [where c,byeXCx) is the free field constructed 
from ayex

]. is localized in x. For the examples of free fields in 
the Introduction this is certaintly true so that. by the meth
ods of Ref. 3. Q is a superposition of examples (2') (with more 
general polynomials) and (4'). 
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APPENDIX 

The purpose of this Appendix is to prove Lemma 3.1. It 
will be convenient to introduce. along with the given current 
J!'(x) = /'(x,x). the related current density 

Jj(Y.x): = J l'(Y.x + z}f(z)d 4Z. (AI) 

wherefEY(R 4) is real. ThenJj(Y.x) satisfies (jO)-(jS). giving 
rise to operators Q{ and the sesquilinear form QJ. Also: 

lj(x): = Jj(x,x) = J /'(x,p)eiPY(p) dp. (A2) 

wherej,u(x,p) denotes the Fourier transform ofl'(x,z) in z. 
The first step will be to prove Lemma 3.1 for QJ. 

A I. Lemma: SupposecpED. ex,t{!EDn e. are approximated 
by vectors cp (t). ¢(t) of the form (3.3). and assume 1;;;.2 or 
n;;;.2. Then there is a Y(R 4)-norm II 11,.s such that for all N 
andfEY(JR4

) 

I!QJ(¢(t)lcp(t»J T I<CN(1 + It 1)-Nlllll,.s' (A3) 

This lemma is a slightly generalized version of Lemma 7.1 in 
Ref. 3; thel-dependence in the estimate is now explicit. The 
proof will follow along the lines in Ref. 3 and requires some 
preliminary lemmas. 

Assume the vectors cp (t) and ¢(t) to be of the form 

cp (t): = f 4' (a1' .... a,./:v; (a •• /)· '" -J;(a,./)d 3a• · .. d 30 , n. 

¢(/): = f 1/1 (a, + ...... a, + n.t )f; + • (a, + •• t ) .... 

(A4) 
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where 

cP (a ...... a,./): = B. (a •• f) .... . B,(a,.t). 

1/1 (a, + • , .... a, + n.t): = B, + • (a, + •• t)· ... . B,+ n (a,+ •• t). 

(AS) 

with B;El' QL' Consider the truncated vacuum expectation 
value 

W,(a ...... a, +n;x,p): = < If/. jO(x.p)cP ) T (A6) 

and note that 

= f W,(a ...... I1,+ n;x,p)eiP"'i(p)1](xO)dpd 4x (A7) 

is related to f QJ(¢(t )Icp (t» J Tby 

! QJ(¢(t )Icp (t» J T 

= J W,(a ...... a,+n;J);~/;(a;.t)d3a •... d3a,+n.(A8) 

wheref are the smooth solutions of Klein-Gordon equa
tions from (A4). Thus. the study of f QJl T is reduced to W, 
and to W,; the latter will turn out to be a test function from 
Y in some variables and a tempered distribution in others. 
Such objects obey the following estimate: 

A 2. Lemma: For T(X,Y)EY(JR4)® Y'(R'). thereisaY
norm 1111,.s such that for all n andfEY(R~. 

I T(x,f) I <Cn(1 + Ix I
2
)-nllfll,.s' (A9) 

where Cn does not depend on x and! 
Proof Since TEY(Rk) ® Y'(JR'). 

I T(x,f) I <Cx II 111"s' 

I T(x,f) I <C;(l + IxI 2)-n. 

Fix a positive integer n. By (AlO) 

SAf): = (1 + IxI2)"T(x,f) 

(AlO) 

(All) 

is. for fixed x. a continuous functional on Y(R~. By (All). 
the family offunctionals !Sx IXE(Rk J is pointwise bounded: 

IS .. (f) 1< CJ . 

The uniform boundedness principle for the Frechet space 
Y(R ~ now implies (Ref. 8, p. 172) 

ISx(f)I<C (AI2) 

with Cindependent ofx andfiffvaries over a bounded set in 
Y(R~. say over the boun~ed set! fEY(JR ')III1Jlr,r < II. 
Replacefbyf(lIfll",.)-1 10 (AI2) to get (A9). 0 

"'-
The last lemma implies the following estimate on W,. 

A 3, Lemma: There is a Y(R 4)-norm II 1I"s such that, 
for all N, 

A __ 

IW,(a l ... ,.a'+n;!)I<Cn llfll"s(1 + Itl)k(1 + la,,2/ 
'+ n - I 

X II (1+la;-Il;+.1 2)-N.(AI3) 
i= ) 

Proof Translation covariance and current conservation 
imply 

W,(a., .. ,.al+n;J)= Wo(a .... ,.a'+n;J;) (AI4) 

W.D. Garber 2603 



                                                                                                                                    

with 

l(p): = eiPo'J(p). 

To bound Wo , use (A7) and note that Wo(a l , ... ,al + n ;x,p)isa 
test function from Y in the difference variables 

and a tempered distribution in x and p. By Lemma A2, 

I Wo(a l , .•. ,a/+ n;x,g(xO,p)1 

<CNlIgllr',s' n (1 + la, - ai + 112)- N 

cr l 

X (1 + la/-xI2)-N(1 + Ix-a/1
2)-N. (AlS) 

Now choose 

g(XD,p): = exp [ipO(xo + t) ]exp( - ipb17(p)7](xO
) 

(AI6) 

for some bER 3 so that 

IIgllr',s' <P (l b l,t)1I fllr,s (AI7) 

for some Y -norm IIl1r.s and some polynomial P of degree K, 
say. Insert (Al6) in (AlS), use (AI7) and put b = x. Inte
grating the resulting inequality over x then proves (AI4), 
since the x integral on the right, 

I: = J (1 + Ix12),1( (1 + )a, - x1 2
) - N 

X(1 + Ix - a,+ 11
2)-Nd 3x, 

can be bounded as follows (a: = a 1 - al + 1 ): 

(AI8) 

I/I<J (1 + ly+a,12)K(1 + lyI2)-N(1 + ly-aI 2)-Nd 3y 

<C/(l + la/1
2)/((1 + la l2l - Nf (1 + lyl2l- Nd Jy 

(AI9) 

where the inequality 

1 + la + bI 2 <2(1 + laI 2
)(1 + Ibn 

has been used for the first factor in (AI9) with a = yand 
b = a l , and for the last two factors with a = y and 
b=a-y.D 

Proofof Lemma A 1: Integrate (AI3) over a l , ... ,al + n 

with smooth Klein-Gordon solutionsJ;(a"t) and use 
Lemma 6.4 of Ref. 3.0 

The next step will be to prove Lemma A 1 with Qf re
placed by Q. Note that by (AI) 

Qf(AflIBa) 

= !i~f (Aa I/'(x,x + z)Ba ){}r(x)7](x°}f(z)d
4
xd 4z 

= !i~f (Aa Il(x - z,x)Ba ){},(x)7](x°}f(z)d
4
xd 4z 

= f Q (A (z)fl IB (z)fl )f(z)d 4Z. (A20) 
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Now consider a 8-sequence in R 4, 

fn (z): = n:t(nz) 

with 

fE!iJ (R4), 0<1< 1, suppfe! ZER41 Iz 1< 1] , 

f f(z)d 4Z = 1. 

Then, by Corollary 2.7 and (A20), 

IQJ;'(A (h)fl IB (g)fl) - Q (A (h)11 IB (g)fl)\ 

(A21) 

<C'· sup ,111hz -h Ik/llgzllk.l + IIh 11k.lllgz -gllul 
IZj~, n 

(A22) 

sInce 

Ilgz Ikl <C (1 + IZ I2)' IIgII/d' I\g - gz Ikt < IzllIglkt + l' 

Substitute cp (t), resp. tf;(t), for A (h ), a, resp, B (g)fl; the 
norms on the right of (A22) then grow polynomially in t so 
that 

IQf.'(tf;(t)lcp(t»-Q(tf;(t)lcp(f»I<Cn 1(1 + Itl)' 
(A23) 

and a similar equation is valid for the corresponding truncat
ed quantities which are finite algebraic combinations of ex
pressions (A23), 

II QJ:,(tf;(t )Icp (t» 1 I 
-IQ(tf;(t)lcp(t»lll<Cn 1(1 + It I)'. 

Finally, by Lemma At, 

I !QJ;,(tf;(t )Icp (t» J T I <CN n2'(1 + It I) - N, 

Combining the last two equations gives 

(A24) 

(A25) 

I!Q (tf;(t)lrp (t»! ['1<Cn - 1(1 + It J)k + CN n21(l + It j) s. 

(A26) 

Fix a positive integer M, choose N = 2(k + M)s + Min 
(A26) and put n = It I (l with a = k + M to get 

11Q(t/J(t)lcp(t»ITI<C.~f(1 + It I) .\1 

which proves Lemma 3.1, 0 
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A recently proposed classification of non-Abelian gauge fields is reexamined and refined to 
accommodate the internal symmetry structure of an arbitrary group. The concept of the 
canonical forms and the canonical frames is introduced and utilized to represent all the 
physically inequivalent realizations for each type of the field strengths. The local stability of the 
classification is shown to be minimal. 

I. INTRODUCTION 

In general relativity the algebraic classification of gravi
tational fields by Petrov' has been useful to provide us a 
deeper insight to the theory of gravitation. Similarly in elec
trodynamics the field strengths can be classified into two 
types: radiative and general. 2 Thus, it is desirable to have a 
reasonable classification of non-Abelian gauge fields to have 
a better insight of the nonlinear feature of non-Abelian gauge 
theory. Recently, the algebraic classification of classical 
non-Abelian gauge fields has been tried by several authors, 3-5 

and an acceptable classification is proposed by Anandan and 
Tod." Unfortunately, this classification is made basically ac
cording to their SL(2,C) configurations of the fields so that, 
as far as the dimension of the internal symmetry group Gis 
no less than three, the classification does not distinguish the 
internal symmetry structure. On the other hand, since differ
ent groups have different algebraic structures, a proper clas
sification should be able to reflect the algebraic structure of 
the internal symmetry group as well. The purpose of this 
paper is to present a general scheme to obtain such a classifi
cation. The idea we adopt here is to classify the fields accord
ing to the little groups of the symmetry groups SL(2,C) and 
G. The general procedure how to realize this idea is present
ed in the following and the groups SU(2) and SU(3) are con
sidered in detail as explicit examples. 

We will start from the SL(2,C) classification" and intro
duce the concept of the canonical form and the canonical 
frame for each different SL(2, C) class. As we will see soon, in 
the canonical forms all the SL(2,C) degrees of freedom are 
removed as far as possible so that basically only the internal 
degrees of freedom are left arbitrary in the canonical frame. 
Then with the help of these canonical forms we will answer 
the question of, given a group G, what are the possible little 
groups for each type of the canonical form, how many 
SL(2,C) ® G inequivalent realizations of a given class are 
possible, and how one can realize them all in a systematic 
way. This leads us to a natural classification of the gauge 
fields which is free of the undesirable feature that the existing 
SL(2, C) classification has. 

The paper is organized as follows: In Sec. II the SL(2,C) 
classification" is briefly reviewed for later convenience. In 
Sec. III we introduce the canonical form and the corre
sponding canonical frame for each of the five different 
SL(2,C) types of the gauge field strengths in spinor formal-

ism. In Sec. IV the classification is refined according to the 
possible little groups of the field configurations under the 
internal symmetry group G. With the help of the canonical 
forms we also present a systematic way how to find out the 
number of all the physically inequivalent realizations of a 
given type, and how to construct them all. As explicit exam
ples the groups SU(2) and SU(3) are examined in detail. Nat
urally, one obtains richer structure as the group G gets larg
er. However, already at the level ofSU(2) the refinement is 
possible which enables us to separate the purely non-Abelian 
configurations from the SU(2) embeddings of the Abelian 
types. This way we will see that the simplest non-Abelian 
configuration is the dual type which has the local dual sym
metry as a gauge symmetry. In the last section comments are 
made on various aspects, in particular on the local stability 
of the classification. We argue that the classification has a 
"minimal" local stability. Also, the generalization of the 
classification to the coupled Einstein-Yang-Mills system is 
briefly discussed. 

II. SL(2,C) CLASSIFICATION: A BRIEF REVIEW 

Non-Abelian gauge fields of any group G (of dimension 
no smaller than three may be classified into five major types 
according to their SL(2,C) configurations.6 For the notation
al convenience we will briefly review the classification in this 
section. 

First, as a preliminary remark remember that in 
SL(2,C) spinor formalism any real antisymmetric tensor F;,v 
(fl, v = 0,1,2,3) can be specified by a symmetric bispinor r/> AB 

(A,B = 1,2) and vice versa. The relation between FI"., F:v 
and r/> AB can be given by 

A. _ 1 /1 vCF 
'l'AB - :if'cA(7B /1'" 

FI". = 2 Re(7:c(7,~Br/>AB' 

F:" = 2 Im(7:c(7,~Br/>AB' 

where 

(J' being the Pauli matrices. 

(1) 

(2) 

Now, for any given group G of dimension n, the gauge 
field strengths FI". in terms of the symmetric bispinors c!> AB 
can be written as 

(3) 
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where 

4> = 4> AB 13 Af3 B, 

X = 4>ABa Aa B, 

S = - 24>AB a Af3 8, 

a A and 13 A are an SL(2,C) orthonormal spinor basis, 

a A 13 A = 1, 

and 

a(A f3B) = !(aA f3B + a B f3A)' 

Clearly, 4>, X, and S form adjoint representations of the sym
metry group G. Furthermore, for each component i 
(i = 1,2, ... ,n), ¢ i,Xi,S i forms a (1,0) spinor representation of 
SL(2,C). In fact, one can easily derive the transformation 
laws of 4>, X· and S explicitly under a change of the SL(2,C) 
basis a A andf3A' Under the SL(2,C) transformation 

the form invariance of the field strengths 

4>AB = 4>aAa B + xfJA f3B + sa(A f3B) 

= 4>'a~aH + X '13 ~ 13 H + s'aCA 13 H) 

requires us to have 

(4)') ( d

2 

X' - b 2 

s' - 2bd 

-cd X4» 
-ab X· 

ad + be S 
Now consider the 3 X n matrix ifJ: 

(4) 

(5) 

(6) 

(7) 

and the n X n matrix L whose components L ij are given by 

L ij = ¢ ~B¢ ~A 
= _1(Fi Fj!-,v+iF*i Fj!-,V\ 

'4 fLV J.I-"} 

= !SiS j - (¢ iXj + ¢ jXi). (8) 

Clearly, the ranks of these matrices ifJ andL are SL(2,C) ® G 
invariant. Thus, one can classify the gauge fields 4> AB into the 
following five types according to the ranks of cP and L: 

(a) type I; rank l/J = 1, rank L = 0; 

(b) type II; rank l/J = 1, rank L = 1; 

(c) type III; rank l/J = 2, rank L = 1; 

(d) type IV; rank cP = 2, rank L = 2; 

(e) type V; rank cP = 3, rank L = 3. 

Here we have excluded the trivial case 4> AB = O. The fact that 
there exist no other types can easily be proved,6 which will 
not be reconfirmed here. 

III. CANONICAL FORMS 

Now we will introduce the concept of the canonical 
forms and the canonical frames for the above five types of the 
fields. In the canonical frames all the SL(2,C) degrees of 
freedom of the corresponding field configurations are re
moved as far as possible so that only the internal degrees of 
freedom are left arbitrary. As we will see later the canonical 
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forms and the corresponding canonical frames turn out to be 
extremely useful when we consider the SL(2,C) ® G inequi
valent realizations of a given class of the fields. 

Let us show that each of the five types described above 
can be put into the corresponding canonical form which we 
specify in the following: 

(a) type V; rank l/J = 3, rank L = 3: In this case the 
canonical form can be chosen as 

(9a) 

a A 13 A = I, 

where 4>, X, and S are linearly independent (under complex 
coefficients). Our choice ofthe form (9a) is obvious. The fact 
that rank cP = 3 guarantees that rank L = 3. Notice, howev
er, that as it stands the form (9a) does not specify the SL(2,C) 
basis so that the full six degrees of freedom are still left arbi
trary there. One can remove this arbitrariness by imposing 
any six mutually independent and G-invariant constraints 
on 4>, X, and S as far as possible. However, if the multiplets 
satisfy? 

4>2 =0, X =4>* 

(9b) 

one may not always be able to fix all the SL(2,C) degrees of 
freedom by G-invariant constraints. This can actually hap
pen when the form (9a) admits a little group of the mixed 
type, namely, a little group consisting of a simultaneous 
SL(2,C) and the internal group transformations. s We will 
analyze this possibility case by case when we consider the 
internal structure in the following section. With this excep
tion all the SL(2,C) degrees offreedom can be fixed com
pletely in the canonical frame. 

(b) Type IV; rank l/J = 2, rank L = 2: In this case one 
can always choose 

4>AB = 4>aAa B + xfJA f3B' a A 13 A = 1. (lOa) 

Here, of course, 4> and X are linearly independent. The 
SL(2,C) degrees offreedom can be fixed completely by G
invariant constraints except when 

(lab) 

For example, if 4>\t::O (or X2*O). the SL(2,C) degrees of 
freedom can be fixed completely by requiring 

4>2 = 1 (or X2 = 1). (lOc) 

If the condition (lOb) is satisfied. however, the SL(2,C) de
grees of freedom may not always be fixed completely in the 
canonical frame. and the form (lOa) may admit a little group 
of the mixed type as we will see in the following section. 

Let us prove the statement. Clearly, if 4> AB is given by 
Eq. (10a), one has rank l/J = rank L = 2. To show that the 
inverse is also true, or to show that one can always choose the 
form (10a) whenever rank cP = rank L = 2, let us write 4> AB 
in its most general form (3): 

4>AB = 4>aAa B + xfJA f3B + Sa(A f3B)' a A 13 A = 1. 

Now, since rank cP = 2 by assumption, one must have 

(11) 

for some complex x, y, and z, not all of which vanish. Obvi-
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ously, there are two possibilities, either Z=FO or else z = O. 
Consider the case Z=FO first. Then 

~= - ~~- ~X' 
z z 

This implies that ~ and X must be linearly independent. 
Then notice that the n X n matrix L is given by 

L 
ij 1 x2 

A. iA. j 1 y2 i j 
=--'1-''1-' +--XX 

2 Z2 2 Z2 

Writing 

~= 

one can easily show that the determinant of the 2X 2 subma
trix L2 made of p,q and s,t components is given by 

detL2 = - (1 - xyjz2)(pt - qS)2. 

Since one may assume (remember that ~ and X are linearly 
independent by assumption) that 

pt - qS=FO, 

the condition that rank L = 2 requires us to have 

Z2 - xY=FO (12a) 

whenz=FO. 
Next, consider the other case z = O. Then the condition 

(11) reduces to 

x~ +YX =0, 

where not both of x and y vanish. Without loss of generality 
one may further assume that Y=FO, or 

X= - ~~ 
y 

in which case one has 

L ij = !t it j - 2 ~ ¢J i¢J j. 

Y 
Then, with 

~= ~= 

one can show that the determinant of the 2X 2 submatrixL2 

made of p,q and s,t components is 

detL2 = - ~ (pt - qS)2. 
Y 

Thus, when z = 0, the condition that rank L = 2 requires us 
to have 

xy=FO. (12b) 

In short, one has rank L = 2 if and only if 
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or 

Z2 -xy = 1 (12') 

by choosing a proper normalization. Then it is easy to see 
that one can always find an SL(2,C) transformation (6) in 
which one has 

s' = - 2bd~ - 2aex + (ad + be)S 

=0. (13) 

This is so since given x, y, and z there always exist a, b, e, and 
d which satisfy 

with 

X= -2bd, 

y = - 2ae, 

z = ad + be, 

Z2 - xy = (ad - be)2 = 1. 

This completes the proof that whenever rank tP 
= rank L = 2 one can always choose the form (lOa). 

Notice, however, that the condition (13) determines 
only four prameters ofSL(2,C) so that there still remain two 
parameter degrees of freedom in (lOa). This can easily be 
seen by noticing that the form in variance ofEq. (lOa), i.e., 

~AR = ~aAaR + xfJA f3R 

= ~'a~a~ + X '13 ~ f3~, (14) 

allows the following SL(2,C) degrees offreedom: 

(15a) 

or 

(15b) 

which together form a two parameter subgroup ofSL(2,C). 
Clearly, one can remove these degrees offreedom by impos
ing the constraint (lOc) or similar ones, except when Eq. 
(lOb) is satisfied. With this exception all the SL(2,C) degrees 
of freedom can be fixed in the canonical frame. 

(c) Type III; rank tP = 2, rank L = 1: In this case one 
can always choose the following canonical form: 

~AB = ~aAaB + Sa(.1 f3R), a A 13.1 = 1. (16a) 

Here again ~ and S are linearly independent. The SL(2,C) 
degrees of freedom can be fixed completely in the canonical 
frame by imposing G-invariant constraints on ~ and S except 
when 

~2 = 0, ~*X~=FO, ~X(~*X~) = O. (16b) 
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TABLE I. The SL(2,C) classification of non-Abelian gauge fields, and their canonical forms. The Ifl, X, and ~ are linearly independent and the spinor basis is 
orthonormal. The local stability of the classification is indicated by the arrows, against which it is stable. 

Rank l/J 
RankL 0 2 3 

o 

2 

3 

o .. I 

III 

t 
IV~V 

For example, when cJI2s2:;i=(cJI'sf, one may require 

cJI2 = 1, cJI·S = ° (if s2:;i=0), (16c) 

cJI2 = 0, cJI·s = 1 (if S2 = 0) 
to fix the SL(2,C) degrees of freedom completely. 

The proofthat one can always choose the form (16a) is 
simple. From the preceding argument to obtain the canoni
cal form (10) one finds that the condition that rank <P = 2 
and rank L = 1 requires 

~ - xy = 0. (17) 

Then one can easily convince oneself that there always exists 
an SL(2,C) transformation (6) in which one has 

X' = b 2cJ1 + a2X - abt 
= 0. (18) 

Hence, one is led to the form (16a). Notice, however, that the 
condition (18) removes only two SL(2,C) degrees offree
dom. The remaining four degrees offreedom can be fixed by 
imposing G invariant constraints like Eq. (16c) except when 
Eq. (16b) is satisfied. Again, barring the exceptional case, all 
the SL(2,C) degrees of freedom can be fixed in the canonical 
frame. 

(d) Type II; rank <P = 1, rank L = 1: In this case the 
canonical form is given by 

cJIAB = SarA fJB» aA fJ A = 1, (19) 

with no constraint on S. The fact that the above canonical 
form exists comes from the fact that when rank <P = 1 the 
system reduces essentially (although not exactly) to Abelian 
configurations as far as the SL(2,C) structure is concerned. 
As in the Abelian case the canonical form (19) fixes four 
SL(2,C) degrees of freedom. The remaining two degrees of 
freedom cannot be fixed by any G-invariant constraint on S 
since the form invariance of (19) allows the following 
SL(2,C) degrees offreedom: 

(i) (a~)=(a ~XaA) s'=s 
fJ ~ ° - fJA ' a 

(20a) 

or 

(ii) (;~)~(~, J;:). (20b) 

which together form a two parameter little group B2 of 
SL(2,C) of the canonical form (19). 
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SL(2,C) 
type canonical from IflAB 

II 
III 
IV 

V 

lflaAa H 

~a(A PH) 

Ifla,a n + ~a(A PH) 

Ifla,a" + XPA PH 

lflaAaH + XPA PH + ~a(A PI!) 

(e) Type I; rank <P = 1, rank L = 0: Clearly, one can 
choose 

cJIAB = cJIaAaB· (21a) 

Again, as in the Abelian case, the form (21a) fixes two 
SL(2,C) degrees of freedom. One can remove two more by 
imposing G-invariant constraints on cJI except the case 

cJI2 = 0, cJI*xcJI:;i=O. 
For example, if cJI2=;t=0 the constraint 

cJI2 = 1 

(21b) 

(2Ic) 

can fix two more parameters ofSL(2,C) in the canonical 
frame. However, there always remains the following two pa
rameter SL(2,C) little groupA2 ofEq. (21): 

(22) 

When the condition (21b) is satisfied, the form (21a) may 
admit a little group of the mixed type. 

This completes our introduction of the canonical forms 
and the canonical frames. The results are summarized in 
Table I. 

I~INTERNALSTRUCTURE 

In the above we have examined in detail the SL(2,C) 
structure of the fields. Now we turn to the internal symmetry 
structure and ask that, given a group G, how many algebra
ically different G structures are possible for each of the above 
five types, how many SL(2,C) ® G inequivalent realizations 
are allowed, and how one can construct them all in a system
atic way. To answer the first question, however, one has to 
first decide what one means by the algebraically different G 
structures since, as will become clear, there are in general 
infinitely many SL(2,C) ® G inequivalent realizations of the 
fields for each of the above five types. We find it natural to 
distinguish two field configurations when they have differ
ent little groups of G. So we will call two configurations 
algebraically different when they admit different little 
groups of G. This convention has a merit of providing us a 
natural way to figure out the unbroken symmetry structure 
of a given configuration or the way how a symmetry is em
bedded into a larger one. 

With this convention we can now answer the questions 
raised above completely. The general way to proceed to an
swer the questions is clear. First, remove all the SL(2,C) 
degrees offreedom as far as possible by choosing the canoni-
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cal frame. Then find out all the possible little groups of G 
allowed by the configuration of cj., X, and ~. For this the fact 
that in the canonical frame cj., X, and ~ can be considered as 
SL(2,C) scalars barring the few exceptional cases will be ex
tremely helpful. We will nOw apply this procedure to the 
groups SU(2) and SU(3) as explicit examples. 

A. SU(2) 

Obviously only one nontrivial little group H is possible, 
which is U(1). Let us consider the five different types 
separately. 

1. Type! 

Remember that this type admits a two parameter little 
group A2 [i.e., Eq. (22)] ofSL(2,C). Writing 

cj. = cj.1 + icj.2 (cj.I,cj.l real), 

one can always find a canonical frame in which 

cj.~ - cj.~ = I (or 0), 

cj.1·cj.2 = o. 

(23) 

(2Ib') 

Notice that the real and the imaginary components of cj. can 
always be made orthogonal in the canonical frame. Now, 
there are the following two possibilities: 

(a) II ; H = U(1): In the canonical frame this is possible 
only if cj. is real (i.e., cj.2 = 0). Furthermore, due to the SU(2) 
degrees of freedom one can always choose 

(24) 

Thus, there exist only one SL(2,C) ® G inequivalent realiza
tion of this type. Obviously, this is the Abelian subclass em
bedded in SU(2). 

(b) 12 ; H is trivial: In this case one can always put 

+ ~ ( !~.,). .; -.l ~ I (0< 0) (25) 

so that 

(25/) 

where 

Clearly, all possible SL(2,C) ® G inequivalent realizations of 
this type form a one-dimensional manifold R I. 

This class deserves to be noted in two respects. First, 
this is the simplest possible non-Abelian configuration. Sec
ond, the two non vanishing components ofFlLv are dual to 
each other up to a scalar factor so that when cj.2 = 0 the 
configuration has the following local dual symmetry: 

( F~v) (cose 
F ,;;' - - sinO 

Sine)( FILv) , 
cose F!v (26) 
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not only as an SU(2) but also as an SL(2,C) transformation. 
This means that this configuration admits a little group U(l) 
ofthe mixed type. Notice that this is indeed the exceptional 
case (21 b). Since three parameters of SL(2, C) (including the 
two parameters of the little group A 2) cannot be fixed in the 
canonical frame there exists only one SL(2,C) ® G inequiva
lent realization of this exceptional case. 

2. Type 1/ 

This type also allows a two parameter little group B2 
[i.e., Eq. (20)] ofSL(2,C). Fortheintemal symmetry one still 
finds two possibilities: 

(a) III; H = U(I): Since we have no constraint on ~, the 
possible SL(2,C) ® G inequivalent realizations form a two
dimensional manifold R 2. Clearly, this is the embedding of 
the Abelian nonradiative configurations into SU(2). 

(b) 112 ; H is trivial: In this case one can use the full 
SU(2) degrees of freedom to remove three out of six param
eters of~, so that the SL(2,C) ® G inequivalent realizations 
form an R 3. 

3. Type 11/ 

Remember that this type breaks SL(2,C) completely. 
Furthermore, due to the linear independence of cj. and ~, 
there can be no nontrivial little group ofSU(2). In short, 
both SL(2,C) and G are completely broken in this case. 
Among the 12 parameters of cj. and ~, seven can be fixed by 
the three SU(2) degrees of freedom and four SL(2,C) con
straints like Eq. (16c). Thus, the SL(2,C) ® G inequivalent 
realizations form an R 5. However, if Eq. (16b) is satisfied, 
there remains one parameter ofSL(2,C) which cannot be 
fixed by a G-inequivalent constraint in the canonical frame. 
In this case one can always put 

cj.=e, +iez, s=peiuel xe2 , 

ei = e~ = 1, el ·e2 = 0, (27) 

by a proper choice of an SL(2,C) basis. Clearly, the canonical 
form admits a little group U(l) of the mixed type, and the 
SL(2,C) ® G inequivalent realizations are reduced to an R 2. 

4. Type/V 

Again both SL(2,C) and G are totally broken. Two 
SL(2,C) constraints like Eq. (lOc) and three SU(2) degrees of 
freedom can be used to remove five parameters of cj. and X, so 
that the SL(2,C) ® G inequivalent realizations form an R 7. 

When cj. and X satisfy Eq. (lOb), however, they can be 
brought into the form 

cj. = p _ ei(a/2)(e, + ie
2

), 

Y2 
(28) 

x = V2 ei
(aI2)(e l - ie2 ) 

by a proper choice of an SL(2, C) basis. Here again the 
SL(2,C) degrees offreedom cannot be fixed completely in the 
canonical frame since Eq. (28) admits a little group U(l) of 
the mixed type. The SL(2,C) ® G inequivalent realizations 
are then reduced to an R 2. 
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TABLE II. The SL(2,C) ® SU(2) classification. 

Little group Number of algebraically 
Type SL(2,C) SU(2) inequivalent realizations Remarks 

II A, U(I) 
I, A, I RI 

II, B, U(I) R' 
II, B2 I RJ 

III R' 

IV R' 

V R' 

5. Type V 

Obviously, the full nine SL(2,C) ® G degrees offreedom 
can be used to remove the superficial degrees in cl», X, and ~, 
so that the physically inequivalent realizations form an R 9. 

If the multiplets cl», X, and ~ satisfy Eq. (9b), however, not all 
the SL(2,C) degrees offreedom can be fixed in the canonical 
frame. In fact, ifEq. (9b) is satisfied, one may put 

(29) 

S =p'ei(a'l2)e, Xe
2

, 

so that the canonical form admits a little group U(l) of the 
mixed type. Thus, the SL(2,C) ® G inequivalent realizations 
are reduced to an R 4. In a more special case when 

s = i cl»xx 
Vcl»'X 

(30) 

is satisfied, one has p' = p and a' = a so that the canonical 
form admits a little group SU(2) of the mixed type [i.e., a 
mixture of two SU(2) subgroups ofSL(2,C) and SU(2)]. This 
means that in this case three parameters ofSL(2,C) are left 
arbitrary in the canonical frame. Then the SL(2,C) ® G ine
quivalent realizations are further reduced to an R 2. 

This completes the classification for SU(2). The results 
are summarized in Table II. 

B. SU(3) 

In this case three nontrivial little groups of G, i.e., 
SU(2) ® U(1), U(1) ® U(1), and U(l), are possible. Naturally 
one expects a richer structure here. Since the SL(2,C) struc
ture will remain the same as before, we will concentrate on 
the G structure. 

1. Type f 

(a) I,; H = SU(2) ® U(1): Obviously this is an Abelian 
subclass. Again, due to the constraint (2Ic), any realizations 
of this type are equivalent to each other. Notice, however, 
that this is not the SU(3) embedding of the SU(2) Abelian 
subclass, which must necessarily have U(l) ® U(l) as its lit
tle group. The reason why one can get different Abelian em-
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Abelian 
SU(2) (dual) 

Abelian 
SU(2) 

SU(2) 

SU(2) 

SU(2) 

beddings in this case is, of course, due to the fact that SU(3) 
has rank two. 

(b) 12 ; H = U(l) ® U(1): In this case one can always put 

¢i=o~(a+i{3)+o~(r-iO) (a,{3,r,o real), (31) 

with 

a{3 = ro, 

a 2 + r - ({3 2 + ( 2
) = 1 (or 0), 

so that the SL(2,C) ® G inequivalent realizations form an 
R 2. Notice that this class includes the SU(3) embedding of 
the SU(2) Abelian subclass (with {3 = r = 0 = 0), or the 
SU(3) embedding of two Abelian fields (with{3 = 0 = 0). 

(c) I,; H = U(1): In this case only five parameters of cl» 
can be considered G inequivalent, which can further be re
duced to three by two SL(2,C) constraints. Thus, the phys
ically inequivalent realization of this class forms an R '. No
tice that the SU(3) embedding of the corresponding SU(2) 
type 12 belongs to this class. Thus, a little group U(l) of the 
mixed type is possible as the SU(3) embedding of the corre
sponding SU(2) type. However, observe that the condition 
(21 b) does not always guarantee the existence of the little 
groups. 

(d) 14; H is trivial: The full SU(3) degrees of freedom 
and the constraint (21c) can be used to remove the unphysi
cal degrees offreedom. Thus, the SL(2,C) ® G inequivalent 
realizations form an R 6. Notice that the SU(2) type 12 can 
also appear here as a different embedding, namely, the "em
bedding" of SU(2) into the maximal subgroup SO(3) of 
SU(3). This is possible since the field strengths form an ad
joint representation. 

2. Type ff 

Again there exist four different classes II, , 112 , II" and 
114 with the little groups SU(2) ® U(l), U(1) ® U(1), U(l), 
and trivial, respectively. The SL(2,C) ® G inequivalent real
izations form the manifold of R 2, R 4, R S, and R 8, respec
tively. Notice that one cannot obtain the class III from any 
SU(3) embedding of the corresponding SU(2) types. 

3. Type /If 

In this case the little group SU(2) ® U(1) is forbidden 
due to the linear independence of cl» and S, so that there are 
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three subclasses 1111 , 1112, and 1113 with the little group 
U(l) ® U(l), U(l), and trivial, respectively. The physically 
inequivalent realizations form R 4, R 9, R 20, respectively. 
Again, 1111 represents a genuine SU(3) subclass. Also, both 
1112 and 1113 allow the embedding of the SU(2) type III. If 
Eq. (16b) is satisfied, however, one may put 

cI»=e l +ie2 , 

~ = peiael xe2 + p'eia'(el Xe2 )*(el Xe2 ). (32) 

where * is meant to be the symmetric product (the d prod
uct) ofSU(3). Consequently, the canonical form admits a 
little group U(l) of the mixed type, and the physically in
equivalent realizations reduce to an R 4. This is possible in 
both 1112 and 1113, 

4. Type/V 

Again the little group SU(2) ® U(1) is forbidden. The 
three subclasses IV I , IV 2' and IV 3 with the little group 
U(l) ® U(l), U(l), and trivial form R 6, R 11, and R 22, re
spectively. Again IV I forms a genuine SU(3) subclass. Both 
IV2 and IV3 may admit a little group U(l) of the mixed type 
as the SU(3) embedding of the corresponding SU(2) type. 

5. Type V 

In this case two of the little groups SU(2) ® U(l) and 
U ( 1) ® U ( 1) are forbidden. The two subclasses V I and V 2 

with the little groups U(l) and trivial form the SL(2,C) ® G 
inequivalent manifold of R 15 and R 34, respectively. When 
Eq. (9b) is satisfied one may put 

cI» = V2 ei(a12)(e l + ie2 ), 

(33) 

~ =p'ei(a'12)e
l 

Xe2 +p"e i(a"12l(e1 Xe2 )*(el Xe2 )· 

This configuration admits a little group U(l) of the mixed 
type. Then the physically inequivalent realizations are re-

TABLE III. The SL(2,C) ® SU(3) classification. 

duced to an R 6. This is possible in both V I and V 2' If one 
further has Eq. (30), the field configuration admits a little 
group SU(2) ofthe mixed type, and the physically inequiva
lent realizations are further reduced to an R 2. Again this is 
possible in both V I and V 2 • 

This completes our analysis for SU(3). The results are 
summarized in Table III. 

V. DISCUSSIONS 

We have shown a general way how, given an internal 
symmetry group G, one can systematically classify the field 
configurations according to their algebraic structure, and 
how one can find all the SL(2,C) ® G inequivalent realiza
tions of a given class. Although explicit demonstration is 
carried out for the groups SU(2) and SU(3), it is clear that 
the procedure can be applied systematically to any group. To 
carry out the procedure the concept of the canonical form 
and the canonical frame is extremely useful. 

In principle, one can choose a different classification. 8 

However, ours has the merit of showing us most clearly the 
unbroken symmetry structure of a given type of the fields, or 
the embedding structure of a symmetry into a larger one. 

Now we should like to make a few comments on the 
classification. First, the classification has been made accord
ing to the algebraic properties of the field strengths F I'V (or 
cI» AB), and not in terms of the gauge potentials AI" Thus, the 
differential properties of the potentials (as well as the fields) 
have not been taken into account. So, for example, the ques
tion whether there always exist gauge potentials AI' that 
could yield the field strengths of any given class considered 
above in afinite region of space-time has yet to be answered. 
Here the situation is similar to the Petrov classification of the 
gravitational fields, where the classification is made in terms 
of the curvature tensor, not in terms of the metric tensor. 

Next, the above classification is local in the sense that it 
applies to each space-time point. Now if a field configura
tion belongs to a given class at a point, one might wonder 
whether this guarantees that the configuration belongs to the 

Little group Number of algebraically 
Type SL(2,C) SU(3) inequivalent realizations Remarks 

I, A, SU(2) ® U(l) Abelian [SU(3)] 
I, A, U(I)®U(l) R' Embedding, SU(3) 
I, A, U(l) RJ Embedding, SU(3) 
I, A, I R' Embedding, SU(3) 

II, B, SU(2) ® U(I) R' Abelian [SU(3)] 
II, B, U(I) ® U(l) R' Embedding, SU(3) 
II, B, U(I) R' Embedding, SU(3) 
II, B, I R' Embedding, SU(3) 

III, U(l) ® U(I) R' SU(3) 
III, U(1) R' Embedding, SU(3) 
III) I R20 Embedding, SU(3) 

IV, U(1)®U(I) R' SU(3) 
IV, U(1) R" Embedding, SU(3) 
IV, I R" Embedding, SU(3) 

V, U(1) R" Embedding, SU(3) 
V, I RJ4 Embedding, SU(3) 
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same class in a certain neighborhood of the point (i.e., the 
question of the local stability of the classification). Unfortu
nately, this will not be the case in general. However, the 
classification does have a local stability in a limited sense. 
This can be explained in the following: If one makes an arbi
trary yet infinitesimally small perturbation of the fields in a 
neighborhood of a point at which they belong to a given 
class, it becomes intuitively clear that one might be able to 
change the class to more complicated ones, but not to 
simpler ones at neighboring points. So, for example, a field 
configuration which belongs to the class IV at the origin 
could belong to the class V at some points contained in an 
arbitrarily small neighborhood of the origin, but there al
ways exists a small neighborhood in which the field configu
ration does not belong to the class II or III. As a consequence 
the class V enjoys the complete local stability. Thus, one 
arrives at a one-way partial (or "minimal") local stability for 
the classification. In Table I the stability is indicated by the 
arrows against which the classification is stable. We leave 
the issue with the remark that the situation on this also re
mains the same as in Petrov classification. 

Finally, it has been known that gauge theory itself can 
be viewed as Einstein's theory of gravitation in a higher di
mensional space9 in which the external four-dimensional 
space-time is unified with the n-dimensional internal space. 
In this unified geometry the internal symmetry group plays 
the role of the isometry group of the unified Riemannian 
space. 10 The resulting Einstein's theory in this higher dimen
sional space becomes the coupled Einstein-Yang-Mills the
ory after projected out to the four-dimensional space-time. 
Thus, one might wonder what kind of classification one 
could obtain for this unified theory. In this case one will have 
simply the direct product of the two classifications, i.e., the 
above classification for the gauge fields and the Petrov Clas
sification for the gravitational fields. The reason that one 
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does not get anything new is clear: First, the presence of the 
gauge fields restricts only the Ricci tensor, but not the Weyl 
tensor which is relevant for the Petrov classification. Then, if 
one assumes the Killing metric for the internal space, the 
Ricci tensor becomes traceless and algebraically trivial. Sec
ondly, the introduction of the space-time curvature (i.e., the 
gravitation) does not affect the local algebraic structure of 
the gauge fields. The generalization of the classification fur
ther to the case in which the internal metric is no more of the 
Killing form but becomes scalar fields9

•
IO can be made 

straightforward. 
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Classical non-Abelian gauge theories in presence of gravitation are reformulated in the language 
of the space of local reference frames. The geometric structure of this space, the transformation 
properties of the fields, and the possibility of introducing a covariant derivative are not assumed a 
priori, as in the usual classical theory, but they are deduced from a Lagrangian form and an 
action principle. Some examples of Lagrangian forms and the related equations of motion for the 
gauge fields and the matter fields are discussed. 

1. INTRODUCTION 

The idea that the space of reference frames plays a more 
fundamental role than the space-time in field theory was 
first considered by Lur~at. 1 This point of view arises in a 
natural way, if one thinks that the components of a tensor 
field are determined when their values at the space-time 
points are assigned with respect to a given local reference 
frame. Furthermore, if the fields are functions defined only 
on the space-time points, the concept of mass becomes more 
important than the concept of spin; on the other hand, it 
seems that there is not a deep reason, on a fundamental level, 
to believe in such a difference between them. These consider
ations led Lur~at to build a quantum field theory on the 
Poincare group. 

In a recent paper, Toller2 developed a general formal
ism for classical field theory, where the fields were defined 
on a ten-dimensional manifold Y, namely the space of all 
the local reference frames; in this work he also succeeded in 
giving some examples of Lagrangian theories describing 
gravitation and electromagnetism. Afterwards Toller and 
Vanz03 considered the classical theory of free fields in this 
new language. 

Recently a theory of gravity and supergravity on the 
Poincare group has been developed by Ne'eman and Regge, 4 

with a different approach. Our aim is to reformulate in the 
formalism of the space of reference frames a classical non
Abelian gauge theory in the presence of matter fields, taking 
into account gravitation. This may be achieved by generaliz
ing the definition of local reference frame; in this way the 
dimension of the manifold Y will become equal to 10 + N, if 
N is the dimension of the gauge group, and the gauge fields 
will be described by N vector fields on Y, corresponding to 
infinitesimal gauge transformations of the first kind in the 
space Y. On the other side, gravitation will be described by 
ten-vector fields corresponding to the other infinitesimal 
transformations of the generalized reference frame. Thus, 
gravitation and gauge fields are unified at a geometrical 
level. 

We recall that this basic idea is not new, but was first 
considered by Kaluza and Klein5 in their five-dimensional 
unified theories of gravitation and electromagnetism, and 
was further extended to the non-Abelian case by several 
authors. 6 

The main difference between these approaches and ours 

is the following: In the formalism of the space of reference 
frames, the structure of the geometry of Y, the transforma
tion properties of the geometric fields and the possibility to 
introduce covariant derivatives are deduced from an action 
principle and a Lagrangian form, while in the above men
tioned treatments they have to be assumed a priori. 

In Sec. 2 we give a brief review of the general formalism, 
Sec. 3 is devoted to the discussion of the Lagrangian form 
describing gravitation and Yang-Mills theories, and finally, 
in Sec. 4, we consider some examples of Lagrangian forms 
for matter fields, and we discuss some aspects of the conser
vation laws. 

2. GENERAL FORMALISM 

In this section we summarize the results given by Toller 
in Ref. 2. The fundamental framework where the physical 
observables are defined is no longer the space-time manifold 
J(, as in the usual theories, but the space Y of all the local 
reference frames. 

We say that a local reference frame is given if we fix the 
origin, the directions of the axis and a choice of N "gauge" 
parameters at the origin; thus we identify Y with a n-dimen
sional differentiable manifold, where n = 10 + N. A map
ping of Y into itself will be called a transformation if it 
determines an equivalence class of transformation proce
dures, in the operational language, 2 that permit the building 
of a new reference frame starting from a preexisting one. 

The infinitesimal transformations will be vector fields 
on Y and we assume that they form an n-dimensional vector 
space Y. Let us denote by [Aa J = [Aa(s) J, sEY, 
a = O, ... ,n - 1 a basis in Y; we shall indicate by La the Lie 
derivative with respect to the vector fieldA a , by ia the corre
sponding inner product operator, and by [wa J the dual basis, 
i.e., the I-forms that satisfy 

The structure coefficients are defined by the equivalent 
relations 

(2.1) 

[La ,LId = La L{3 - L{3La = Fa{3Y Ly , (2.2) 

LawP = - Fa/wY, (2.3) 

dwa = - !F{3yawP 1\ wY. (2.4) 

From the Jacobi identities we get the fundamental relation 

[La F{3yPJa{3y = [Fa{3" F"yPJa{3Y , 
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where! . J apy means cyclic summation over the indices a, p, 
Y and summing over repeated indices is understood. 

The coefficients Fap y determine the geometric structure 
of Y; for this reason they will be called geometric fields; on 
t~e other hand, matter is described by introducing collec
tions of real fields defined on Y. Finally, the particular form 
of geometry, i.e., the equations and the transformation laws 
that the geometric fields must satisfy, as well as the equations 
of motion and transformation laws of the matter fields are 
derived from an action principle2 of the form ' 

o Is A = 0 , (2.5) 

where S is an arbitrary four-dimensional compact submani
fold of Y and A is a differential 4-form, called the Lagran
gian form. 

We will limit ourselves to consider theories where A can 
be written as 

4. =..1''1 +kff 
~ 

1 
= 4! A ':pY6(FILVp)wa /\ uf3/\ mY /\m6 

+ ~! A ~Y6(f,Lpf){j)a /\ uf3/\ mY /\mfi. (2.6) 

We note that A 1 determines the form of the equations of 
motion and the transformation laws of the matter fields, 
while the whole A is needed in order to determine the geome
try of Y. 

If we carry out variations of the fields that vanish on the 
~hole submanifold S, we get the "normal" field equations, 
t.e., 

ma /\ ~ +uf3/\ ~ =0, 
aLp I aLai 

ma /\ ~ +uf3/\ ~ =0. 
aFpyp aFayp 

From the first set of normal equation we get 

a..1 
aLa I = {j)a /\ p, 

where 

(2.7) 

(2.8) 

(2.9) 

Using the second set of normal field equations we see that, 
after some calculations, it is possible to write the variation of 
A ,~ in the simpler form 
£ j '9 ~~B {j 
UI\. 'apy{j{j)a /\ OT /\ {j)Y /\ (j) 

= Gpy{joFapp{j)a /\ uf3/\ mY /\ OJ{j. (2.10) 

Now if we consider variations of the fields that vanish on the 
boundary of S, we have the "tangential field equations" 

a..1 
dp- - =0, 

al 

dYa + Fappuf3/\ Yp + ia..1 ~ = Ta 1, 

where 

Ya = - 12 Gapp uf3/\wP, 
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(2.11) 

(2.12) 

(2.13) 

We recall that T a 1 are nothing but the densities and flows of 
4-momentum, relativistic angular momentum, and charge 
of matter; in argreement with ordinary classical field theory, 
we see that these quantities play the role of sources in Eqs. 
(2.11), determining the geometric fields Fap y. 

As shown by Toller/ the differential3-form 

Ta =dYa =Ta 1 -Fap
puf3/\yp -ia..1;c§ (2.14) 

describe the densities and flows of 4-momentum, relativistic 
angular momentum, and charge of all the geometric and 
matter fields; from Eq. (2.14) we see that Ta are exact differ
ential 3-form (generalized Gauss law). 

As a direct consequence of the tangential field equa
tions (2. 11) we get 

d (dYa) = dT a = 0 , (2.15) 

that is, T a are conserved quantities. 

3. GEOMETRIC FIELDS 

Now we are going to discuss a Lagrangian form describ
ing gravitational and Yang-Mills theories in the presence of 
matter fields. In this section, we focus our attention on the 
geometric part A ;>J of the Lagrangian (2.6), while some La
grangian forms for matter fields will be discussed in the next 
section. 

What we are going to show is the following: Starting 
from a suitable A ;>J and assuming a particular form of the 
matter sources, we shall deduce that 

(i) Every point of Y has an open neighborhood which is 
isomorphic to an open set of the principal fiber bundle of the 
pseudo-orthogonal reference frames of a space-time 
manifold. 

(ii) It is possible to define a covariant derivative. 
(iii) It is possible to determine the transformation prop

erties of the geometric fields with respect to the Lorentz 
group and the internal symmetry group. 

(iv) The theory described by this Lagrangian form is of 
Einstein-Cartan7 and Yang-Mills type. 

When properties (i) and (ii) hold, we say that we have a 
theory with a local space-time interpretation. 

We emphasize that in the usual theories, where the 
fields are functions defined on a space-time manifold, the 
geometric structure of the space-time has to be assumed a 
priori; on the contrary, from the point of view we are consid
ering, they can be derived from a Lagrangian form and an 
action principle. This is a new interesting feature arising 
from the ideas developed by Toller.2 

Now we introduce some conventions and definitions, 
that will be used in thefollowing. The greek indicesa,P, Y,'" 
will take the values 0, 1, ... ,n - 1; the latin indices i,j,k, ... the 
values 0,1,2,3; the latin indices a,b,c,··· will take the values 
4,5, ... ,9; and the capital indicesA,B,C,··· the values 
1O, .... n - 1. 

Further, gik will indicate the Minkowski metric tensor, 
namely 
gOO = 1. gll=g22=g33= -1, gik=O ifi=l=k, 

and Eijrs will be the usual completely antisymmetric Levi-
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Civita symbol normalized to E0123 = 1. Finally, we shall de-
"-

note by Fap Y the structure constants of the Lie algebra of the 
group 9 X G, where 9 is the Poincare group and G is a 
compact semisimple Lie group, the group of internal sym-

'" metry. We recall that the only nonvanishing FapY are 
A. 

FAB D structure constants of G; 

F"b d structure constants of the orthochronous Lorentz 
group; 

F"i k generator of the infinitesimal Lorentz transforma
tions in the 4-vector representation. 

An interesting example of a field theory in the space Y 
oflocal reference frames was given by Toller;2 he derived a 
theory strictly related to Einstein's theory of gravitation and 
Maxwell's theory of electromagnetism, starting from the fol
lowing Lagrangian form: 

A." = ~ F k gir E, F jof 1\ OJf3 1\ OJa 1\ OJS 
4K QI Jkrs af3 

+ ~ F k girE F lOJQ I\OJb l\uI' I\OJq 
4K a/ J'pq bk 

+ _1_ F, IOgirgksF ,IOOJO I\OJII\OJ21\OJ3 
161T Ik n 

_1_ F !O gir gksE F IOOJa 1\ OJf3 1\ uI' 1\ OJq (3 1) 321T Ik rspq af3 , . 

where K is the gravitational constant. 
We see that this Lagrangian is quadratic in all the geo

metric fields Fap Y; thus gravitation and electromagnetism 
would be treated in an homogeneous way. Nevertheless, this 
quadratic Lagrangian is not completely satisfactory, because 
it does not lead to a complete determination of all the geo
metric fields Fa(3 Y. 8 

In order to avoid this difficulty, we shall consider a La
grangian form composed by ? linear term, proposed by Nee
man and Regge,4 which concerns gravitation, and a quadrat
ic term giving Yang-Mills theory, namely, 

HI _ 1 """ k ir a "" a a __ B q 
A. - - Fai g E krpq (Fa(3 - F a (3 )OJ 1\ UT 1\ uI' 1\ OJ 

8K 

+ _1_g F Ag"r-ksF BOJOl\OJII\OJ21\OJ3 
47]2 AB Ik l; rs 

- 8~2 gABFik A Fi' g"-'E ,spq (F a(3 B - F a(3 B) 

·OJa 1\ wf3 1\ uI' 1\ OJ
q

, (3.2) 
I 

where gAB is a nondegenerate invariant quadratic form, i.e., 
with the property 

gABFcD B + gDBFcA B = 0, (3.3) 

and 7] is the Yang-Mills coupling constant. 
Now we are going to derive the equations for the geo

metric fields. If we perform the variation of the Lagrangian 
(3.2), we get 

OA. :·OJa I\OJf3 I\OJ Y I\OJl> a(3y!; 

(3.oj 
<,' 

If the normal equations are satisfied, we can write Eq. (3.4) 
in the form (2.10), namely, 

0..1.:· OJ" 1\ OJf3 1\ OJY 1\ OJO ,,(3),6 

= GpyoOFaf3POJo 1\ OJf3 1\ OJY 1\ OJb; (3.5) 

from Eqs. (3.4) and (3.5) we get the non vanishing compo
nents of Gp),o 

G 3 F k ir G 
apq = - ai g E krpq = - aqp' 

K 

G 3 F B ir ks 
Apq = - 2gAB ik g g Erspq 

7] 

and the conditions 

Fba A = 0, 

From Eqs. (3.6) and (2.12) we find 

y, =0, 

_ 1 F k ir ul'/\ q Yo - - 4K oi g Ekrpq OJ , 

Y _ _1_ F B g'" k.s __ 0 1\ q 
A - 2 gAB ik g ErspqUF OJ, 

47] 

(3.6) 

(3.7) 

(3.8) 

and after some calculations, using Eqs. (2.11) and (3.7), we have 

k 1"'" '" 
'Tt ' = 4K Fam I ~JEijtq { (Fbd a - Fbd a)OJb 1\ OJd 1\ OJ

q + 2Fb/OJb 1\ OJr 1\ OJq + 2FbB uOJb 1\ OJB 1\ OJq + 2F,B aOJ' 1\ OJB 1\ OJq 

+ F aOJA I\OJB I\OJq } + ~ { _ F.iF U gjk + 1.0 kF.iF. agj'Ju 
AB K OJ It "2 t aJ ,,. k 

(3.9) 

(3.9') 
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7A // = 4~2 gAB gir gk'[ CrvpqLbFik B - 2CrstqFik BFb/ Jul A uI' Awq + 4~2 (!rspq gir gks[gADLBFik D + Fik EFAB DgDE J 

Xw B Aui' Awq + ~g gjm f gikL pB _ gikF,BF r _ ginpBF k!(T 
2 AB t m lJ IJ mr IJ mn S k 

1] 

+ fAA" + FAB awB A Ya , (3.9") 

where (Tk is the differential 3-form given by 

(Tk = t;Ekijmwi Aw j Awm. 

We see that Eqs. (3.9) are very complicated, which have to be satisfied by a set of differential 3-forms. 

Nevertheless, if we assume the local form of the sources, 
namely, if they are of the type 

(3.10) 

the system (3.9) can be strongly simplified. 
With this assumption we can derive from Eqs. (3.9) oth

er constraints on the geometric fields, i.e., 

FaAi= 0, 
(3.11 ) 

FaA a =0, 

From Eqs. (3.11) we get 

(3.11 ') 

these conditions tell us that the (N + 6)-dimensional distri
bution S Hspan (Aa,A B) is involutive; then, from the well 
known Frobenius theorem/ it follows that there is a local 
system of coordinates (xo"",x9 + N) atsEJi", such that the set 
of coordinates (X4 "",X9 + N) defines the (N + 6)-dimension
al integral manifold of the distribution. The remaining set of 
coordinates (xo "",X3) can be interpreted as space-time local 
coordinates. 

Furthermore, from Eqs. (3.11), it follows that the 
conditions 

LjFaik= -FajbFbi\ 

which allow us to define a covariant derivative, 2 are trivially 
satisfied. Taking into account Eqs. (3.7) and (3.11), the defi
nitions of the torsion and curvature tensors become10 

Sik r = - Fik r; 
A. , 

R 'jkm = - Fa/Fkm a, 

and the Jacobi identities take the form 
A. A. A. 

LaFij k = Fa/Frj k + Fa/Fir k - Far kFijr; 
A. A. " 

LaF/ = Fa/Fr/ + Fa/Fir b - Fa/Fi/; 
/'. A. A. 

LaFijB = Fa/FrjB + Fa/FirB - FaD BFij D, 

where ii runs over the values 4,5, ... ,n - 1, and 

!LiF}k B ]ijk = - [Ftk BSy' ]ijk , 

[LiR m"jk Ljk = - {Sy'R mntk ]ijk , 

ILisjkmJijk = [-S"rSrkm+Rmijk}ijk' 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

First, we note that the fields which are not structure 
constants are reduced to F ij k, linked to torsion tensor, F ij a to 
the curvature tensor and F/ to the gauge field strength. 

Further, we see that the transformation laws (3.14) of 
these fields and the well-known Bianchi identities (3.15)10 for 
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J. 
the torsion, curvature and Fij A, and nothing but particular 
Jacobi identities; we remark that from Eq. (3.14) and defini
tion (3.13) we get the correct homogeneous transformation 
law for the Riemanian curvature tensor. 

Finally, after straightforward calculations, taking into 
account the constraints of the geometry, the system (3.9) 
becomes 

T k _ R i ,.,mk _ 1." kR i mj K K t - mit 6 lUt mijg - -gAB 
1]2 

X {1.D kpAF Bg"'gjS _ pAF Bgikgjs} 
4tlJrs yts , (3.16) 

KTa k = !Fam i ~j!Sji k + Dj kSi/ - Di k5j,'} , (3.17) 

1]2TA k = gAB ik gjmlLmF/ + F/Sm/J 

+ l&AB g" gisF/Sr/· (3.18) 

It can easily be seen that Eqs. (3.16) and (3.17) are just Ein
stein-Cartan equations in the presence of the Yang-Mills 
fields, while Eq. (3.18) is the inhomogeneous Yang-Mills 
equation in the presence of a gravitational field with a non
vanishing torsion. 

We observe that the Yang-Mills curvature tensor Fik A 

is equal to the coupling constant 1] times the Yang-Mills 
strength tensor Gik A, which is generally used in the physical 
literature; in this way Eq. (3.18) can be written in the more 
familiar form 

1]TAk = gAB ik gfmlLmGijB + G/Sm/ 

+! gAB i r gjsG/S,s k. 

4. MATTER FIELDS 

Here we shall consider some Lagrangian forms con
cerning the matter fields in the presence of gravitational and 
Yang-Mills fields, as described by Eq. (3.2) in the preceding 
section. We limit ourselves to a discussion of the scalar and 
Dirac fields, but the formalism can easily be extended to 
higher spins. We will show that, generalizing in a very natu
ral way the results given by Toller and Vanzo,3 we obtain the 
correct equations of motion and transformation laws of the 
matter fields. 

We introduce the notation 

U = WO A w J A w2 A w3
, 

Uk = iku = b Ckifmwi Aw
j 
Awm

, 

and we note that 

wk A Ui = 8i kU , 

dUi = i EirstFaP swa A wf3 A w' A WI. 

Cog nola et al. 
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Let us consider the following Lagrangian, describing the sca
lar field: 

...t.R = ! gik [(L;'P )TLk'P - m 2'P T({J ]U 

+ ! gik [(Li({J )TLa({J + (La'P )TLi({J ] 

Xwa A Uk + ~ gik { [(LA + KA)cp VLi'P 
+ (Li({J)T(LA +KA)({JjwAAuk , (4.4) 

where'P is a column vector of p-real fields defined on Y, and 
({J T is the corresponding transpose row vector. The matrices 
K A form a real representation of the Lie algebra of G in a p
dimensional vector space V. 

The normal field equations (2.7) give 

La({J=O, LA({J= -KA({J· (4.5) 

These equations show that ({J are scalar fields with respect to 
homogeneous Lorentz transformations and that they just 
form a multiplet belonging to the representation of the group 
G in the linear space V. 

Taking into account normal equations and Eq. (4.3), 
the tangential field equations yield 

'k 'k' 2 g' LiLk({J + g' Lk({JS/ + m ({J = 0, 

i gikEir"L,({J (Fab SW U A wb A wr A by' 

+ 2FaB swa A wB A wr A Wi 

+ FAB 'wA A wB A wr A Wi) = 0. 

(4.6) 

(4.6') 

From the definition (2.13) and the normal equation we have 

7i·
k =! { gjk [(L;'P )TLk({J + (Lk'P )TLi'P] 

- [g'"k(Lm'P )TLk({J - m 2({J T({J ]o/juj , 
(4.7) 

7A·k = - !gjk[(Lk({J)TKA({J+(KA({J)TLk({J]Uj' 

These formulas show that we are dealing with local sources; 
thus Eqs. (3.11) ensure us that (4.6') is identically satisfied. 

Since 7// = 0, the field equations (3.17) yield 

Sjk; + OJ is km m - 0 k iSjm m = 0; 

this gives Sij k = 0; thus Eq. (4.7) becomes 

gikLiLk({J + m2({J = 0. 

(4.8) 

(4.9) 

This result shows, as expected, that a scalar field cannot 
create torsion. 

Let us consider the Dirac field. We start from the fol
lowing Lagrangian: 

...t.R = ! [r/JTyDy"&tLdJ-(Lk'P)TyDy"&tr/J 

+imr/JTyD&tr/J]u+! {r/JTyDy&t(La +Sa)r/J 

- [(La + Sa)r/JVyDy&tr/Jjwa AUi 
+ ! {r/JT yDy'&t(LA + SA)r/J 

- [(LA +SA)r/JVyDy&tr/J}WA Auj , (4.10) 

where r/J is a column vector composed by p 4-component real 
spinor fields, yare the Dirac matrices in the Majorana re
presentation, the matrices Sa are given by 

A. i 'k .P T.P Sa =! Fak gij.I J = - r Sa r , 
(4.11) 

.I jk = 1 (riy" - y"r0 , 
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and the matrices SA form a 4p-dimensional real representa
tion of the Lie algebra of G; finally fit is a 4p X 4p real metric 
operator with the propertyll 

fltSA - SA &t = 0. (4.12) 

We have the following commutation relations: 

[y,Sa] = Fa/rj, [y,SA] = 0; (4.13) 

from Eq. (2.9) we get 

p = - !yDyfltr/Ju j • (4.14) 

Since the Lagrangian (4.10) is linear in the fields r/J, the nor
mal field equations (2.7) are automatically satisfied. In order 
to write the tangential field equations, we note that 

akff. . 
-- = HyDy'fltLir/J + imyD&tr/J)u +! [yDy'fIt(La + Sa) 
aifJT 

X r/J + Sa yDyfltr/J ]wa A Ui + ! [yDyflt(LA + SA)r/J 

+ SA yDyfltr/J ]wA A Ui . (4.15) 

Then, after some calculations, the tangential field equations 
yield 

( - iy"Lk + m - ~ y"Skr')r/J = 0, (4.16) 

(4.17) 

and a third equation analogous to Eq. (3.6') which will be 
identically satisfied for the same reasons; as before, Sjk i are 
the components of the torsion tensor. 

Equation (4.16) is the Dirac equation in the presence of 
gravitation with non vanishing torsion, while (4.17) are the 
equations which show that r/J transforms like a multiplet of 
spin-~ fields with respect to a Lorentz transformation, and 
that it belongs to a p-dimensional real representation of the 
internal symmetry group G. 

As a consequence of the field equations (4.16) and 
(4.17), the Lagrangian (4.10) vanishes identically; then, tak
ing into account the definition (2.13), we have 

7k· k = TkiUi 
= 1 [ifJT yDyflt Lk r/J - (Lk r/J)T yDyfltr/J ]ui , 

.k _ T i_I F/"',. j kST i ( 7a - aUi - -2 ak g jsui , 4.18) 
.ff T i T.P· &l 7A = A Ui = - r/J r y'KA=r/JUi , 

where 

of 4-momentum, relativistic angular momentum, and 
charge of a multiplet of spinor fields . 

(4.19) 

We remark that from Eqs. (3.17), (4.18), and (4.19) we 
can conclude that KTrs i = Sr., i and Sik k = 0; this is a particu
lar feature of spin 0 and 4 fields, because for higher spin fields 
the torsion trace S" k generally does not vanish. In this way 
the Dirac equation takes the form 

( - iy"Lk + m)r/J = O. 

We recall that the Lie derivativesL i correspond to covariant 
derivatives; 12 in fact they contain implicitly the minimal cou
pling between matter and geometric fields. 

This can be understood if we compute the commutator 

[LilLj 1 = F,/Lk + F;/La + F/LA ; 
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for example, in the case of the Dirac field we get 

[L"Li ]tP 

= - S,/L" if! -! R,/grm 2sm if! - Fij AKA if! , 
and we see that torsion, gravitational and Yang-Mills curva
ture appear in the right-hand side of this equation. 

We conclude this section with some remarks about the 
conservation laws. We recall that2 if the Lagrangian form for 
the matter fields is an homogeneous function of the fields 
and their derivatives (this is our case), the conservation laws 
(2.15) can be written in the form 

d1"a·4 = -Far/0f3A1"p·4. (4.20) 

From these equations, taking into account the local form of 
1" a .H, we get the following expressions for the conservation 
laws, when gravitation with non vanishing torsion is present, 
namely, 

(L, + S'm m)Tk I 

= - S;/T/ + ~ R mnkl gni1jm '+ F'k ATA I, 

(L, + S'm m)1jk ,= Tki - 1jk , 

(L j + S'm m)TA ,= 0. 

(4.21) 

Further, from the same Eq. (4.20), we get the transformation 
laws of the densities, i.e., 

(4.22) 

(4.23) 

Equations (4.22) show that 1j I, 1jk I, TA I are tensors 
with respect to a Lorentz transformation, while Eq. (4.23) 
tells us that the current vector TA I transforms according to 
the adjoint representation of G. 

We note that, if we are dealing only with scalar fields, 
we obtain 

(4.24) 

thus, taking into account Eqs. (3.15a) and (3.18), the conser
vation laws take the more familiar form 

L,(Tk '+ Tk I(YM» = 0, 
(4.25) 

L,TA' =0, 

where Tk I(YM) are the components ofthe Yang-Mills ener
gy-momentum tensor, namely, 

T I(YM)_ 1 (1 £ 'F AF BnPrdls 
k - ""2 gAB "Uk pq rs <5 <5 

1] 

_ Frs A Fki B g'r gi') . 

Finally, for the Dirac field, we have 

S'm m = 0, K1jk' = Sik i; 

in this way the conservations laws become 

L(T '+ T '(YM» = SiT' + ..!..R m . gins. I 
I k k kl 1 K kin 1m 
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Li1jk ,= Tkj - Tjk' 

L,TA ' = 0, 

1 jm nSF AF Os r + ""2 gAB g g mn rs kj' 
Tf 

where Eqs. (3.15a) and (3.18) have been used again. 

5. CONCLUSION 

In this paper we have seen that gauge theories in the 
presence of gravitation can be reformulated in the language 
of the space of the reference frames in a very natural way; 
this can be done by generalizing the definition of a local 
reference frame, i.e., by enlarging the dimensions of the 
manifold. 

Furthermore, the particular structure of the geometry 
of.Y has been derived from a suitable Lagrangian and an 
action principle; ordinary gauge theories show in this lan
guage their local character, but we remark that the formal
ism could also be employed in describing nonlocal theories. 

Finally, we note that the interest in considering gauge 
theories in the presence of gravitation can be argued if one 
thinks of a possible "true" unification of electromagnetic, 
weak and strong interactions. 

For example, Georgi and Glashow 11 have shown in 
their attempt based on an SU(5) gauge group that, in order to 
obtain the well-known experimental limit of the stability of 
the proton, it is necessary to introduce in the theory masses 
of the order of 10 16 Gev; in this case, gravitation can no 
longer be neglected. 
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A first order system of differential equations is obtained for a covariant 0" model defined on a 
Riemannian (or pseudo-Riemannian) manifold of arbitrary dimension n. In the case of compact 
groups, i.e., 80(n), the first order system coincides with the one yielded by topological 
arguments. Our considerations hold true also for 80(p ,q), p + q = n + 1, invariance groups. 
The scale invariance of the problem is discussed. 

1. INTRODUCTION 

It is well known that the solutions for the 80(3) nonlin
ear (T model found by Belavin and Polyakov through topo
logical arguments can also be derived by means of purely 
local tools. l-l The same local approach yields a class of solu
tions even for the noncompact problem with the same di
mensionality, i.e., for the 80(2,1) invariant problem defined 
by R 2. In fact, parametrizing the field variables in complex 
stereo graphic coordinates, the action becomes 

S = f sztz + Sziz dzA di, 
(1 + aSS) 

(1) 

where a = + 1 for SO(3) and a = - 1 for SO(2, 1). Writing 
the field equations as the divergence of the energy-momen
tum tensor, one has the first order system 

(2) 

wheref(z) is analytic. For the compact case (a = 1), regular
ity and the finite action condition amount to imposing that 
fez) = 0 (see Ref. 2) and therefore the system (2) reduces to 
the Cauchy-Riemann equation for the field S. The noncom
pact case (a = - 1) is equivalent to the problem of finding 
axisymmetric solutions of the vacuum Einstein equations 
which are of the Petrov type N. 4 In this case there is no 
physical reason for the action to be finite. Nevertheless, one 
can show that the only relevant solutions are still given by 
Sf = 0 as in the compact case. 

The aim of this paper is to show that, independently of 
the compactedness of the group and the dimension of the 
base space, it is possible to find a first order system (f.o.s) 
naturally associated to a certain class of (T models. 

In the next section we obtain the general form of the 
f.o.s. for a generally covariant (T model defined on a Rieman
nian or pseudo-Riemannian manifold of arbitrary dimen
sion. The third section is devoted to the analysis of our result 
in the physically interesting case of n = 4. 

2. GENERALIZED (J' MODELS 

In this section we study a generally covariant (T model 

'>IOn leave of absence from Instituto Nazionale di Fisica Nucleare, Sezione 
di Pavia (Italy). 

')Permanent address: Instituto di Fisica dell'Universita di Salerno, Baron
issi. Salerno (Italy). 

defined on a Riemannian (or pseudo-Riemannian) manifold 
M of arbitrary dimension n. The invariance group of the 
model is taken to be 80(p,q) withp + q = n + 1. Let <P be a 
map 

<P:M_Rp+q (3) 

invariant under the action of SOC p,q) on R p + q. The action 
of the problem is 

S= J * d<paA d<Pa = J A. (4) 

with the constraint 

(5) 

where the internal indices are saturated with the Killing 
form ofSO(p,q), d is the exterior differential, A is the wedge 
product, and * is the Hodge duality operator. 

Since the action is a geometrical object on the manifold 
M, it is manifestly covariant under the general group 
GL(n,R ). By varying the action (4) and taking into account 
the condition (5), one has the following field equations: 

d* d<Pa + <Pa(d<pbA* d<Pb) = O. (6) 

In the case of compact invariance groups (i.e., when q = 0 
and <P:M_S") it is relevant to consider the following n form: 

(7) 

which upon integration onM gives the homotopy class of the 
map <P: 

Q = J *p E ""(M,S"). (8) 

For instance, when n = 2 and M = S 2, one has that 
QElliS 2) = Z is the "topological charge" introduced by Be
lavin and Polyakov. In this case one has also the remarkable 
inequality S>Q. The condition 

(9) 

yields S "7 Q and therefore it is sufficient for satisfying the 
field equations. It is also necessary if one restricts oneself to 
search for finite action solutions. Note that Eq. (9) yields 
A = *p. In the noncom pact case the topological argument 
given above does not apply any more. Nevertheless there is a 
local reason why the condition A = *p, which yields the 
f.o.s. 
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is still relevant from the mathematical point of view, since 
every solution (if any) of the system (10) is also a solution of 
the field equations (6). Of course, the converse may not be 
true. The proof is given in two steps. First, note that for a 
field satisfying condition (10) one has the identity 

dcfJ h'A··.A dcfJ h" , '= (- I)q Eo,a,b,- .. h"., cfJ *dcfJ (11) 
(n _ I)! 0, u,' 

where q is the number of negative eigenvalues of the Killing 
form ofSO(p,q). The second step amounts to substituting 
Eq. (10) into the field equations. The Laplacian of cfJ reads 

d* dcfJh, = - Eh,b"b, ,dcfJ b'A .. ·A dcfJ "" . , (12) 

Using Eq. (11), one has that 

d*dcfJb, = - 8~:~; cfJa, dcfJ "'A*dcfJu, 

= - cfJbJdcfJ "A*dcfJb), (13) 

showing that the field equations are satisfied. 

Let us end this section noting that the f.o.s. (10) is scale 
invariant whenever the action (4) is. It is well known that 
this is equivalent to the nondimensionality of the constraint 
(5), which in turn implies a constraint on the dimension n of 
the basic space. In fact, assuming that the background covar
iant metric tensor has dimension n - 2 as in general relativi
tity, one has 

{

dim [dcfJ uJ = dim [cfJ OJ, 

(14) 

dim[*dcfJuj = (~ - 3n + 4) + dim[cfJ°J. 

Accordingly, if dim[ cfJ aJ = 0, the action is nondimensional 
only for n = 2,4. 

3. CLOSING REMARKS 

The construction given above naturally introduces a 
f.o.s. of differential equations as a sufficient condition for the 
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solution of the second order system (6). It would be very 
interesting to ascertain the hypotheses restricting the class of 
fields for which Eq. (10) is also a necessary condition for the 
solution of the field equations. Note that for n = 2 solutions 
of Eq (10) have been already found both for the compact] 
and the noncompact case. s From the physical point of view, 
however, the only interesting case is a four dimensional co
variant problem, with group SO(5) or SO(4, 1). De Alfaro, 
Fubini, and Furlan· first studied such models, coupling the 
cfJ field with the gravitational field in a generally invariant 
fashion. In their approach the gravitational field is a dynami
cal variable coupled to the energy-momentum tensor of the 
cfJ 's through the Einstein equations. Here the metric field is 
considered as a background field, and no corrections to the 
curvature due to the presence of the cfJ 's is introduced. 

As an example, for the SO(5) a model on the instanton 
background given by" 

2aX/l 
cfJ" = 2 2' 

a +X 
satisfies the f.o.s. 
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A .basis for the space of states of two relativistic particles with arbitrary spins is constructed, 
SUitable for obtaining two variable relativistic expansions of two-body scattering amplitudes. This 
basis is obtained starting from a representation of an "internal Lorentz group" which acts on the 
space of the two particle states in the pseudo-barycentric frame (pJml + P2/m2 = 0). The "internal 
Lorentz group" is defined as the maximal subgroup of the direct product of two Lorentz groups, 
which leaves invariant the null space ofpl/m l + P2/m2' 

I. INTRODUCTION 

The aim of this paper is to construct two-particle states 
suitable for deriving two-variable relativistic expansions of 
two-body scattering amplitudes for particles with arbitrary 
spins. The two variables are the invariant mass and the mo
mentum transfer squared or, in the center of mass frame, the 
total energy and the scattering angle. 

Two variable Lorentz group expansions have been pro
posed from a different point of view, mainly for zero-spin 
particles, in a series of papers, reviewed in Ref. 1. 

In a previous paper,2 we considered two nonrelativistic 
particles. Starting from a barycentric decomposition of the 
positions and the momenta observables of the two particles, 
we have defined an "internal Galilei group." It is a subgroup 
of the direct product of the two Galilei groups and acts only 
on the internal variables. We have also constructed the "in
ternal Galilei basis" for the two particles in their center of 
mass frame (where PI + P2 = 0) through an adequate reduc
ible representation of this internal Galilei group. A basis for 
the two particles in any frame was deduced by the action of 
the Galilei boosts of the "diagonal group" (acting on both 
particles in the same manner). By construction the basis 
states transform irreducibly under the internal group, and 
they have the same transformation properties under the 
diagnonal homogeneous Galilei group as the canonical two
parti~le basis (which transform irreducibly under the diag
onaltnhomogeneous Galilei group). The "internal Galilei 
states" we have constructed have neither a given internal 
en~rgy nor ~ given internal momentum, and it is precisely 
this fact which makes possible a two-variable expansion. 

For two relativistic particles with different masses m l 

and m2, there is no barycentric decomposition, but we can 
perform a pseudo-barycentric decomposition by considering 
the quotient of the momenta by the masses. Then in the 
frame where pJm l + pjm2 = 0, as for the nonrelativistic 
case, we can define an internal Lorentz group and deduce the 
corresponding Lorentz basis, by using only group theoreti
cal arguments. Unfortunately, this frame is not very useful 
for applications. The center of mass frame is the most inter
esting, in particular for obtaining the relationship with the 

a)Work supported by the Echanges France-Quebec and by the Ministere de 
I'Education du Gouvernement du Quebec. 

h'Permanent address: Laboratoire de Physique Theorique, Universite de 
Bordeaux I. Chemin du Solarium 33170 Gradignan, France. 

Poincare irreducible two-particle states. Thus from the pre
vious basis, we construct in the center of mass frame, an 
internal Lorentz basis, but we lose the explicit action of the 
internal group on these states. Then by action of the Lorentz 
boosts we obtain an internal basis for two particles in any 
frame. By construction these basis states transform under 
the Lorentz group as the Poincare irreducible states, and 
they do not have good transformation properties under 
translations since they are not eigenstates of the invariant 
mass. They do, however, make it possible to perform two
variable expansions for the scattering amplitudes. 

In Sec. II we recall the description of the one-particle 
states making use of three of the most important subgroups 
of the Poincare group, namely the translation group, the 
three-dimensional Euclidean group and the Lorentz group. 
Section III is devoted to the definition of the internal Lo
rentz group and Sec. IV to the step by step construction of 
the corresponding internal Lorentz basis. Finally in Sec. V 
we give the connection between our basis and the Poncare 
irreducible ones, and we deduce the transformation proper
ties of the former under the diagonal Lorentz group. The 
Appendix is a collection of results on the unitary representa
tions of the Lorentz group and their Clebsch-Gordon 
coefficients. 

II. ONE PARTICLE STATES 

Since the Wigner analysis,) each particle of mass m and 
spin s is associated with a representation (m,s) of the Poin
care group, specified by the two Casimir operators of the 
group: 

P 2 =m2
, W2 = - m 2s(s + 1), 

where w" = ~€" ,h<7Mvt;Pu is the relativistic spin operator, 
P" being the generators of the translation group and M the I'V 

generator of the Lorentz group. 
The states of the particle can be characterized in differ

ent manners, making use of different subgroups of the Poin
care group. Let us review the bases corresponding to three of 
the most important subgroups: 

(i) The translation group Y: The linear momentum ba
sis states are denoted by I (ms)f!Jl) , where p is the eigenvalue 
of the operator P and f-l is a label removing the degeneracy. 
For the canonical basis) f-l-a is the eigenvalue of - Wjpo 
and for the helicity basis' f-l-A is the eigenvalue of 
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- Wo/l p I· In a reference tetrad -k.}, the spherical coordi
nates (a,8,cp ) of the 4-momentum I!.. are defined by 

I!.. = m[cosa fD + sina Y1.8,cp )], (la) 

Y1.8,cp) = sin8coscp~ + sin8sincp~ + cos8~, (1 b) 

with a E[O, 00), 8E[O,1T], cpE[O,21T). The relation between the 
helicity and canonical basis is 

+s 

I(ms).-l) = I l(ms)I!..a)D~A (Rp), Rp = R (cp,8,O), 

(2) 

where D :TA is a Wigner D function. 
(ii) The three-dimensional Euclidean group ~(3): The 

angular momentum basis5 is specified by the chain of groups 
f::!! ::J g' (3)::J SO(3)::J SO(2). The operators p, (J); = !EOijk 

XMi k are generators of g'(3). The states are denoted by 
1 (ms)pAjn), where the modulusp of the 3-momentum and 
the helicity A are determined by the Casimir operators of 
g'(3): 

pZ =p\ J.p =pA, (3) 

and, of course,j(j + 1) and n are eigenvalues of JZ and J3• 

These states are related to the helicity states by 

1 (ms)I!..A ) =! f 1 (ms)pAjn)DinA (Rp). (4) 
J=IAln=-j 

(iii) The homogeneous Lorentz group SO (3,1): The Lo
rentz basis6

'7 corresponds to the chain of groups 
9 ::J SO(3, 1)::J SO(3)::J SO(2). Here J, (K); = Mo; are the 
generators of SO(3, 1). The states are denoted by ! (ms )pvjn) , 
where pE[O, + 00) and VE{ - s, - s + 1 ... , + s} are related 
to the eigenvalues of the Casimir operators of SO(3, 1) 

(5) 

In order to relate this basis to the previous ones, let us 
consider the following transformations: 

Lp _L (a,8,cp) = R (cp,8,O)Bla)R -1(cp,8,O), (6a) 

Ap==A (a,8,cp) = R (cp,8,O)Bla) = LpRp, (6b) 

where Bl(a) is a boost along the 3-axis, and Lp a boost in the 
direction (8,cp). ChakrabartF has shown that the Lorentz 
basis is rela ted to the linear momentum bases by means of the 
Lorentz unitary representation matrices (see Appendix) 

D'lnV,a(Lp) or D'l;:A (Ap): 

-Canonical basis 

! (ms)I!..a) = j = ~1/2} n ~_ jJ; f" f-l(P, v)dp 

XN(P,v)D'j;~(iLp)!(ms)pvjn), (7a) 

-Helicity basis 

1 (ms)I!..A ) = j ~A In t_ jJ; 100 
f-l(p,v)dp 

X N (p, V)D'j:'A (A p) 1 (ms)pvjn), (7b) 

where the integer or half-integer v varies from - min(j,s) to 
+ min(j,s), f-l(P,v) is the Lorentz invariant measure defined 

below, and N (P,v) is a normalization factor. For the two 
three-parameter families of Lorentz transformations 
{Lp}, {A p}, the general completeness and orthogonality re-
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lations (A 7) and (AS) reduce to 

~ f f-l(p)d 3p D'j:'a(Lp)Dr/:~a(Lp)* 

= 2r(2s + 1) o(p _ ')0 ,0 .. ,0 ' (S) 
(p ) p vv JJ nn' 

f-l ,v 

Jl(P) = sin8sin2a, d lp = dad8dcp, f-l(P,v) = pZ + vZ, 

and 

II ('" f-l(p,v)dp D'ln~a' (Lp)* D'ln';a(Lp) 
jn v Jo 

= 21TZ(2s + 1) 03(p _ ')0 ' 
f-l(P) P aa' 

01(P - p') = o(a - a')0(8 - 8 ')o(cp - cp '), 

(9) 

with exactly the same relations for the family! A p J. Equa
tion (S) shows that we can invert Eqs. (7) by summing over 
the magnetic quantum number a (or A) and by integrating 
over the three spherical components (a,8,cp) of p: 

!(ms)pvjn) = [21TZ(2s + I)N(P,v)] - 1 

X ~ f Jl(P)d lp D'j:'a(Lp)*!(ms)I!..a) (lOa) 

= [21TZ(2s + I)N(P,v)] - 1 

X ~ f Jl(P)d lp D'j:'A (Ap)*!(ms)I!..A), (lOb) 

The relation of the Lorentz basis to the angular momen
tum one involves only the boost matrices 

!(ms)pAjn) = L (00 dp N(P,v)d'jfs(a)!(ms)pvjn) (11) 
v Jo 

and can be inverted by using the orthonormality relation 
(A5) of these boost matrices: 

!(ms)pvjn) = 2[7T(2s + 1)(2j + I)N(P,v)]-1 

X I ('" sinhZa da d'jfs(a)*!(ms)pAjn), (12) 
A Jo 

Note that, in addition to the Poincare (m,s) labels, all 
the basis states are characterized by four further variables 
! a,8,cp,a (or A ) J, !p,;{j,n J, !p, v j,n J, For fixed p = sinha 
andA, Eq, (4) shows that both couples (8,cp) and (j,n) corre
spond to each other, while, for fixedjand n, Eqs. (S)and(12) 
show that both couples (P = sinha, A) and (P,v) are in 
correspondence. 

III. The "internal Lorentz group" 0(3,1) of a two-particle 
system 

Let us consider two particles of masses, spins, and 4-
momenta m;,s;,l!J (i = 1,2). Let ,!,.be a timelike unit 4-vector 
on the upper sheet of the hyperboloid cW'+: 

K=I, xo>O. (13) 

We define the subset g' of pairs {f!.hI!..» by 

g' = ! {f!.hI!..Z)1I!..1 = ml&I!..z = mzil& 'tJ '!"EcW'+J, (14) 

where il is the parity operation. Now the transformations of 
0 1(3,1) X OZ(3, 1), which leave the subset g' invariant, can be 
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expressed as 

X =A XllAll- l. (1 Sa) 

The set of such transformations X forms a group which we 
shall call the "internal Lorentz group," and denote by 
0(3,1). It is conjugate to the "diagonal" group 0(3,1) 

0(3,1) = [Xl = (IXll)0(3,1)(1 Xlltl. (1Sb) 

If J (O,K (I) are the generators of the group 0 (1)(3, 1), then the 
generators of the group 0(3,1) are 

J = JIll + J(2l, A = KIll _ K'2l 

while those of the "diagonal" 0(3,1) are, of course, 

J = JIll + J IZl, K = KIl) + K'2l. 

(I6a) 

(16b) 

Note that, since parity commutes with rotations, the diag
onal 0(3,1) and the internal 0(3,1) have the same 0(3) sub
group, the generators of which are J. 

The total 4-momentum I!.. and the Poincare invariant 
mass ware 

P=I!..I+I!..Z, w=(EJ I12
. (17) 

We define three unit timelike 4-vectors: 

I!.. = P /w, (ISa) 

q = <.PI + pJ/(<.Pl + P2)2) 112, Pi = eJmi' (ISb) 
A A A A 112 

~= (PI + llpZ)/«P1 + llpZ)2) (ISc) 

(for equal masses the 4-vectors I!.. and q coincide). 

In the center of mass frame, the spherical coordinates of 
PI andpz [see Eq. (1)] are chosen to be (al,e,qJ), (- a2,e,qJ), 
with the condition 

(19) 

In this frame, the spherical coordinates of the 4-vectors ~ 
and q are (a,e,qJ) and (b,e,qJ) respectively, where a and bare 

. a = (a l + a2)12, b = (a l - aJ/2, (20a) 

and Eq. (19) implies that b is a function of a; 

coshb = cosha( 1 + 4m 1m 2 sinh2a) - 112 

(ml + m2)2 
(= 1 ifml = m2)' (20b) 

In the general mass case, we define the q frame by the 
condition q = fJ.J, and we denote by Lq the pure Lorentz 
transformation which maps I!.. into q. The transformation Lq 
relates the CM frame to the q frame. 

In the q frame the 4-vector~, defined in Eq. (ISc), is 
related to the 4-momenta of the particles by 

(I!..1,I!..2) = (ml:&m2lliJE'l? (21) 

Any pair of 'l? can be obtained from the pair (m&iJ, m&) 
(both particles at rest) by means of the transformation 
Lx EO(3, 1), where Lx is the pure transformation which maps 
fJ.J onto,!; 

(22) 

The internal transformation ~ changes the invariant mass 
w of the two-particle system. For both particles at rest 
I!.. = (m 1 + mz,O), but after the transformation Lx the total 4-
momenta and the invariant mass are 
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w2 = (ml + m 2)2 + 4mlm2sinh2a, (23b) 

i.e., we have w€[m l + m2, (0). It is precisely the operators 
representing these transformations which provide us with 
the basis functions for expanding two-particle states with 
arbitrary invariant mass w. 

IV. THE INTERNAL LORENTZ BASIS FOR THE TWO
PARTICLE STATES 

First, let us start by considering the tw~ particles in the 
q frame where the internal !-o!.entz group 0(3,1) is defined. 
The action of the element AEO(3, 1) on the two-particle 
states is represented by the unitary operator r defined by 

r(A) = a;; /A ) X a;; 2(llAll-I). (24) 

Hence any two-particle state in this frame can be obtained 
from a state with both particles at rest by means of the opera
tor r(L, ),i.e., 

!ml,wl) ® !mJhST2) = r'(L)lm&,lTI) ® !m&lT2)' (25) 

Let us introduce the one-particle Lorentz basis 

!ml,wl) = {; ~ 100 

dpIN(PhVl)!Plvljlnl) 

X D f':',,(7, (Lx), (26a) 

!m2ll,w2) = t;, ~ 100 

dp2N (P2V2)!P2v2j2n2) 

XD'j,;~~,(7, (llLxll). (26b) 

Then by using the symmetries (A6f) and (A4d) of boost ma
trices, we deduce the identity 

Thus, in the tensor product of states (2S) we can reduce the 
product of representation matrices of the same argument Lx 
by means of the reduction formula (A9). We get 

!ml,wl) ® !m2ll,w2) 

= ~ (sllTls2lT2lSlT ~ 100 

dpf1(P,v) 

X ! (pvjs)q = fJ.Jn) D j;;" (L x), (2S) 

where the states !(Pl-js)q = fJ.Jn) constitute the internal Lo
rentz basis of the q fra~e and are defined by 

!(pvjs)q = fJ.Jn) 

f f [PIVt{h - V2[pV] 
= I ~ dpldpz N(PhVl)N(P2,V2) j

l
SJ2S2 js 

lln , I;> 

X( - l'Y'-"f1(P,V)VlnJ2n2Vn) 

X !PlvJlnl) ® !P2v-j2n2), 

where the coefficient 

[pl~tP2. - v21~v] 
]ISt!2S2 ]S 

(29) 

defined in Eq. (A 13) is a product of two 0(3,1) reduced 
Clebsh-Gordan coefficients. By construction these basis 
states transform irreducibly under a transformation of the 
group 0(3,2): 

r'(X) 1 (pl-js)qo =fJ.Jn) 
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= I l(pvj's)~ = fl1ln')Dj~'jn(A). (30) 
)'n' 

Thus p and v are related to the eigenvalues of the Casimir 
operators of 0(3, 1) while j and n are the total angular mo
mentum and its projection in the q frame. Unfortunately, 
this frame is not very useful for applications. The center of 
mass frame is the most interesting one, in particular to ob
tain simple relations with the Poincare irreducible two parti
cle states: The spin of the two particle system is the total 
angular momentum in the CM frame. For equal masses the 
two frames coincide, but in the general mass case we have to 
generalize our construction to the CM frame. 

In the CM frame any two-particle state can be obtained 
from the rest state of the two particles by 

Ip,O",) ®P20"2) 

= o/L(L q-I)7/(Lx )lm,£'..)0", ) ® Im2fl1l0"2), (31) 

where Lq is a pure Lorentz transformation of the diagonal 
group which maps the CM frame into the ~ frame. Let us 
recall that Lq is also a function of ~ Then we have 

II!..)O") ) = t; ~ 1" dp, N(p"v,)lp)v,j,n, ) 

XDJ,n:J,n'(L - ')DJ,n':""'(L ) 
p,l, q p,l, X , (32a) 

Ip20"2) = I I l~ dp N(P"v,)lp)vJ,n,) 
j

l
fl 1 '\.'..I: 0 

Now by reducing the two tensor products of 0(3, 1) re
presentation matrices, we get 

II!..'O"') ® 1./)0"2) 

= ~ (5,0",S20"2IsO") I ~ f f dpdp' f1(p,V)f1(p',v') 
In 

j'1l' 

x l(p'v'j's)pvjn)D'j.U'n,(L q- ')D{::'m(L x )' (33) 

where we have defined 

x (P"V')(_lt-S'[P,~J{h.-v2IP:v'] 
f1 ];SJ;S2 /s 

X v,nJ2n2Ijn) ® Ip2vJ2n2)' (34) 

Herep',v' specify the representation of the internal Lorentz 
group 0(3, 1) whilep, v specify the representation of the diag
onal Lorentz group. The numbers sj', andj are the total 
angular momentum when the two particles are at rest in the 
~ frame and in the CM frame, respectively. 

Note that Eq. (33) cannot be inverted because Lq is a 
function of~ The product of 0(3,1) matrices can be written 
as 

IDj;U'n,(L q- ')Dj>,a(L x ) 

n' 
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= ID<'A (cp,B,O)d j:A ( - b )dj~).' (a)D~A (cp,B,O)"', 
A 

(35) 

where b is a function ofa given in Eq. (20b). We can again 
reconstruct an 0(3,1) matrice corresponding to a pure Lo
rentz transformation, by means of the coefficients 

Q (P'v'j'spvj;p"v") 

= I roc sinh2adad ~/"(a)"'d j~ ( - b )d j~A' (a), (36) 
A Jo 

The completeness relation (A6) for the matrices d '!sA (a) al
lows to invert Eq. (36), and finally Eq. (35) becomes 

"DPv (L ')DP'V' (L ) 
~ jn/n' q j'n'sa x 
n' 

"rOOd (P" ")Q (P' , 0' ", ")DP"V"(L ) (37) = ~ Jo p f1 ,v V] SPV];P V jn", x' 

We now define the internal Lorentz basis in the CM frame by 

1 (pvjs)fl1ln) 

= /~J f dp'dp" Q(P'v'j'sp"v''j;pv)I(P'v'j's)p''v''jn) 

(38) 
which yields the expansion 

II!..'O"') ® 11!..20"2) = ~ (S,0",S20"2IsO") ft;1°O f1(p,v)dp 

1 (pvjs)fl1ln ) D 'j,~a (Lx)· (39) 

The orthogonality of the 0(3) C-G coefficients and Eq. 
(8) allow us to invert the previous relation: 

1 
l(pvjs)fl1ln) = I (s,0",sP2IsO") 

21T2(2s + 1) a,a,a 

X f d3Xf1(x)D'j;~a(Lx)"'11!..'0"') ® II!..P2)' 

(40) 

In all this section we have only used the canonical basis, 
for the helicity basis we have the same relation with the 
transformation L, replaced by A x , 

II!.."U ® Ih'\'2) 

= ~(S'A,S2A2IsAo) ft; 1
00 

f1(P,v)dp 1 (pvjs)fl1ln)D'j:'A (Ax), 

(41) 

l(pvjs)fl1ln) = 1 I (S,A,S2A2IsA) 
21T2(2s + 1) ,l,,l,A 

X f d 3xf1(x)Dj;~A (Ax)"'II!..,A) ® 11!..0.2)' (42) 

V. CONNECTION WITH POINCARE IRREDUCIBLE 
STATES AND TRANSFORMATION PROPERTIES FOR 
THE DIAGONAL LORENTZ GROUP 

In an arbitrary frame, we can fully describe the two
particle states in linear momentum basis by means of the two 
timelike unit 4-vectors I!.. and ,L and we note that 

II!..,O",) ® !.e.20"2) 1e.~'0"'0"2) le.aBcp,0"'0"2), 

II!..,A,) ® 11!..2A2) 1f!..,,LA,A2) If!..,aBcp,A,A2). 

(43a) 

(43b) 

The Poincare irreducible two particle states can be de-
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fined to bes-Canonical (/-s) coupling 

Iw(a)jpn,/s) 

= L L <lmSl7~nXSll7lS2l72Iso> 1 
m a,a,a V 41T(21 + 1) 

X ( dfl (O,q:; )t.e.,aOq:;,l7ll72)' 
Js' 

-Helicity coupling 

I w(a)jpn,AlA2) 

= _1_ ( dfl (O,q:; )D~A +A (q:;,O,0)*[p,aOq:;,A lA2)' (44b) 
41T Js' " -
Introducing Eqs. (44a) and (44b) into Eqs. and (42) 

respectively, we obtain the relation between the internal Lo
rentz basis and the Poncare irreducible bases in the CM 
frame: 

l(pvjs)~n) = 2 L(21 + 1)(/OSAljA) 
1T(2s + 1)(2j + 1) IA 

X 100 

sinh2adad)sA (a)* Iw(a)jggn'/s) 

2 
= L (SlA lS2A2IsA ) 

1T(2s + 1) A,A,A 

(45a) 

x1°O sinh2adad)sA(a)*lw(a)j~nAlAz). (45b) 

These relations show thatj is a Poincare invariant, the spin of 
the system, and that the integration over the variable a is in 
fact an integration over the invariant mass w(a) from the 
threshold to infinity, See Eq. (23). 

The completeness relatio (A6) allows us to invert the 
previous equations; we get 

Iw(a)j,~n,ls) = _.1_ L (/OSA ~A ) L ('" !l(P,v)dp 
2J + 1 A v Jo 

Xd)sA (a)l(pvjs)~n), (46a) 

I w(a)j,~n,AlAz) 

1 
= -- L (SlAlSzAzl sA ) 

2j + 1 s 

XL (00 !l(P,v)dpd)sA (a)l(pvjs)~n). 
v Jo (46b) 

The dependence on the invariant mass w(a) is now fully ex
hibited in the 0(3,1) matrices d)sA (a). 

Since they are not eigenstates of the linear momentum 
squarredpz, the states l(pvjs)~n) do not have good transfor
mation properties under the translations; but Eqs. (45) show 
that they have the same transformation properties under the 
diagonal Lorentz group as the Poincare irreducible states, 
i.e., 

~(A )I(pvjs)~n) = L l(Pvjs)A~n')Djn'n [L A ... ~A], (47) 
n' 

where the Wigner rotation L A~IA is an element of the little 
group of ~, which reduces to identity if A is a pure Lorentz 
transformation. 

We can now generalize the definition of the internal 
Lorentz basis to an arbitrary frame by the formula 
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(48) 

where we must remember that p is not the total 4-momen
tum of the two particles but onlyits direction, i.e., I:...lw. The 
states I (pvjs)/!...n) are related to the Poincare irreducible ones 
by the same relations (45) and (46) in which we must replace 
~byp. 

Let us consider the action of the parity operator on the 
linear momentum one-particle states3,s 

~(JI)lpPi) = cilJIpil7i)' i = 1,2, - - (49) 

where CI and Cz are the intrinsic parities of the two particles. 
Using the identity L llx = JILxJI -1, Eqs, (27) and (40), we 
deduce the action of the parity operation on the internal 
Lorentz basis 

~(JI)I(pvjs)~n) = ClCz( - 1y- s l(P - vjs)~n). (50) 

The time reversal operator 'T is represented on the one parti
cle state by the antiunitary operatorS

,9 

(51) 

Using the symmetries of the 0(3) CG coefficients and the 
identity 

DPV (A)*=(_1)n- aDPv (A) (52) Jnsa J - ns - u , 

we obtain 

.of('T)I(pvjs)~n) = (- 1Y+nI(P - vjs)~ - n), (53) 

Let us call ~ the operator which exchange particles 1 
and 2, Under this exchange ~becomes JI;& then by the pre
ceding method we obtain 

~ l(pvjs)~n) = ( - 1Y - s, - "I(P - vjs)~n). (54) 

If the two particles are identical, we must take into ac
count the symmetry properties of the two-particle states. In 
this case we haves l = Sz, and, using the preceeding result, we 
define two orthonormal combinations, one symmetric and 
the other antisymmetric, with SUbscripts S and A 
respectively: 

l(pvjs)~n) s = (lIV2)[ l(pvjs)~no) + ( - 1Y - 2s, 

1(P - vjs)~n)], (55a) 

l(pvjs)~n)A = (1N2)[I(pvjs)~n) - (- 1Y- 2
s, 

1(P - vjs)~n)]. (55b) 

Note that the symmetric (antisymmetric) states are not 
necessarily associated with bosons (fermions) because inter
nal symmetries must also be considered, for example, isospin 
for pions. 

VI. CONCLUSION 

Starting from the one-particle Lorentz basis, we have 
constructed a "two-particle internal Lorentz basis" of states 
l(pvjs)pn) characterized by: 

(ij) the total angular momentum of the two particles in 
the center of mass, i.e., the spin of the system. It is a Poincare 
invariant. 

(ii) n is the projection of the spin along the 3-axis. 
(iii) s is the vector sum of the two spins Sl and Sz; it is also 

a Poincare invariant. 
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(iv) P = P /w is the 4-direction ofthe total4-momentum 
of the system of the two particles. 

(v, vi) p, v are two internal Lorentz labels, which are in
variant under Lorentz transformations but not under the 
translations. They are the two variables which replace the 
invariant mass and the helicity of the Poincare irreducible 
states. We hope to come back later to the physical signifi
cance of these variables. 

The states [pvjs)E.n o have neither a given invariant mass 
nor a given 4-momentum, and hence they do not have good 
transformation properties under the translation group. 
However, under Lorentz transformations they transform 
like Poincare irreducibles states. 

These two-particle internal Lorentz bases have been 
used to derive two-variable expansions of the amplitudes and 
the observables for two-body scattering with arbitrary spins 
in terms of the unitary representation matrices of the Lo
rentz group.IO 
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APPENDIX 

In this appendix we give some definitions and results on 
the unitary representations of the Lorentz group and their 
Clebsch-Gordan coefficients, which are necessary for the 
understanding of this article. For a review of the various 
conventions for the Lorentz basis and for an extended bib
liography on this subject the reader is referred to the Appen
dix of Ref. 10. 

Any transformation AEX\ can be written 

A = R (epB O)B (a)R (a(3r), (AI) 

where B (a), aE[O, 00], is a boost along the 3-axis. The matrix 
element of the unitary representations specified by 
pE[O, 00), v = - inf(j,J2)' - inf(j,J2) + 1,.··,inf(j,J2)' are 

D ~;;'Jm (A ) = ID~~,m (epB O)d ;'1:111 (a)D~m, (a(3r), (A2) 
m 

where the boost matrices d j;;m (a) are defined by 

dj'J:",(a) = (- lY"j'[(2j, + 1)(2i2 + 1)]112 

x[ r(j,+ip+ 1)r(j2- ip+ 1) ]1/2 
r(j, - ip + l)r(jz + ip + 1) 

X rl

dt d<'.", (2t - l)d<"m (2to - 1) Jo 
X [te a + (1 - t )e"];p - 1 

withtu=te u[te- u+(I-t)e"] I [d<m are 0(3) d matri
ces]. The boost matrices have the following symmetries: 
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dj'J> = d jJ} " 

d jJ:~ = d jJ,f", 

djY;", = djf"., 

d jJ~-~'A = d '/;;A , 
djJ>, (a)* = d'/;:A (- a), 
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(A4a) 

(A4b) 

(A4c) 

(A4d) 

(A4e) 

dPV,(-a)=(-ly,-j'd P': (a). N,A .hI, - A (A4f) 

The orthonormality and closure relations for the two 
sets of matrices are [u(p,v) = p2 + VZ] 

"1 00 

sinh2a dad pv (a)d P'.v' (a)* ~ jJ2 m lJ1m 
m 0 

= !!... (2j, + 1)(2iz + 1) D(P _ ')tJ . 
2 J-t (p, v) P VV' 

(AS) 

I roo fl(P, v)dpd f;;m(a)d jJ:m,(a')* \' Jo 
= !!... (2i, + 1)(2jz + 2) D(a _ a')tJ . (A6) 

2 sinh2a mm' 

f fleA )dAD~;;'J,m (A )D~"~Li,m,(A)* 
(211')4 , 

= -(p ) tJ(p - p )tJ,.,/tJjJ;8jJ~8m,m/)m,m~' (A7) 
fl ,v --

fleA ) = sinBsinhzasin/3, dA = depdBdadad/3dr. 

= (217')' tJ(A - A ') (A8) 
fl(A) , 

tJ(A - A ') = tJ(ep - ep ')tJ(B - B ')tJ(a - a') 

X D(a - a')tJ(f3 - /3 ')t5(r - y'). 
The Clebsch-Gordan coefficients of 0(3,1) are defined 

by the tensor product reduction 

DP"" (A )DP"\" (A) 
jlmoJ~m; J.,m:j~m~ 

,,_~ Y- LX ~~;) dPj~,,?; ~:~~:I;;) 

G
PIVJ{J2vzIPv)*DPV .. (A) X ., I', t .f I jln) m . 
I m lh m 2 Jm 

(A9) 

They can be written as the product of an 0(3) CG coefficient 
times a 9[symbol analyticaly continued 

(Pl vJ{J2vz lpv) = < . m . lJm) [P1vJ{Jzvzlpv] . ., JI 112 ... , 
':/Imt/zm z Jm Jt/2 J 

(A 10) 

They satisfy the orthonormality and closure relations 

L (~IV~lVZ \~V)(~IV~ZV2 \~'v') 
j,m, ',hmt/lm Z Jm ',hm t/1m 2 J m 

=11(P,V)- 1t5(p -p')tJ""tJjj,tJmm" 

,}; ~ If fl(P,v)dp
j ~'I~I1(P'V) 

(
PIVJ{J1Vl\PV)( PIVJ{J2VZ \Pv)* 

X J,m1j1m1 jm v; m;J;m; im 

For short we use in the main text the quantities 

(All) 

(AI2) 

(AI3) 

and Eqs. (A9), (A 11), (A 12) can be written only by means of 
these quantities and the 0(3) CG coefficients, 
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We reduce the field equations of the two-dimensional O(n) nonlinear a-model to relativistic 
O(n - 2) covariant differential equations involving n - 2 scalar fields. 

I. INTRODUCTION 

The classical two-dimensional O(n) nonlinear a-models 
define integrable Hamiltonian systems. 1 Taking advantage 
of conformal invariance, the models corresponding to n = 3 
and n = 4 can be "reduced" to local relativistic scalar field 
theories involving 0(3) and 0(4) invariant combinations of 
the chiral field vectors and some of their derivatives. The 
0(3) nonlinear a-model is reduced to the sine-Gordon the
ory described by the Lagrangian density2 

.Y'(XO,xl) = !(ai<a)(J'"a) + cosa - 1. (Ll) 

The 0(4) nonlinear a-model is reduced to a local rela
tivistic theory involving two scalar fields a and {3. Its dyna
mics is described by the Lagrangian density 

J'(XO,XI) = !(a"a)(o"a) + !Ca" fJ)(iJ'fJ)tan 2(aI2) 

+ cosa - 1. (1.2) 

This theory is a generalization of the sine-Gordon the
ory, where {3 is identically zero. If we combine a and {3 into 
the two-component iso-vector 

.1. _ . ( 12)(COS(f3 12») 'I' - sm a. , 
Slll(f3 12) 

it become3 identical with Getmanov's "New Lorentz-invar
iant system"'.4 

.Y'(X0,xI) = I (a!, t/f')(J'"t/f') _ ~ t/f't/f'. (1.3) 
2 I - t/f'1/f' 2 

The conservation laws and the inverse scattering equa
tions for this "complex sine-Gordon theory" were derived in 
Ref. 1. Nontopological soliton, multisoliton and breather so
lutions were obtained in Refs. 3, 5. The transformation to 
action-angle variables was worked out in Ref. 5. 

As can be verified by crossdifferentiation, the Backlund 
transformation mapping solutions J/! of the complex sine
Gordon equation 

a {)IIJ/! + 2(J/!
ba

l' t/l)J'"J/! - (a!, t/lJ'"t/l)J/! + (1 _ J/!bt/l)J/! 
I' I - t/lt/l 

=0 

into solutions J/!' of this same equation is 

")Present address: Fakultiit fUr Physik der Universitiit Freiburg. D-7800 
Freiburg. 

R 
(ao + al )J/!' + R _ I (ao + at )J/! 

V 1 - t//bJ/!,b V 1 - J/!btfJ' 

= y- t{R - It//V 1 - t/ltfJ' - Rtf;V 1 - tf;'bJ/!'b }, 

(1.4) 

(ao - al )tf;' (ao - at)tf; 
R - I --:=======- - R -==== 

V 1 - J/!'btf;'b V 1 - tf;bJ/!b 

= - y{Rtf;/V 1 - tf;bJ/!b + R - Itf;V 1 - J/!'btf;'b }, 

with y a real constant parameter different from zero and 

(
co&u 

R= 
sinw 

- Sinw) , 
co&u 

2w = arcsin . 
( 

C'bl/f'tf;'b ) 

V 1 - tf;btfJ' V 1 - tf;lbJ/!'b 

In the present note we shall search for the relativistic 
differential equations to which the equations of motion of 
the two-dimensional O(n) nonlinear a-models can be re
duced for higher values of n (c.f., Refs. 6, 7). 

II. HIGHER GENERALIZATIONS OF THE SINE-GORDON 
EQUATION 

The classical O(n) nonlinear a-model describes the mo
tion of a string of n-dimensional classical spins qa(xo ,xl), 
a = 1, ... ,n, of unit length: qbqb = 1.8 The Lagrangian density 
is 

.Y'(XO,xl) = ~laJlqaJl'qa + x(qaqa - I)}, (2.1) 

where x = X(X°,xI) is a Lagrangian multiplier. The equa
tions of motion are 

aJlJl'q + (aJlqbJ'"qb)q = 0, qbqb = 1 

[x(XO,x l) = - (ai<qbJ'"qh)]. 

They are invariant under general conformal transforma
tions, space and time reflections, and under the group O(n) 
of internal rotations and reflections. 

We break the conformal invariance by requiring 

aolaoqb + al qbal qb = 1, aoqbal qb = O. (2.2) 

It is advantageous to use light-cone coordinates 

5 = (XO + XI)/2, 17 = (XO - xl)/2, 

in which the equations of motion and the normalization re
quirements read 
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b bIb b qsqs = = q'1 q'1' 

(2.3) 

The subscripts 5 and 17 denote differentiation with respect to 

5 and 17· 
In Ref. 1, in our quest for inverse scattering equations, 

we started from the Backlund transformation for the chiral 
fields q. In the course of the derivation we obtained two sys
tems of Riccati Eqs. (VII. 11.1) and (VII.ll.2) the compati
bility of which requires the following relations to hold 

a" + sina(s( + )s( - » = 0 
f:,1/ II , 

(tanaS< +» + a "s( -:- ) + tana(S< + )s< -» . = 0 
I} '/ S I} I} ' 

j = 2,3, ... ,n - 2, 

s( + ) - s( - ) + [s( + ) s( - )] = 0 
'/ t; , • 

Here 
a = arccos(q~q~), 

s< ±) = - s< ± )T[9) s< ±) = (b a b a) 
, IJ 1~1 J' 

i,j = 1,2, ... ,n - 2, 

with q, qr;, b l = (q'1 - cosaqr;)lsina, bk ; k = 2, ... ,n - 2, an 
orthonormal basis in R". 

These relations form the starting point of the present investi
gation. The last equation can immediately be solved: 

"-2 
s~ l ) = ~ (f~ If) L '1 

b~1 

(2.4) 

with II = J,J; , ... ,/" _ 2 forming an orthonormal basis in 
R" - 2. Now the first two equations read 

(1;,/ + cotaar; I" + (cosa sina) - la'1 Is 
"-2 

+ I (f:I,~}f= 0, 
b~1 

"-2 
as'1 + sina - tana I (f tl:) = o. 

By setting 

sinal = cp 

b=1 

they can be combined into a single equation 

(2.5a) 

(2.5b) 

+ (cp'CP'1)CPs + v' 1 - II 112 = 0 (2.6) 
CPS'1 1 _ IIcpll2 cP cP 

or 

a if' + (cp.JftCp}i1'cp + e-V(cp.Jftcp}avCP 
ft cp 1 _ IIcpll2 

+ v' I - IIcpll2 cp = O. (2.6') 

Here the dot denotes the Euclidean scalar product in the 
space R" - 2 and vertical twofold bars stand for the corre
sponding Euclidean norm. 

This equation possesses a one-parameter family of 
Backlund transformations, the transcription of the Back
lund transformations for the chiral field vectors q to those 
for cp, and infinitely many local covariant conservation laws, 
e.g., 
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{~II CPs 112} = {v' 1 - IIcpll2 }s' 
2 v' I - IIcpll2 '1 

{111m 112 + ~ (cp'CP'1)2} = {v' 1 _ IIcpll2 } , (2.7) 
2 "r" 2 1 _ IIcpll2 5 '1 

{~ 11(v'I~IIcpll2)sI12 - + 11v'I~IIcpll2114L 
= _ {v' 1 - IIcpll2 II CPs 112} . 

2 v' 1 - IIcpll2 s 
Had we started from 

qs - cosaq'1 
q, q7J,b l = . , bk;k = 2, ... ,n - 2 

sma 

as the orthonormal basis in R", we would have obtained in an 
analogous manner the equation 

XS7J + (x'Xs)X7J + v'1 - IIx 112X = 0 (2.8) 
1- IIx 112 

or 

(2.8') 

Though each of the two Eqs. (2.6) and (2.8) possesses 
infinitely many local covariant conservation laws, none of 
them can be considered a direct generalization of the real 
and complex sine-Gordon equation. We shall arrive at such 
a generalization (for the case n = 6) by studying the ortho
gonal transformation fJt mapping the solutions cp ofEq. (2.6) 
into the solutions X ofEq. (2.8): 

X = fJtcp, 

- 1 b 
fJt 7J = -----;::====- fJtcpacp ~I a , 

1 - v' 1 _ IIcpll2 

where I ba = - lab (a,b = 1, ... ,n - 2) denote the infinites
imal generators of the group O(n - 2) for rotations in the 
(a,b) planes. For later convenience we shall work with the 
covering group. Let r a, a = 1, ... ,n - 2, stand for the lowest
dimensional matrix representation of the basis elements of 
the Clifford algebra 10 

rar b + rbr a = U ab 

and let the symbol [ , ] denote the commutator. The Lie 
algebra with basis J ab = ! [r a,r b ] is a representation of 
the Lie algebra of the group O(n - 2). The corresponding 
representatives U of the space-time dependent rotations Y? T 

satisfy the following equations 

Us = 1 + cosa "f2 I alp abu 
cosa a.b~ t 

n-2 

U" = (1 + cosa) I lal,~rbu 
a.b= 1 

UU + = U + U = 1, det U = 1. 

K. Pohlmeyer and K.-H. Rehren 

(2.10) 

2629 



                                                                                                                                    

Consistency requires the representatives U to satisfy 

U + aSUTJ+aTJUS +~tan2~[U U+ -U U+]U 
STJ sina 2 TJ s s TJ 

+ HUTJut + USU,;-]U=O, 

U + U = UU + = 1, detU = 1. 

Equation (2.5b) now reads 

a STJ + sina = 2 ta~2(a/2) {UTJ U t + Us U,;- }. 
sma 

If we set 

sin~ U= V, 
2 

we obtain 

VSTJ + [1 - VV + ] - 1 Vs V + VTJ + [1 - VV + ] V = 0, 
(2.11) 

VV + = V + V = multiple of the unit matrix, 
detV= real. 

Independently of its origin, this system possesses an in
finite set of local covariant conservation laws, e.g., 

Tr{1[ 1 - VV + ] - 1 V,;- V t } TJ 

= - TrHVV +},; (5--H/, V-V +) 

(2.12) 

Trl-HI- VV+]-IV';-sV,;-1 +1[1- VV+]- 2vsvt 

X [(VV +)55 - 4Vs V t ] + HI - VV +] - 3 

X (Vg V t )21" 

= Tr{ - V,;- V t (1 - HI - VV + ] - I)},;-, 

(5-1], V-V +). 

The system is likely to be integrable. It contains the solutions 
of (2.10) as special cases subject to constraints, e.g., for the 
case n = 5 the constraints are 

[[ Vs V + ,VTJ V + ], [Vg V + ,VTJ V + ]] = 0, 

[ [Vs V + ,VTJ V + ], [VTJTJ V + ,Vs V + ]] = O. 

The constraints are simple enough to be resolved only in two 
cases: n - 2 = 2, the case discussed in Refs. 1,3,5, and 
n - 2 = 4 [0(4) factorizes!]. In the following, we shall con
centrate on the latter case. 

III. THE REDUCED EQUATION FOR THE 0(6) 
NONLINEAR a-MODEL 

In this section we shall derive a recursion formula for 
the conserved current densities valid for all n;;;.3, and caIcu-

I 
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late explicitly the first three continuity equations for n = 6. 
Moreover, a general formula for the N-soliton scattering so
lution is derived. For a special three-soliton configuration it 
is written in a form which shows the space-time dependence 
of the field vector most transparently. 

In the case under consideration, Eq. (2.10) splits into 
two sets of equations, each involving an SU(2) matrix. We 
only need to consider one of them. Parametrizing the SU(2) 
matrix by a four-dimensional unit vector n, we arrive at 

1
2
+ cosa {(fs.n){ - (fn}{s + [n,f,fs n, 
cosa 

(3.1) . 

n =TJ 
l+cosa{ } 2 (fTJ·n){ - (fn}{TJ + [n,f,fTJ ] , 

where [A,B,C L = Eijkl A j BkC1 denotes the vector product 
in R4. Writing tP = sin(a/2).n, the compatibility condition 
for n and the evolution equation (2.5b) for a are cast into the 
single equation 

tP + (tP·tPs)tPTJ + (tP·tPTJ)tPs - (tPs·tPTJ)tP - LtP'tPs-tPTJ] 

STJ 1 _ IitPI12 

+ (1 - IltPl12)tP = O. (3.2) 

The conservation laws are found essentially by a method due 
to Wadati, Sanuki, Konno}l The Riccati equations 
(VII. 11. 1 ) and (VII.ll.2) of Ref. 1 yield the continuity 
equation 

( 
rps .z) + r(rp'Z) - tV 1 - IIrpl12 ),; = 0 

V I-llrpW " 

whereZ a = - 2 2j:i f/~. The expansion ofZin powers 
of the parameter r around r = 0 and r = 00 leads to two 
series of conservation laws, e.g., around r = 0 

(Z\ ,Z\)1) - 2(V 1 - I\rpl\2)s = 0, 

(Z\ ·Zm + \ ),' + (rp,Zm),;- = 0, m;;;. 1, 

where 

rp,;-
Z\ = -vr I=_=I\=rp =1\2 ' 

(3.3) 

Zm + \ = (Zm) .. + I [HZ\ ,Zk)ZI - !(Zk ,Z/)ZI ], 
k+l=m 

[cfEq. (2.7) above]. 
For the case n = 6 the first three conservation laws in 

terms of tP arel2 
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1 1 1 - 311tfll
z 

Z 3 
(1 -lltfIIZ)z (tfl;·tfm)(tf·tfl;/;) + 2 (1 -lltfIIZ)3 (tfs·tfm-)lltf,11 + (l_lltfI12)/tf·tf51;5)(tfS·tf5s) 

4 Z 1 7 - 811tfll
z 

II 11211tf liz + (1 -lltfIIZ)3 (tf·tfssg)lltfl;ll (tf·tf/;) - 2 (1 -lltfIIZ)3 tfl;5 5 

3 - 711tfll
z 

(tf .. tf )Z _ 4 1 - 311tfll
z 

(tf ·tf, )lltf. IIZ(tf.tfc) _ ~ 15 - 1711tfll
z 
(tf·tf )lltf·11 4 

(1 _ Iltf11Z)3 5 55 (1 _ Iltf11Z)4 S 55 5 , 2 (1 _ Iltfllzt 55 5 

+ ~ 2 - 1211tfl12 + lliltfl14 Iltf,116 _ 1 - 511tfll
z 

Iltf,114(tf.tf )z} 
2 (1 -lltfIIZ)5 5 (1 -lltfIIZ)5 5 I; 'I 

+ {+ \ -=-~I~W Iltf!;!;II
Z 

- 1 _ ~ltfllZ (tfS·tf!;!)(tf·tfl;) + + (~ = ~~~;Z (tf·tfI;5)lltfs II
Z 

_ ~ (2 - 311tf11Z)Z 11.1'.11 4 _ 5 Iltf.-IIZ(tf.tf, )z} = O. 
2 (1 _ IltfIIZ)Z '1'5 (1 -lltfIIZ)2 5 S I; 

(3.4) 

A second series is found by interchanging (5+------+1]) and ([A,B,C]+------+ - [A,B,C]). 

Equations (VIII.9) and (VIII. 10) of Ref. 1 allow us to apply the inverse scattering method to solve the differential Eq. 
(3.2). Let us write the linear operators Land B in the form 

_ .(1 O)a _ ~( 0 rpsN 1 _ Ilrpll2) 
L (1]) - I 0 _ 1 5 2 rp t N 1 _ Ilrp 112 0 ' 

B = L ( - v' 1 - IIrpl12 1 rp ) 
2 rp+ v'1 -llrp1121 

where 

rp = _ io-Irp I _ i~rp Z _ i~rp J + lrp4 . 

In a similar way as was worked out by Takhtadzhyan to calculate the N-soliton-scattering in the sine-Gordon theory, 13 we find 
for r(A ) = 0 the "scattering potential" 

rpl; = - 4tr[ [1- W_ (5,1])W + (5,1])] - la, W _ (5,1]»)' 
v' 1 _ IIrpl12 -

(3.5) 

rp = - (v' 1 ~ IIrpl12 ) 1) 

Here W t- are GL(2,C)-valued N XN matrices with entries 

W _ J" (5,1]) = 1 exp(x j + xk)S - _l_1])m j' 
Xj + Xk 2x j 

- 1 ( 1 ) W+ Jk (5,1]) = exp (xj+xk)S- --1] (m f )+· 
x j + Xk 2x j 

x j are N different arbitrary complex numbers with Rex j > 0, x f (x)*, and m j are arbitrary constant GL(2,C) matrices 
subject to the symmetry relation m f = ~m~~, which is due to a symmetry of the scattering operators L (1]). The trace "tr" 
denotes the sum over the diagonal matrix-valued entries of the N X N matrix. For a more detailed derivation see Ref. 12. The 
pairs (x j,X f) correspond to NB breathers in the asymptotic state of the solution, the Ns = N - 2NB real x j are related to 
solitons. rp and tfdepend on the vectors m j in an SO(4)-covariant manner. Only the real partsofm j survive in Eq. (3.5). Hence 
there are just Ns + N B independent vectors available to build the space in which tf develops. Thus, the simplest solution ofEq. 
(3.2), exhibiting, however, those features which are characteristic for the case n = 6, is the three-soliton scattering solution. 

We present this solution for the case where the polarizations of the solitons are mutually perpendicular (m; = - idM;, 
i = 1,2,3): 

(M;lx;)E;(1 - ~j C;j E5 + c;EJED . 
2 2 2 2 Z 2' I = 1,2,3, 

1 + ~ j a j E j + ~ jk ajk E jE k + a 123 E I E 2 E 3 

(M,MZMJ/x , X2X3)EIE2E3(XI - X2)(X2 - x J)(x3 - XI )/(XI + XZ)(x2 + X1 )(X2 + XI) 

1 + ~j a j E] + ~jk ajkE]E~ +aI23E~E~E~ 
with the notation 

E;(5,1]) = exp(2X;S - _1_1]) = exp[(x; + _1_\..-1 + (x; __ 1_\..-0], 
2x; 4x;r 4x;r 
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M~(Xi-Xy 
Cij = = -2- 2' 

4Xj (Xi + X) 

M~Mk (Xi-X)2(Xi-Xkf(Xj-Xk)4 .. 
Ci = 2 2 4 ',J*z*k; 

16x~Xk (Xi + X j) (Xi + Xk) (X j + xd 

M~ 
ai = 4X2 ' 

I 

M7M~ (Xi - X jt 
aij = 16x7X~ (Xj + X j)4 ' 

M~M~M~ (XI - X2)4(X2 - x)\x) - Xlt 
a -

12) - 64x~x~x~ (XI +X2)4(X2 +X)4(X) +XI)4 

We observe that-at least in this example-we can write 

if! = 2 trl [1 - W ~ W + ] ~ las-a71 W ~ J. 

IV. CONCLUSIONS 

The field equations of the two-dimensional nonlinear 
O(n) a-model can be reduced to either one of two systems of 
relativistic differential equations involving (n - 2) scalar 
fields in an O(n - 2) covariant manner. Both systems pos
sess a denumerably infinite set of local covariant conserva
tion laws. 

The representative of the space-time dependent rota
tion mediating between the two reduced field vectors itself 
satisfies a differential equation invariant under the restricted 
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Poincare group. For n - 2 = 4 a recursion formula for its 
local conservation laws is derived. A formula for explicitly 
calculating multisoliton scattering solutions is given. 
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Albedo problem of radiative transfer in inhomogeneous 
isotropically scattering atmospheres: Application of the 
maximum variational principle 

Madhoo Kanal 

Department of Physics, Clark University, Worcester, Massachusetts 01610 
(Received 6 December 1978) 

An infinite medium Green's function, constructed from a maximum variational principle, 
is used to solve the albedo problem of radiative transfer in an optically inhomogeneous 
medium. We assume that the medium is isotropically scattering; however, the albedo 
for single scattering is kept as an arbitrary continuous function of the optical depth. For 
a finite medium (such as the slab problem in neutron transport theory) we recommend 
that use of some experimental measurements be made to circumvent the mathematical 
difficulty of solving coupled singular integral equations. For a semi-infinite medium we 
obtain analytic solution for the albedo problem in the framework of the trial Green's 
function obtained from the maximum variational principle. For the basis functions we 
make heavy use of Case's eigenfunctions with a slight generalization to account for the 
inhomogeneous character of the medium. We also make heavy use of our previous work 
(c f. Kanal and Moses, a reference in this paper) which should be consulted in 
conjunction with the present work. 

1. INTRODUCTION 

Since the times of Rayleigh, Schuster, Milne, Edding
ton, and subsequently Chandrasekhar, much attention has 
been given to the transfer of radiation to the special cases 
where the atmospheric properties are so specialized that the 
equation of radiative transfer lends itself to reasonable trac
table analytical solutions. For instance, such is the case when 
the medium is optically homogeneous so that, from the 
mathematical point of view, the equation of transfer be
comes separable in the angular and optical coordinates. In 
this regard, inter alia, one has Case'sl powerful normal mode 
expansion technique, Chandrasekhar's2 discrete ordinate 
method, or Ambarzumian's3 method of invariant imbed
ding. For the classical works on radiative transfer, one 
should refer to the excellent collection of collected papers 
given in the book edited by Menzel.' 

When the separability criterion cannot be met, and gen
erally it is not, there is unfortunately no direct way of adopt
ing these powerful techniques in solving the boundary-value 
problems. One example of this case, where the equation of 
transfer is not separable, is when a plane parallel atmosphere 
is vertically inhomogeneous so that the albedo for single 
scattering bears some arbitrary dependence on the optical 
depth. In particular, for the terrestrial atmosphere, the verti
cal profile of the neutral species density distribution is such 
that there is no one, single well-defined function which char
acterizes the albedo for single scattering. Inherent in the 
boundary value problems is also the difficulty of solving the 
appropriate singular integral equations for the expansion co
efficients. For instance, even for the seemingly simple case of 
the albedo problem for a finite homogeneous isotropically 
scattering atmosphere bounded by two optical planes, the 
best one can do is to solve the integral equations iteratively. 

This is the finite slab problem encountered in neutron trans
port as well and is discussed in Ref. 1. Only for the semi
infinite case is the exact solution known. In view of these 
difficulties, we present here a pratical way of dealing with the 
albedo problem for an optically finite atmosphere. For the 
present we restrict our treatment to the case of isotropic scat
tering, but allow the albedo for single scattering to bear an 
arbitrary dependence on the optical depth. Our procedure is 
as follows: In a paper by Kanal and Moses,s the boundary 
value problem was set up in a manner which places maxi
mum burden of difficulty on the construction of a single 
infinite medium Green's function for a rather large class of 
problems. 1,6 Thus, a greater flexibility is achieved with re
spect to boundary conditions. As in the classical problems of 
electrodynamics, we find that, in the integral representation 
of the specific intensity, only the boundary values of the radi
ation field occur in association with the Green's function [cf. 
Eq. (10) in Ref. 5]. This fact is, of course, well known. To 
solve for the radiation field everywhere, we propose the obvi
ous, that the boundary value of the radiation be provided by 
an actual measurement at one of the optical planes bounding 
the atmosphere. For the terrestrial atmosphere, for instance, 
that would consist of ground-based measurement of the spe
cific intensity for all angles for the chosen frequency of radi
ation. Then knowing the incident flux at the top of the atmo
sphere, one can solve for the reflected intensity and in 
consequence determine the state of the radiation field every
where in the atmosphere. In the case when the suitable ex
periments are set up in such a manner that one has simulta
neous information on radiation at both optical planes, then 
the problem of determining the radiation field everywhere 
reduces to a mere angular integration of the infinite medium 
Green's function appropriately weighted by the boundary 
values. In any event we are always faced with the problem of 
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constructing the Green's function. In Ref. 5 we have used a 
maximum variational principle to circumvent, at least par
tially, this difficulty. Our present treatment of the finite albe
do problem relies entirely on the results obtained in that 
reference. For that reason we recommend to the reader that 
Ref. 5 be consulted before proceeding with this paper any 
further beyond this section. 

2. INTEGRAL REPRESENTATION OF THE 
SPECIFIC INTENSITY 

The central problem we are addressing is the albedo 
problem, which requires obtaining the radiation field every
where in a source free optically finite medium, if a parallel 
beam is incident on one optical plane and the character of 
radiation entering the medium at the other plane is pre
scribed. This is strictly the albedo problem. We shall, howev
er, set up a more general boundary value problem so that the 
procedure given here can be applied to a larger class of prob
lems; including the slab problem of neutron transport. To 
focus our attention, we shall use the terrestrial model and set 
up the coordinate system accordingly. 

In the usual real coordinate, if z represents the altitude 
measured from the ground up and j.1 the cosine of the angle 
with respect to the positive z axis, then the equation of radia
tive transfer for an azimuthally symmetric plane parallel at
mosphere may be written as 

j.1 ~J(z,j.1) +,.1, 1-- I I (z,j.1) = _c - dj.1' J(z,j.1/), A -I II 
az 2 -I 

(1) 

where I (z,j.1) is the specific intensity of radiation in Ray
leighs, AI is the mean free path of photons corresponding to 
all possible photon-matter interactions, and Ae is the mean 
free paths of photons corresponding to the elastic scattering. 
The inverse mean free paths are also referred to as the total 
absorption and elastic scattering coefficients, respectively, 
and are defined as the product of the number density and the 
cross section summed over all the species and their quantum 
states. Thus, explicitly 

A ,.- 1= 1 nl(z)Q~e)(v), (2) 
I 

A t- 1= 1 nl(z)Q}t)(v), (3) 
I 

where n{(z) is number density as a function of altitude z, 
Q ~c\v) is the frequency (v) dependent elastic scattering cross 
section, and Q ~')( v) is the total absorption cross section. The 
subscript J in all quantities refers to the J th species. Since we 
are dealing with incoherent radiative transfer, the frequency 
v appears as a parameter, and we omit the explicit use of that 
symbol. We define the optical depth, x, in the usual manner, 

x = (,YO dz' A ,- 1= (''' dz' In{(z') Q}I) (4) 
Jz Jz 1 

and the albedo for single scattering w(z) as 

w(Z) = A c- 1/,.1, 1- I = ln l (z)Q}C)/2>I(Z)QY). (5) 
{ / { 
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From definitions ofx and w(z) we see that in general w will be 
a function of x, which by definition characterizes an inhomo
geneous atmosphere. If the atmosphere consists of a single 
species, then w is independent of the density and reduces to a 
mere ratio of scattering and total cross sections. In other 
words, the fraction of photons, which are elastically scat
tered on a single encounter is independent of the density 
distribution of the single species. This is also true for a muIti
species atmosphere provided for any given frequency ofradi
ation the medium is conservative; i.e., there is no true ab
sorption and the only process of removal of photons from the 
main beam is by pure elastic scattering process. In that case 
w is unity (conservative). For the Venus atmosphere, w is 
very close to unity (w~O.99) in the visible as is evident from 
its extreme brightness. 

We now set up the general boundary-value problem for 
a finite atmosphere under the assumption that we know the 
boundary conditions at the two surfaces optically bounding 
the atmosphere. In terms of the optical scale defined by Eq. 
(4) and w(x) defined by Eq. (5), the equation of transfer (1) 
takes the standard form given by 

aJ w(x) II , j.1-(x,j.1) + J(x,j.1) = - dj.1' J(x,j.1) + Q(x,j.1),(6) ax 2 -I 

where we have added a source term Q(x,j.1), which will al
ways be assumed known, and also changed the sign of j.1 so 
that in the optical scalej.1 is positive for the radiation entering 
the atmosphere from the top, i.e., z = 00. This is purely for 
the reason of adhering to the notation used in Ref. 5. In the 
same reference we have shown that if one considers a time 
reversed adjoint equation 

a - -
- j.1 -G (x, - j.1---+Xo, - j.1o) + G ax 

w(x) II d' G-( / ) = -- j.1 x, - j.1---+Xo, - j.1o 
2 . I 

[w(x)] 1/2 + t5(x - xo)t5{f.1 - j.1o), 
2 

(7) 

which is the Green's function, then for a finite atmosphere 
optically bounded between O,;;:x,;;:xb the appropriate combi
nation of Eqs. (6) and (7) leads to an integral representation 
for I (x,j.1) given by 

I (x,j.1)@(x)e(xl> - x) 

2 II dj.1' j.1'[I(O,j.1')G(O, -f1'---+X, -j.1) 
[w(x)] 112 _ I 

_ 2 
-J(Xb,f1')G(Xb' -j.1'---+x, -j.1)] + [W(X)]1/2 

X (X, dx' II df1' G(x', - f1/---+X, - j.1)Q(x',j.1'), 
Jo - I 

(8) 
where e (x) is the Heaviside step function. We also showed 
that G satisfies a reciprocity relation 

[w(x)] 112 G(x, -f1-->-xo, -j.1o) 

(9) 
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where G (xo,lLo-+X,J.L) satisfies the following equation: 

a 
IL - G (xo,J.Lo-+X,J.L) + G ax 

lLl(X) fl d' G( ') = -- IL Xo,lLo-+X,1L 
2 -I 

+ [lLl(X)] 112 8(x _ xo)8(p, - ILo), 
2 

(10) 

It is worthwhile to point out that, in view of the lack of 
translation invariance of if and G, it is important to keep in 
mind the order of arguments of both Green's functions if 
and G. Thus in if (G) the right (left) part is the location of the 
plane source. In E~ (8) we may now replace the adjoint 
Green's functions G by G with the use of the reciprocity 
relations (9). This leads to the integral representation for 
I (X,IL) of the form 

I (x,IL)e (x)e (Xb - x) 

= 2 fl dIL'IL' [ 1 I (O,IL')G (x,IL-+xb,IL') 
_ I [lLl(O)] 1/2 

- 1 I (Xb,IL')G (X,IL-+Xb,J.L')] 
[lLl(Xb)] 1/2 

+ 2 (Xh dx' fl dIL' Q (x' ,IL') G (X,IL-+X' ,IL'). 
Jo - , [lLl(X')] ,/2 

(11) 

From the integral identity (11) it is clear that the state of 
the radiation field is completely determined when its bound
ary values I (O,IL), I (x b ,IL), and any internal sources Q (x,IL) 
are known for all angles. This is provided we can construct 
the Green's functions G from the solution ofEq. (10). Ifone 
assumes for the moment that G is known, then from the 
integral identity (11) we obtain the integral equations for the 
reflected intensity [Le., I (O,J.L), IL < 0] and the transmitted in
tensity [i.e., I (Xb ,IL), IL > 0] under the boundary conditions 
that we know the incident intensity [i.e., I (O,J.L), IL > 0] and 
the intensity entering from the bottom of the atmosphere 
[i.e., I (Xb,IL), IL < 0]. Thus, in the limit that x approaches 
x = 0 and x = xb, we obtain 

I (O,IL) = 2 f' dIL' IL [ I (O,J.L ') G +(O,IL--D,IL') 
_ , [lLl(O)] ,/2 

I (Xb,IL') G (0 ')] - ,J.L-+xb,IL 
[lLl(Xb)] 1/2 

2 (XI. dx' f' d' Q (x' ,IL') G (O,J.L-+x' ,IL'), 
+ Jo _, IL [lLl(X')] ,/2 

(12) 
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X f' dIL'Q(X',IL') 1 1/2 G(Xb,IL-+X',IL'), 
- , [lLl(X')] 

(13) 
where + ( - ) on G ± represents the boundary value of G as 
x-+O + (X-+Xb - 0, i.e, from left ofxb). 

Thus in principle one may solve integral equations (12) 
and (13) under the aforementioned boundary conditions and 
find I (O,IL)forlL < OandI (Xb ,IL)forlL > Oand use those in Eq. 
(11) to find I (X,IL) everywhere. Analytically, a rigorous solu
tion for a finite atmosphere has not been obtained. Even for 
the case when lLl is constant, only two limiting cases lend to 
some useful iterative solutions. One is when the atmosphere 
is optically very thick Xb > 1, and the other is when it is opti
cally very thin Xb .( 1. Only for the semi-infinite atmosphere 
is a rigorous solution known. 1

•
2 With the additional compli

cation of a variable lLl, the situation becomes even more hope
less. We, therefore, propose to combine the analytical meth
od with the experimental measurements and require that the 
measurements be of sufficient accuracy to test the self-con
sistency of integral equations (12) and (13). We discuss two 
cases in detail: 

(a) when both I (O,IL) and I (xb,J.L) are given by measure
ment for all angles, and 

(b) when either of I (O,IL) or I (Xb ,IL) is given for all 
angles. 

In both cases we shall require that the incident radiation be a 
known quantity. As our difficulty then lies in constructing 
the appropriate Green's function from Eq. (10), we, there
fore, discuss the resolution of that problem first as recom
mended in Ref. 5. In particular, for case (b) we shall require 
that the planetary reflection condition be given, i.e., 

I (x b,J.L) = known conditions for IL < O. 

3. AN APPROXIMATE GREEN'S FUNCTION 

We choose a trial Green's functions which maximizes a 
certain functional. Thus, following Ref. 5, we choose the 
trial Green's function GT [see Eq. (59) in Ref. 5] such that 

lLl(Xo) 
GT(Xo,lLo-+X,IL) = a(xo) -- GiXo,lLo-+X,IL), (15) 

lLl(X) 

where Gg is the solution ofEq. (10) with lLl(X) replaced by 
lLl(Xo) (here Xo is the source point) and a(xo) is a scaling pa
rameter determined by the variational principle and is given 
by [see Eq. (66) in Ref. 5] 

a(xo) = [1 + W(xo)lF[pgs]] -', (16) 

where 

fOO d (lLl(XO) ) 2 ( ) W(xo) = x -- - 1 Pgs Xo,X , 
- 00 lLl(X) 

(17) 

andpps(xo,X) is the weighted density function for the plane 
source located at Xo and is defined as [see Eq. (56) in Ref. 5] 

(X x) = lLl(Xo) ( exp( - I x - Xo Ilvo) 
Pgs 0, 2 No+(xo) 

11 dv ) + exp(-Ix-xol/v). 
o N(v,xo) 
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The quantity Ffpgs] in Eq. (16) is the value of the functional 
(see Eq. (64) in Ref. 5] 

F [pgs] = I: 00 dx Kg(x,xo) pgs(xo,x), 

where the kernel Kix,xo) is defined by 

(i)(xo) 
Kix,xo) = -- E1(lx - x o/) 

2 

(19) 

(20) 

with E1(lx - x o/) representing the exponential integral, i.e., 

E1(x - xol) = f ~ exp ( - IX
It 

- xol ) (21) 

Finally, the quantity Vo in (18) is the zero of the dispersion 
function 

(22) 

defining a trajectory as Xo changes. The quantites No.(xo), 
N (v,xo) in (18) are the normalization coefficients of Case's 
discrete and continuum eigenfunctions defined below. The 
Green's function Gg in (15) has the representation (see Eq. 
(48) in Ref. 5] 

(
-Ix - xol) il 

dv Xexp + 
Vo 0 N( ± v,xo) 

where ± (-) is for x >Xo (xo <x) and ¢o ± Vt,xo), ¢vVt,xo) 
are discrete and continuum Case-eigenfunctions given by 

'" (" ) _ vo(xo)(i)(xo) 
'f'0 t- '1"',XO - t 

- 2 [ ± vo(xo) -It] 
(24) 

¢ .. Vt,xo) = V(i)(xo) 9 _1_ + Ii (v,xo)<5(v -It), (25) 
2 v-It 

Ii (v,xo) = 1 - V(i)(xo) tanh-Iv, (26) 

No.(xo) = (i)(xo) v~ (xo) ((i)(x
o) __ 1_). (27) 

2 Va (xo) - 1 Va (xo) 

and 

No- = - No.· 

We notice that in the spectral representation of the 
Green's function, given by (23), the discrete and continuum 
eigenfunctions involve the argumentxo• This is a fact of great 
importance to keep in mind for the reason that the way Gg 
was constructed from Eq. (10), we replaced (i)(x) by (i)(xo), 
which corresponds to saying that Gg is an infinite medium 
Green's function for that medium whose scattering and ab
sorption properties are copies of the "local" properties 
where the plane source is located, i.e., at x = Xo. In other 
words, one has a continuum ensemble of "source functions" 
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representing the actual medium. One may ask the question 
as to the nature of the absolute uniform error (i.e" for all xo) 

introduced in such a representation. We have addressed that 
question from the point of view of the maximal variational 
principle and given an estimate of that error (see Eq. (68) in 
Ref. 5], which is 

E(Xo) = IF [PTS] - F[pgs ]IfF [PIS]' (29) 

where Ffpgs ] is the functional given by (19) and the function
al FfpTs] is defined by (see Eq. (63) in Ref. 5] 

F [PTS] = a(2 - a)F[pgs] - a 2 W(xo) (30) 

Here 

PTS(XO,X) = [(i)(x)] 1/2 Pr(xo,x), 
(31) 

PT(XO,X) = I~ 1 dlt I~ I dlto GT(xo,lto----+x,It)· 

Thus, for the trial function GT chosen here, Eq. (29) should 
give a fairly accurate estimate of the confidence factor in that 
choice. A more general and, in fact, an exact bound on the 
error will be presented in the near future in the context of the 
solution of the Gel'fand-Leviton equation. We finally wish 
to point out that in the choice of our notation the argument 
in Gg (xo,lto----+x,lt) is such that the left part (xo,lto) represents 
the location of the plane source. We follow this convention 
throughout the present treatment. 

4. ALBEDO PROBLEM 

Having obtained an approximate Green's function G,p 
given by (15) with Gggiven by (23), we go back to the integral 
representation (11) of the specific intensity I (x ,It ) and re
place G by GT and write 

Ir(x,lt)e (x)e (xb - x) 

= 2a(X)[ (i)(X) I' dlt' It'I(O,It')Gix,It----+O,It') 
(i)'I2(O) _, 

(i)(X) II dlt' It'I (Xb,It')GiX,It--+xb,It') 
(i)ll2(Xb) _, 

+ (X'' dx (i)(X) I' dlt' Q(X',It')GiX,It----+x',It'»), 
Jo (i)ll2(X') -, 

(32) 

where we have subscripted I (x ,It ) with T to indicate the use 
of a trial Green's function and used the relation (15) between 
G

T 
and G

g 
to express the right-hand side in terms of Gj?' It is 

convenient to introduce the following quantities. 

A (x ,It 10) = 2 1/2 r dlt' It'I(O,It')G/x,It-+O,It'), 
[(i)(X)] -, (33) 

A (x,ltlx b ) = 2 1/2 II dlt' It'I(xb,It')GiX,It--+Xb,It'), 
[(i)(X)] - I 

(34) 

B (x,ltlx') = [(i)(~] 1/2 I~ 1 dlt' Q (x',It')GiX,It----+x',It'), 

(35) 
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(36) 

(37) 

and 

R (xix') = [ 
w(X) ) 3/2. 

w(x') 
(38) 

In this notation Eq. (32) becomes 

IT(x,/-l) = EJ(X)EJ(Xb - x) 

= a(X)[R (xjO)A (x,/-lIO) - R (xjxb)A (X,/-liXb) 

+ f' dx'R (x Ix')B (x,/-llx') ] (39) 

The corresponding integral equations for the boundary val
ues of 1 (x,/-l) are obtained by lettingx~,xb' These are 

I{(O,/-l) = a(O)[A (0,/-l10) - R (Olxb)A (O,/-llxb) 

+ iX, dx'R (Olx')B (O,/-lIX')] (40) 

and 

Ir(xb ,/-l) = a(x/J) [R (xb 10)A (Xb ,/-l10) - A (Xb ,/-llxb) 

+ LX"dX'R(XbIX')B(Xb,/-lIX'»)' (41) 

For the strict albedo problem, the boundary conditions are 

(42) 

and 

(43) 

where Ib (xb,/-l) for /-l < ° is the reflected intensity at the bot
tom, Thus, in principle, one should solve integral equations 
(40) and (41) under the boundary conditions (42) and (43) to 
obtain 1 T(O,/-l) and 1 r(xb,/-l) for all values of/-l. Then knowing 
A and B from (33)-(35), we determine the state of radiation 
everywhere from Eq. (39). However, as we mentioned earlier 
in Sec. 2 that the rigorous solution of the coupled integral 
equations (40) and (41) is not known, we propose the use of 
experimental measurements to circumvent that difficulty. 
We discuss two cases. 

A./(O,J,L) and I(xb,f,l) given by experiment 

With the modern advent of satellites, it is quite feasible 
to have satellite-borne optical sensors to measure the radi
ation field of any given frequency at high altitudes to obtain 
the data on 1 (O,/-l) for all angles. It then would be required 
that simultaneous measurement on the ground be made to 
obtain 1 (xb,/-l) in the same meridian plane which contains 
the sun, the satellite, and the ground-based station. Assum
ing that we are given both boundary values of 1 (X ,/-l) , we 
compute A and B. Thus, from (33) and (23) we have 

1 
A (x,pIO) = No(x) (/Jo(p,x)e - x/v"(x) ao(O) 
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(1 dv -x/VA.{ .. ) ) + Jo N(v,x) e '/'v\JA',X av(O, 

where 

ao(O) = f~ 1 d/-l/-l/(O,/-l)¢o(j.1,O) 

and 

(44) 

(45) 

(46) 

The eigenfunctions ¢o(j.1,O) and ¢v(j.1,O) are defined by (24) 
and (25), respectively. Similarly from (34) and (23) we have 

1 (-(Xb-X») A (x,/-llxb) = - -- ¢o-(j.1,x) exp 
No-(x) vo(x) 

Sc
i dv (Xb~X») - exp -

o N( - v,x) 

where 

aO-(xb) = f~ 1 dpp/(Xb'P) ¢o-(j.1,xb) 

and 

Using (44) and (47) in (39), we obtain 

1 T(X,/-l)EJ (x)EJ (Xb - x) 

(47) 

(48) 

(49) 

= a(X){R (xIO)[ _1_ ¢o(j.1,x) exp( - -X-)ao(o) 
No(x) vo(x) 

+ R (xlx
b

) [_I_¢o_(j.1,X) exp( _ _ (X_b_-_X_») 
No_(x) vo(x) 

t dv (Xb - X») + Jo N( _ v,x) exp - v ¢ - v(j.1,x) 

Equation (50) provides the state of radiation everywhere in 
the medium. We have always assumed that the internal radi
ation source Q (x,/-l) (if any) is always given so that B (x,/-llx'), 
defined by (35), is known. 

B.I(xb,J,L) given by experiment 

If we have the ground based measurement so that 
1 (Xb ,f-l}is known for all angles/-l, and in addition if we know 
the incident flux at the top of the atmosphere, then in that 
case the only unknown quantities in Eq. (50) are ao(O) and 
a" (0). These quantities are readily obtained by using the 
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half-range orthogonality properties of Case's 
eigenfunctions. I 

To see that, first rewrite Eq. (50) as follows: 

I T(X,P)€) (x)€) (Xb - x) 

= a(x)R (XIO)[ _1_ (PofJl,x) exp( _ _ x_) ao(O) 
No(x) vo(x) 

+ t ~ exp( - ~) rPy{Jt,x)ay(o)] + F(x,p), (51) Jo N(v,x) v 

( 
(Xb -X») 11 dv Xexp - + 

Vo(X) 0 N ( - v,X) 

+ a(x) L'" dx'R (xlx')B(x,plx'). (52) 

Now letx_O in Eq. (51) and impose the boundary condition 
(42) for the incident flux. We get 

[Iii dv 8{Jt - PI) = a(O) ~o{Jt,O)ao(O) + --
No(O) 0 N (v,O) 

rPJJl,o)ay(o») + F(O,p), P,PI > 0. (53) 

We use the following half-range orthogonality properties of 
rPoVt,Q) and rPv{Jt,O) (cf. Eqs. (34a), (34b), and (34d), Sec. 4 in 
Ref. 1]: 

t dp rPy{Jt,O)rPv'Vt,O)WVt) = W(v) N(v,0)8(v - v'), (54) Jo v 

f dp rPyVt,O)rPoVt,O)WVt) = 0, (55) 

f dp rP ~Vt,O) WVt) = - [~w(O)vo(O)f X (vo(O» , 

W{Jt) = y{Jt)[ vo(O) - p], 

w(O) X+Vt) 
y{Jt) = -2-P A +Vt,O) , 

z II dJ1 A (z,O) = 1 - @(O) - --, 
2 -IZ-p 

X(z) = _1_. exp [_1 t ~ In(A +Vt»)] 
1 -z 21Ti Jo p -z A -(Jt) 

(56) 

(57) 

(58) 

(59) 

(60) 

and + onX+Vt)andA +Vt,O)aretheboundaryvaluesofX(z) 
and A (z,O) as z approaches their branch cut from the top, 
respectively. Using the orthogonality properties (54), (55), 
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and (56) in Eq. (53), we obtain 

ao(O) = _ No(O) ( 2 )2 
a(O)X (vo(O» w(O)vo(O) 

X [rPoVt"O)W{JtI) - f dp F(O,P)rPoVt,O)WVt)] 

and (61) 

av(O) = a(O)~(v) [rPv{Jt\tO)W{JtI) 

(62) 

These coefficients in conjunction with Eq. (51) provide a 
complete description of the radiation field everywhere. 

C. Source free semi-infinite medium 
For a source free semi-infinite medium, F(x,p) defined 

by (52) is identically zero, in which case Eq. (51) reduces 

IT(x,p)€) (x) = a(x)R (xIO) 

+ t ~ exp( - ~)rPv{Jt,x)aJo)]. Jo N(v,x) v 

(63) 
The coefficients ao(O) and av(O), given by (61) and (62) re
spectively, simplify to 

(0)- No(O) ( 2 )2A,.'" O)W''') (64) 
ao - - a(O)X (vo(O» @(O)vo(O) ,/,0'1"" 'I" I 

and 

av(O) = a(o)~(v) rPy{JthO)WVtI)' 
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Oscillators coupled directly and through time dependent external periodic forces, are considered 
here as a scheme that describes the motions of two plasmas in interaction with each other and 
with external fields. The analytical aspects of the equations are investigated both in their 
differential and integral forms. The formalism of Green's functions is widely emphasized with a 
particular attention towards the resolvent. "Structural" Green's functions in relation with the 
periodic time dependence of the external forces are introduced as a valid calculational tool in 
order to compute relevant physical features of the system. In particular, correlations between the 
mathematical singularities of the resolvent "structural" Green's function, the dispersion 
relations, and the parametric instabilities are established. Exact solutions, with the use of the 
Green's function approach and the direct one on the amplitudes, are obtained for particular 
models that exhibit a quite simplified but physically meaningful time dependence for the periodic 
external forces. 

I. INTRODUCTION 

Physical systems with a high degree of complexity can 
often be analyzed, approximately, in terms of coupled oscil
lators. Such an approach appears particularly promising in 
plasma physics, where the basic nonlinear equations require 
a procedure oflinearization in order to allow the study of the 
interactions of the various components with each other and 
with external systems. The process oflinearizing the plasma 
electromagnetic equations, in fact, as has been shown by 
many authors,I-3 leads to a system of oscillators coupled 
through a field which may be external (pump field) or inter
nal. Consequently it also leads to the determination of the 
normal modes, the dispersion relations and to the analysis of 
the parametric instabilities which constitutes an important 
goal in the theory of plasmas. These physical points can be 
achieved either by the use of sophisticated numerical codes 
or by the introduction of analytical calculational methods 
that usually provide a much deeper understanding of the 
physical phenomena but need drastic simplifications in or
der to make the equations solvable. To be more explicit, if 
one follows this second line, starting from the basic linear
ized equations one immediately faces two alternatives: either 
an analytical approximation of the solutions, obtained for 
instance by iterative methods, or the replacement of the in
teraction terms, present in the equations, with new ones that 
appear simple enough to permit an exact evaluation of the 
equations, possibly in terms of elementary functions. The 
first possibility is more systematic and is used in principle, in 
all cases where an iterative process can be established. One 
can develop this method either on the physical amplitudes 

'''Research partiaJly sponsored by CO.P.P.E. (UFRJ) and CN. Pq. 
(Brasil). 

(in the oscillator description) or on the Green's functions in 
both coordinate and Fourier spaces. The iterative procedure 
usually leads to a formal expansion of the solution that re
quires a technique of recovery of the series (we may suggest 
the Pade approximants' or similar algorithms) in order to 
interpret the approximation physically. Such an approach 
deserves great attention and will be emphasized in a subse
quent paper. In this paper we develop the second point of 
view mentioned above, namely, the replacement of exact in
teraction terms in the equations of the coupled oscillators 
with simplified terms that retain several physical aspects of 
the previous ones and allow an exact compact solution be
cause of their simplicity. We have in mind the system of two 
or more oscillators excited by a periodic external field (pump 
field). In this context the exactly solvable models, which we 
are introducing, are equivalent, as will be apparent later, to 
the replacement of a certain sinusoidal function (usually re
lated to the external field) with another one, that is still peri
odic with the same period and consequently has in addition 
to the fundamental harmonic the infinite Fourier superposi
tion of the higher harmonics. Their weights must be negligi
ble, if the approximation is to make sense. Such a substitu
tion appears perfectly legitimate and justified, being on the 
same footing as the standard approachI.2 that reduces the 
problem of determining the infinite set of the Fourier com
ponents of the physical solution (see Appendix D) to an alge
braic system, by cutting the higher harmonics, obviously 
considering their contributions negligible. The method we 
are proposing adds higher harmonics instead of neglecting 
them but has the advantage of giving an exact compact re
presentation of the physical solution. In this paper we are 
mainly interested in the coupled oscillator system in classical 
physics and particular emphasis is given to the Green's func-

2639 J. Math. Phys. 20(12), December 1979 0022-2488/79/122639-10$01.00 © 1979 American Institute of Physics 2639 



                                                                                                                                    

tion formalism (Sees. II, III, and IV) whereas Sec. IV covers 
the direct calculation of the coupled amplitudes. 

II. GREEN'S FUNCTIONS FOR COUPLED 
OSCILLATORS 
A. Integral equations for parametric excitations 

Let us consider the simplest system having characteris
tics of interest for our purposes: two oscillators XI (t ), X2 (t ) 
coupled with each other by both conservative and time de
pendent, nonconservative forces, which are usually called 
parametric excitations. The equations of motion can be writ
ten in a compact way, 

LX (t ) = pZ (t)X (t ), 

where 

X= GJ 

(1 a) 

(lb) 

(p is a constant matrix while Z is a numerical function of t ). 
It is obvious that Eq. (1) represents the extension to the 

two oscillators (and possibly to a system of three or more 
oscillators) of the equation of motion of one oscillator in the 
interaction with itself: 

x + yX + ti)~X = AX + pZ (t )x. (2) 

For such an equation we know how the Green's func
tion Go (t,t ') containing the desired boundary conditions 
must be built. More specifically, if we like solutions that 
exhibit the asymptotic conditions for the t variable analo
gous to the Sommerfeld radiation ones, S Go (t,t ') acquires a 
very simple expression in terms of the two linearly indepen
dent solutions XI' X2, of the homogeneous equation 

.. . 2 2-2 
X + yX + UJoX = 0, UJo = UJo -A, (3) 

XI (t ) = eat, X2 (t ) = ea"t, (4) 

where a, a* are the two complex conjugate roots of the sec
ond degree (real coefficients) equations Z 2 + yZ + UJ~ = O. 

We have 

Go (t,t') = {lIW [Xl (t ');X2 (t') ]}XI (t )X2 (t') 

2ifl 
(for t < t '), (5a) 

Go (t,t') = {lIW [Xl (t ');X2 (t') ]}XI (t ')X2 (t) 

= (for t> t '), (5b) 
2ifl 

Imw 

FIG. I. Contours C, and C. 
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FIG. 2. Contour r" 

a = -!Y - ifl, il = (UJ~ - r/4 )112. (5c) 

W [XI (t');X2 (t ') ] is the W ronksian built with the two so
lutions XI (t').x2 (t '). 

Equation (2), together with the asymptotic conditions, 
is therefore equivalent to the following integral equation: 

X (t) =p fOoo Go (t,t')Z (t')X (1') dt'. (6) 

Go (t,t ') is simply obtained by choosing the contour C1 

in the Fourier integral of the function 
( - (Ji + iyUJ + UJ~) - I, the poles of which are UJ + 

= i(yI2) ± il: --

Go (t,t') = (217")-1 ( dUJeiwU - t ') 

Jet 
X [ - UJ2 + iyUJ + UJ~ ] - I. (7) 

We should like to point out that the integral representa
tion used in Eq. (7) differs from the usual prescription that 
introduces another contour C=I=CI , defined along the real 
axis, and generates the so-called one point boundary condi
tion Green's function. 6 

We now come to Eq. (1), written in a compact matrix 
form, for two (or more than two) oscillators. It is equivalent 
to the integral equation 

X (t) = f: 00 Go (t,t ')pZ (t ')X (t') dt', (8) 

where the 2 X 2 matrix Go (t,t '), with the property of provid
ing the required boundary conditions, must be obtained by a 
Fourier integration of the matrix, function of UJ, 

( 2' 2 ~ )-1 -UJ +IYIUJ+UJI -/L12 

- A21 - UJ2 + iY2UJ + UJ~ 
along a contour that tends to C I in the limit of decoupled 
oscillators (A12 .A21 ~). This contour is FI of Fig. 2. 

The poles UJ(~ ,UJ~ are the complex roots of the fourth 
degree equation 

UJ4 - i(YI + Y2 )UJ3 - (UJi + UJ~ + YI Y2 )UJ2 + i(Y2UJi 

+ YI UJ~ )UJ + UJi UJi - A12A21 = O. (9) 

The roots of Eq. (9) and their locations in the complex UJ
plane can easily be analyzed passing to the variable 
a> = - iUJ. It has to verify a fourth degree equation with real 
coefficients; in fact, we can take their algebraic 
representation: 

(i labels the inner bracket sign) (10) 
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where the symbols b, P, Q, s are defined in Appendix A. 
One should notice that s is a root of the third degree 

resolvent equation with real coefficients and can always be 
taken as real. 

As is shown in detail in Appendix A, we can draw the 
conclusion that the four roots cu~ (i = 1,2), lie on the same 
half (part) of the cu complex plane [with our conventions 
Im(cu(2 ) > 0], symmetrically located with respect to the 
imaginary axis, as a consequence of the following obvious 

conditions that must be verified: 
(a) positivity of the damping parameters YI' Y2; 
(b) possibility of obtaining the given normal modes of 

the two independent oscillators in the decoupling limit 
(A I2 .A21 --+0); 

( c) possibility of considering the zero damping limit, 
that makes sense for strong coupling and high frequencies. 

The 2 X 2 matricial Green's function Go (/,1 ') can now 
be written simply; 

Go (t,t') = e (t - t') [eiwl!'(t-I')M t + eiwl~'(t- t')M 2+ ] + e (t' - t) [eiwl~'(t- t')M 1- + ejWI~)(t- t')M 2+ ], 

where 

(11a) 

It is easy to perform the extension to a system of more 
than two oscillators, because one expects the properties for 
the contour of integration and the matrix elements of Go to 
hold in general. 

B. Resolvent Green's function 

The relation between Go (t,t ') and the resolvent G (t,t ') 
follows from the formal identity 

G =Go + GoOG with 0 = GO-I - G -I, (12a) 

namely, 

G (t,t ') = Go (t,t ') + J: 00 Go (t,t " )Z (t " ) 

Xp,G(t",t')dt". (12b) 

III. PERIODIC EXCITATIONS AND STRUCTURAL 
GREEN'S FUNCTIONS 

A. Periodic excitations 

We are particularly interested in the case whereZ (t ) is a 
periodic function of time with a certain period T, having in 
mind the physical model of Nishikawa 1 and instabilities at 
the critical surface of the inertially confined plasma as it 
develops from an irradiation with a powerful laser. 2 The sys
tem ofEqs, (1) becomes a special case of the theory oflinear 
differential equations with periodic coefficients that have the 
so-called Floquet solutions characterized by the behavior7 

X(t+ T) =AX(t). (13) 

Equation (13) for each fixed value of to of t defines the fol
lowing boundary conditions8 in an interval whose extension 
coincides with a period T = 21T'lcuL : 

X (to + T) = AX (to ), X (to + T) = AX (to). (14) 

In correspondence to each valueAk of the unknown param
eter A allowing such solutions we have a different oscillation 
mode (and a different kind of wave). Valuescuk of parameter 
cu, defined by e iwT=..t, give the so-called normal mode fre
quencies of the system, To be more precise, the real part of 
the Oh gives the frequencies (cyclic frequency equal to 21T'Vk) 
of the mode, whereas the imaginary part of CUk gives the 
damping or the growing rate, according to its sign.9 
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(lIb) 

It is obvious that each fundamental normal mode fre
quency is accompanied by the infinite sequence CUkn = CU k 

+ ncuL • From Eq. (13) we can define X (t) in the interval 
[- T 12,T 12] and extend it to the whole real axis. As an 
immediate consequence we have the possibility of substitut
ing the integral equations (6), (8) with others exhibiting a 
different Green's function, the so-called structural Green's 
function (SGF) G ~ (cu,t,t') with boundary conditions of the 
type introduced above. This can be obtained easily by break
ing the integration domain into parts each having the same 
extension, one period T, and shifting all the integration inter
vals to the only one going from - T 12 to T 12, with the help 
of Eq. (13) and the periodicity of Z (t ).10 

So we have 

X (I) = JTI2 Gg (cu,t,t ')p,Z (t ')X (t') dt', (15a) 
-T/2 

where 
+00 

G~ (cu,t,t') = L n Go (t;t' + nT )ein<uT, (I5b) 

After simple explicit calculations we obtain for the one 
dimensional case [Eq, (6)]: 

G~(cu,t,t') 
= e (t - t'){g(icu - a)e"Ct-t') + [1 +g(a* - icu)] 

Xe"*(t - 1')} + e (t' - t )([ I + g(i& _ a) ]e"c t - t') 

+ g(a* - icu )e,,*(t - t ')} , 

whereg(z) = ! MenTz = (e- ZT - I) - I, 
I 

and for the 2X2 matricial case [Eq. (18)]: 

G~ (OJ,t,t') = Go (t,t') + g[i(cu - cu(.!!) ]iw(!)(t - t')M t 
+ g[i(cu - cu(.!> ) ]/,,/~(t- t')M 2+ 

+ g [ - i(cu - cu<:.> ) ]i"'(l)(t - t ') M \-

(16) 

+ g[ - i(cu - cu(~) ]i.,,(2)(t - t')M 2- . (17) 

B. Resolvent SGF 

In correspondence to the structural Green's function 
G ~ one defines the resolventll G S which verifies the nonho
mogeneous equation 
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(18) 

when 6 is the interaction term defined in the unit periodic 
interval; in our case 

GS(t,t') =G~(t,t') +fT!2 G~(t,t")Z(t") 
-T12 

X/-LGS(t",t') dt". (19) 

From the standard theory of integral equations we easi
ly derive the statement that the values of OJ, for which the 
homogeneous Eq. (15a) has nontrivial solutions, namely, the 
frequencies of the basic modes and their side band harmon
ics, appear as poles of the resolvent G S(OJ,t,t '). 

Its residue Pn can be expressed in terms of eigenfunc
tions Xn (t),.in (I) of (15) and of the adjoint equation. More 
precisely, for simple poles one has 

Pn = constXn (t ).in (t '). (20) 

C. SGF in a laser fusion model 

A physical case, which can be treated in a similar man
ner, is the interaction between the electron plasma near the 
critical density surface (as is clearly shown by Brueckner and 
Joma2) in the evolution ofthe D-T pellet in laser fusion. In 
fact, the laser field can be treated as spatially homogeneous 
(dipole approximation) and one deduces, from the basic gen
eral equations the following system (see Appendix B for 
symbols undefined here): 

iie + 2r"fle + fie (OJ~ + eS;) 
= OJ~fi, + [ - 2ik·Vo (t ) ]fi" 
+ fie [ - ik.Vo (t) - 2ik·Vo (t)r" - (ik·Vo )2], (21a) 

ii, + 2r/l, + (OJ~ + PSDfi, = OJ;iie' (2Ib) 

where 

iill (k,t ) = (21T) - 312 f d 3rnl1 (r,t )e . ,k'r 

nil (r,t) being the density of the /-L plasma; Va (t) is related 
with the linearly polarized laser field E and H and in our 
approximations (kL ;:::0), Vo(l) = VosinOJLI; 
E(t) = EOcosOJLt; Vo = - eEolm"OJL· 

Equations (21), although more complicated, can be 
analyzed by our 2 X 2 matrix formalism, the only difference 
being that the interaction operator has a more complex 
structure: 

(

a(t)!!.. +/3(t) 
Z (t)fl = dt 

o :) 
where 

a(t) = - 2ik·Vo (t), 

/3 (t) = - ik·Vo - 2ik·Vor" - (ik·Vo )2, 

or 

a(t) = - 2ik·VosinOJ[t, 

/3 (t) = - ik,VoOJLcoSOJLt - 2ik·Vor e sinOJLI 

+ (k'Vo )2sin2OJL f . 

The Green's function GS(t,I') verifies the integral equation: 
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f
T12 

G S (t,t ') = G g (t,t ') + dt " G g (t,t ") 
- T/2 

x(a(tll) ~ +/3(1I1»)r GS(t" t') (22) 
dt" .!> + " 

where 

If one integrates by parts, Eq. (22) can be reduced to the 
following one: 

G
S 

(t,t ') = Gg (t,t ') + J::2

//I" 

X [( - ~(t ") +/3 (t "»)Gs(t 1 II)] dt" 0 , 

Xb+Gs(t",I'). (23) 

IV. KRONIG-PENNEY MODELS OF PARAMETRIC 
EXCITATION 

A. Exactly solvable models 

Equations (19), (23), being inhomogeneous, can be 
solved by iterative methods; the expansion, however, could 
be divergent or slowly converging and the search for the 
singularities of the resolvent SGF usually requires the sum
mation of the series, at least approximately, as one can do by 
various algorithms such as Pade approximants' or similar 
methods. The alternative possibility lies in evaluating those 
equations exactly, obtaining the resolvent G S in an exact 
analytically closed form, after one has reformulated the 
functional dependence on t of the interaction terms. In this 
case, by redefining the interaction terms, one makes an ap
proximation at the initial stage of the calculation of G s. 

We are going to emphasize such an alternative here and 
in the coming section where we deal with the amplitudes, 
leaving the iterative methods to a separate communication. 
The resolvent G S can be given a compact representation as 
an exact solution ofEq. (19) [similarly, we can deal with Eq. 
(22) as will be shown explicitly] if the realistic periodic func
tion Z (t ) is replaced by another one, Z (t ), that keeps some 
peculiar features of the more physically correct Z (I ): one 
chooses a periodical, properly weighted sequence of square 
wells or their limiting case, delta functions. 

The delta function sequence is treated here, the square 
wells in the next section. Further details are developed in 
Apppendix C. It is interesting to note at this point that our 
approach in classical coupled oscillators has an analogue 
correspondence in solid state physics where periodic poten
tials can be successfully approximated by a periodic se
quence of square wells or delta functions l2 (Kronig-Penney 
models). 

B. Exact representation of GS with particular functions 

Z(t) 

To be more explicit, instead of the realistic excitation 
Z (t ) = Zo sinOJ L t, entering the Nishikawa model, we take 
the Kronig-Penney extreme model (see Appendix C): 
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r=2!wL' 
This choice leads, from Eq. (19), to the following 

representation: 

G S (t,t') = G~ (t,t') +r [G~ (t,T /4),uG s (T /4,t') 

- G~(t, - T /4),uG s ( - T /4,t')], (24) 

where GS(T /4,t ')andG s ( - T /4,t ')can be obtained from 
the equation 

( -rG~(T/4,T/4),u + 1 rG~(T/4, - T/4),u ) 

- rG~( - T /4,T /4),u rG~( - T /4, - T /4),u+ 1 

( 
G S(T/4,t'») (G~(T/4,t'») 

X GS( _ T/4,t') = G~( - T/4,t') . 
(25) 

It follows immediately, from (24) and (25), that the 
"normal mode frequencies" of the system are given by the 
determinantal equation 

( 
1-rG~(T/4,T/4),u 

det 
-rGg( - T/4,T/4),u 

=0. 

rG~(T/4, - T/4),u ) 

rG~( - T /4, - T 14),u 

(26) 

For the system of two oscillators the determinant ofEq. 
(26) is 4X4. 

In a more cumbersome but completely analogous way 
one starts from Eqs. (22) and (23) and considers the periodic 
functions ii(t ), Ii (t ) defined by periodic sequences of deltas 
instead of the sinusoidal ones (see Appendix C for details). 
One arrives easily at the following representation for the re
solvent G S (t,t '): 

s 
G~(t,t') = G~(t,t') + L S71 (t,tdGt(tk,I'), (27) 

ij I k 

where Sk(t,tk) and GS(tk,t') can be found in Appendix C. 
This allows an easy derivation of the dispersion rela

tions in a determinantal form: 

detA = 0, 

where 

Aij = [S~I (tj,l j ) - tSij]. 

C. Direct method 

(28) 

In this subsection we focus our attention on the prob
lem of solving directly the coupled oscillator equations in 
their differential form when coupling is periodic. 

This procedure can be looked at as alternative to the 
Green's function method and often permits one to reach the 
desired solutions more easily. 

Let us take, for simplicity, the case of the two oscillators 
XI (t), X 2 (t); their coupled equations can be rewritten as a 
4 X 4 linear system of the first order: 

d 
- U = [Ao +AI (t )]U, (29a) 
dt 

with 
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u-(n-u;) 
C 

0 0 

- wf -YI AI2 0 
A o= 0 0 0 ,} (29b) 

A21 0 w2 
-Y2 - 2 

A, (1) - f .. ~t) 0 0 

V' 
a(t) {312(t) 

0 0 

/321 (t) 0 {322 (t ) 

wherea = O,{3ij = Z(t),ufortheNishikawamodel while{3l1 
= {3, /312 = /321 = {322 = 0 for the linearized model of laser 

fusion. 
The differential system (29) has a general solution of the 

type U(t) = ~i m Cm Um) where the Um),s are four particu
lar linearly independent solutions of the same system of 
equations. If one introduces the square matrix Unm (t) 
= U ~m)(t), called the fundamental matrix, where n labels 

the nth component of the column vector u(m), the linear 
independence is expressed by the condition that the determi
nant (Wronksian) of the square matrix Unm is different from 
zero. 

We now impose the boundary conditions (14), in agree
ment with the arguments of Sec. IlIA, on the general solu
tion U(t) 

[~m u<m)Cm 1.='0+ T = A [~mU<m)Cm 1.='0 (30) 

or 
4 

Lm[Unm(to +T)-AUnm{to)]C", =0 (31) 
I 

(with n = 1,2,3,4). 
This set of four homogeneous equations requires the 

determinantal condition 

det [ U (to + T) - A U (to)] = 0, (32) 

which is the eigenvalue equations for A. 
The fundamental matrix U is called principal if 

Unm (to) = tSnm ; we can always refer to this simplified case 
reducing the secular equations to the form 

det[ U (to + T) - A.I] = O. (33) 

Equation (32), or its simplified version (33), is naturally 
hard to solve because of the difficulty of obtaining four lin
early independent integrals u<m)(t )'S once the interaction 
matrix A I (I) is assigned. However, it permits us, in princi
ple, to determine the four eigenvalues Ak (k = 1,2,3,4) and 
the corresponding frequencies w k (in general complex) of the 
normal modes. It is therefore at this point that we may re
place the exact matrix A I (t), or more specifically, the func
t!onsZ (t), a..(t ),/3 (t ), with periodic sequences of square wells 
Z (t), a(t ),/3 (t) that have their depths and widths correlated 
in a definite way with the originals, as is illustrated by Ap
pendix C, reducing our study to one periodicity interval (we 
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take [ - T /2, + T 12]) in agreement with what we have 
pointed out in the preceding subsection. The square-welI 
functions (similar arguments hold for the delta functions) 
allow us an exact determination of the desired physical am
plitudes U 'so In fact, we divide the interval [ - T 12, + T 12] 
into parts, where the nth subinterval can be written 
[nd,(n + l)d]withn = - 2,Oandd = T 14 in our first phys
ical case and n = - 4, ... , + 3 and d = T 18 in the second; 
within the nth subinterval A) (t) is a constant matrix A ~n) 
and the differential system (29a) takes the form 

!!... Urn) = [Ao + A \n)lU(n)' (34) 
dt 

It is then simple to search for solutions Urn) = r! (")tV(n) and 
one deals with the matrix equation 

[Ao + A \n) lV(n) = ...l(n)V(n)' (35) 

We then have four eigenvalues A ~n) (k = 1, ... ,4) and four 
eigenvectors V(n); correspondingly we get four linearly inde
pendent functions UZn ) = eAk 

(")t VZn). The general solution in 
the nth subinterval is then 

4 

U -" c(n)uk 
(n) - £.. k k (n) • (36) 

) 

Let us consider the first subinterval, which obviously has 
- T /2 as a lower extreme value and corresponds to a given 

integer ii; then we define the principal matrix Uij = U ttf)i by 
the usual condition Uij(to= - T 12) = 8ij' This fixes the 
four constants C ~ii). The continuity condition in the t-vari
able for the matrix elements Uij is achieved by imposing the 
following relations at the border of the (n - I )th and the nth 
interval: 

Uij(nl +)= U(~)i(nl +)= U{n_,)i(nl-) 

= Uij(nl -). (37) 

Equations (37) extend the principal matrix to the whole in
terval [ - T 12, + T 12] by the definition of the ct)'s in the 
nth subinterval. Once the principal matrix is obtained in the 
whole interval [ - T 12,T 12] the calculation of the normal 
mode frequencies of the amplitudes follows from the general 
procedure summarized by Eqs. (31) and (33). 
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APPENDIX A 
A. Determination of the Green's function Go(t f) for the 
coupled oscillators with damping 

Taking the Fourier transformj(CtJ) = (211') - 112 

s':. "" dtl(t )e- i«}t of system (1) one obtainsii = (AXf or 

-AJ2 )x A 

z Z = (AX) . 
-CtJ +irzCtJ+CtJz 

(AI) 

Inverting the matrix i one has 
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and then 

X = (211') - 112f"" dCtJ e
i

:

t 

- 00 detL (w) 

( 

- W
Z + irzw + CtJi AJ2 ) 

X ~ 2. 2 
/1.21 - CtJ + lrl CtJ + CtJ 1 

X (211') - 1f2 f: 00 dt' (AX)e - iwt', 

Therefore, the matricial Green's function 

1 J"" eiC<J(t-t') 
Go (t,t ') = - dw K 

211' - <YO detL (w) 

X - CtJ + lr2 CtJ + CtJ2 
( 

2' 2 

A21 

AI2 ) 
- CtJ2 + irl w + CtJi 

(A3) 

allows us to transform the differential system (AI) into a 
system of coupled integral equations. 

To find the poles of Go [roots of deti (CtJ )], we make the 
change of variable {jj = - iCtJ, and our determinant becomes 
a polynomial with real coefficients in the new variable: 

deti (CtJ) = deti (iW) 

= or - (rl + r2){jj3 + (rl rz + CtJi + wi){jjz 

-(r2CtJi +r)wi)lV+CtJiCtJ~ -AJ2Az), (A4) 

with the following definition: b = - (rl + r2); 
d = - (r2CtJi + r)CtJ~); c = (rt rz + CtJi + CtJD; e = (CtJiw~ 
-A l2 Azt ), the complex conjugate roots of the complete 

fourth degree polynomial or + b{jj3 + c(if + d{jj + e are giv
en by the formulas: 

W<2 =![-(b±2P):f=V (b±2P)2-8(s±2Q) 1 
i= g, (A5) 

where 

p=(b
4

2 
_c+sy12, Q=(: _e)1I2, 

( -D+ VR)I/3 (-D- VR)I/3 c 
s= 2 + 2 + 3' 
R=D2+ 17 C3, C=1(3bd-12e-c2

), 

D = M - 27d 2 
- 27b 2e + nee + 9bcd - 2c3), 

where s is a root of the resolvent third degree equation with 
real coefficients. Therefore, s can always be taken as real. 

(i) No damping limit case: (r. = r2 = 0). 
In this case the poles (normal mode frequencies of vi

bration) are real. 

CtJ(2 ± [!(CtJ~ +wi::fV(CtJi -wD2+4A 12Azl )]112, 

i = {I (A6) 
2. 
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ImO) 

III (11 
0). 0). 

FIG. 3. Contour for the no damping case. 

The way of going around the poles was chosen in order 
to fit the Sommerfeld boundary conditions. 

Then 

(A7) 

where 0/') = 1a/2 I 
(ii) Decoupling limit case: (..1.12 = ..1.21 = 0) 
In this case the operator is diagonal, so the oscillators 

are independent. 

For each oscillator, if YI =¥=O and Y2 =¥=O, the poles are 
always on the upper half-plane. 

Using the same contour of Fig 2 we find 

Go(t,t') 
eifl,ll - /'1 e - (y,/2)(1 - I') 

2ifJ I 

o 
(A8) 

where 

111 = [mi - (YI/2)2]l/2, 112 = [m~ - (Y2/2)2]l/2. 

Therefore, in the general case (..1.12 ,A21 ,rl 'Y2 all =¥=O), 
using the fact that the poles are continuous functions of these 
parameters, the poles must always be in the upper half-plane. 
If, for Y I or Y 2 =¥=Q, the imaginary part of the pole were zero, 
for this the corresponding mode of vibration there would be 
no damping. So we would have coupled two dissipative sys
tems, and from their combination a conservative system, 
which is highly improbable. 

Then for all values of ..1. 12 , ..1.21 =¥=O, we get Im(-!! I 
= Im(~ I < Im(.!! I = Im(:? I· The Green's function for the 

general case is: 

2 i(J)(~')(t - I') 

+ ie (t - t ') L ___ -,---_e -------
I h (m(!) - m(~»(m(!) - m(~»(m(!) - m(!» 

( -(m(~»2+iY2m(~)+m~ ..1.12 ) 

..1.21 - (m(!»2 + irlm(~) + lU~ , 
(A9) 

where h = 1,2; k = 1,2, and h=¥=k. 

B. Determination of GUt,t? from Go (t,t? 

In an obvious notation it is possible to write (A9) as 

Go (t,t ') = e (t - t ') [ei"'(!l(1 - I')M 1+ + eu,,(!l(1 - I')M 2+ ] 

[ 
. (1)(1 ') . (2)( ') ] + e (t' - t) e'''' - - 1 M 1- + e'''' - 1 - 1 M 2- • 

(A 10) 

From Eq. (lSb) we have: 

G~(t,t ') = ! Go(t,t' + nT)ein(uT 

= Go (t,t ') + i",(!l(I- I')M t (~neinT("'-w(!)) 

+ ei"'(!\I- I')M t (~neinT("'-"'(~») 

iw(~(t - 1 ')M - (~ - inT(", - ",(lh) 
+e I L.Jn e 

I 

+ eiW(l)(1 - I')M 2- (~ ne - inT(", - ",(l»). 

with the definition g(z) = l:1' enTz = (e - Tz - 1) - I we find 
(17). 
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APPENDIX B: DERIVATION OF THE LINEARIZED 
FUSION MODEL AT THE CRITICAL SURFACE 

We consider the two component (electrons and ions) 
fluid model and summarize the friction with a constant pa
rameter rl-' (J.l=i,e). The basic plasma equations are: 

(! + 2rl-' + VI-' v)VI-' 

and 

(B1) 

el-" ml-' are the particle charge and mass respectively, NI-' the 
number density, andpl-' the hydrodynamic pressure. The 
fields E, H, which also contain the extemallaser field, satisfy 
the Maxwell equations (in Gaussian units): 

VxE= _ ..!.. aH, 
c at 
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1 aE 41r 
VxH= -- + -J, 

c at c 
(B2) 

V·H=O, 

V·E = 41T.I/le/lN/l' J =.I/le/lN/l Vw 

The linearization procedure is based on the strength of the 
laser field Eo = Eo cos(k LZ - liJ L t ) (plane wave propagat
ing in the Z direction with frequency liJ L): 

N,.,=no+n,." V,.,=Vo,.+V~l), Eo=Eo+EI' 
(B3) 

H=Ho +H1 , P,., =It)+Pw 

The equations simplify considerably because of the follow
ing physically valid arguments: 

(a) the external field Eo may be treated as spatially ho
mogeneous (dipole approximation) in the critical density 
surface defined by liJ e =liJ L ; 

(b) the motion of the ions in the direction of the field is 
neglected (mj>m e and Vo ::::;0). 

By eliminating the E field from the linearized equations 
we easily obtain: 

(:t + 2re + Vo.V)(! + vo.v)ne 

= liJ;(n j - ne) + S; V2ne' (B4) 

(~ + 2rj i.. + liJ7 - S7v2)nj = (j)~ne' at 2 at 
and from the Fourier integrals: 

n" = (21T) - 312 f d 3k ne(k,t )e'l<-r, 

ni = (21T) - 3/2 f d 3k ni(k,t )eik
'. (BS) 

if we insert these representations into the equations we final
ly obtain Eqs. (21). 

We remember that the relation between the hydrody
namic pressurep,., and the density n,., varies in isothermal or 
adiabatic conditions. 

The laser fusion case is almost isothermal: 

VP/l =m,.,S~Vn,." S! = _I_O/l' 
m,., 

where 0/l is the temperature in energetic units. 

APPENDIX C: SPECIFIC KRONIG-PENNEY MODELS 

The Nishikawa model becomes exactly solvable if 

FIG. 4. Periodic square well models for COSlVLt and cos2UJLt. 
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z (t ) = Zo sinw L t is replaced by 

Z(t) = Zo ! n sin(2n + I)liJLt 
o 2n + 1 

t~O, 
T T --<v-2 .... 2 ' 

(C1) 

Z (t ) differing from the original Z (t ) owing to the presence of 
the infinite set of the harmonics n = 1,2 ..... which have 
weights tending to zero when n--+ 00 • As an extreme limit of 
the square well approximation one can take the periodic del
ta function sequence: 

Z(t) = zor [!5(t - ~) - o(t + ~)], r= 2/liJL . 

(C2) 

Subsection IV B shows how (C2) reduces the integral 
equation (19) to the algebraic one (24). from which the deter
minantal equation (26) follows. Identical final results can be 
obtained with the direct method by imposing the continuity 
prescription to the first and the third row of the principal 
matrix: 

'( T+) '( T-) XI ±-4- -XI ±-4- =0, 

i = 1,2; j = 1,2,3,4, (C3a) 

and the prescribed jumps to the elements of the second and 
fourth row at the discontinuity points: 

xt( ± T4+) -xt( ± T4-) 

= ± rzo [fliiX!( ± :) + flilX f( ± :)], (C3b) 

where i = 1,2; 1= 2,1;j = 1,2,3,4. 
The same extreme model can be applied to the linear

ized laser fusion model rewritten in the form 

i + y,X + liJ~X = ..1.12 Y + a(t)X + {3(t)X, 

Y + Y2 Y + liJ~ Y = ..1.21 X, 

where 

Z(t) 

Va = Va sinliJLt, 

X = ne liJ7 = liJ; + k 2S; + ~(k.VO)2, 
..1.12 = liJ~, Yl = 2re , 

Y = ni liJ~ = liJ7 + k 2S;, 

..1.21 = liJ7, Y2 = 2ri , 

aCt) = - 2ik.Vo sinliJLt, 

Lucena, Minelli, and Pusterla 
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(C4b) 

(C4c) 

(C4d) 

(C4e) 

(C4t) 
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{3 (t ) = - ik.Vow L COSlU L t - 2ik.VoFe sillllJ L t 
- 2 + !(k.Vo) cos2wLt. (C4g) 

The Kronig-Penney approximation for ZI (t) 
= sinw L t has been considered above for the Nishikawa 

model. Along this line we sketch in Fig. 4 the approximation 
introduced in order to replace the functions Z2 (t ) = COSlU L t 
and Z3(t) = COS2wLt. 

Now if we push forward the periodic square well model 
up to the extreme delta function configuration, we have 

ZI (t) = F [ - 8(t + T /4) + 8(t - T /4»), (CSa) 

Z2 (t ) = F [ - !8(t + T /2) + 8(t) - !8(t - T /2)], 
(CSb) 

Z3(t) = F U8(t + T + /2) -18(t + T /4) + !8(t) 

- !8(t - T /4) + ;\8(t - T - /2)], (CSc) 

where F = 2/w. 
After some algebraic manipulations: 

GS(t,t') = G~(t,t') + S I(t, - T /2)G S( - T /2,t') 

+ S2(t, - T /4)G S( - T /4,t') 

+ S3(t,0)G S(0,t') + S4(t,T /4)G S(T /4,t') 

+ S5(t,T /2)G S(T /2,t '), (C6) 

where 

I( T) r - -S t, - "2 = 4 - 2ik,VOwL + !(k.VO)2 

s( T) XG o t, - "2 ; +' 

S2(t, _ :) 

= [ - ~ [ - 4ik.Vorc + ~(k.Vo)2]G~(t, - :) 

- 2irk'VoG6(t, - :)]; + ' 

1 r [ . - -
S(t,O) = "2 2/k·VUw l . + ~(k.Vo)2]G~(t,oK +' 

S4(t, :) 

= [ - ~ [4ik.VuFe + ~(k.Vo)2]G~(t, :) 

+ 2iTk'VoG~(t, :)]; + ' 

S5(t, ~) = ~ [ - 2/kVoWL + ~(k'VO)2]G~(t, ~); + ' 

we have four equations in the form: 
. 5 

Gfj(t,t') = G~ (t,t') + L kS 71 (t,tdGt(tut '), (C7a) 
Ij I 

5 

G~~(t,t') = G~' (t,t') + L kS;1 (t,tk)Gfj(tk,t '), (C7b) 
2) I 

where tk ( - 3/4 + k /4)T. Solving (C7a) for t = tk , 
= (- 3/4 + k '/4)T, we have 
5 

L k [S71 (tk' ,tk ) - 8k,k' ]Gf/tk,t') = - G ~ (tk"t '), (C8) 
I Ij 
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where k' = 1,2, ... ,S. Equations (C8) give us two nonsingular 
S X S matrices (one for j = 1 and another for j = 2). 

Therefore, from (C8) we get an explicit form for 
Gt(tk,t '),j = 1,2; k = 1.2,3.4.S. 

By inserting G fj(tk,t') in (C7a) and (C7b) we find all 
four matrix elements of G S (t.t '). 

The dispersion relation for the laser fusion model in the 
delta function approach is given by the determinantal 
equation 

detA = 0, 

where 

(C9a) 

Aij = (S;I (tj,tJ - 8ij). t,.. = ( - ! + ~ )T, (C9b) 

J-l i.j= 1 •...• S. 

APPENDIX D: FOURIER ANALYSIS OF PARAMETRIC 
EXCITATION 

In our basic equation (1) the functional dependence of 
the external excitation term is given by periodic functions (in 
particular sinusoidal). We can therefore apply the Fourier 
analysis to the solution X (t ).13 More specifically. from condi
tions (13) we can write 

X(t) = eiwtY(t). Y(t + T) = Y(t). (Dl) 

By introducing into Eq. (1) the Fourier expansions of the 
periodic functions Z (t). Y,.. (t ) (J-l = 1.2) 

one obtains the infinite system 

= (Pll 
J-l21 

or 

(X I.m ) = ~ (D2 
\..x2.m D v'21 

where 

(D2) 

(D3) 

J-ll2) 
J-l22 

(D4a) 

D,.. D,.. (w + nwL ) = (w + nwL )2 + iy,.. (w + nwL ) + w~. 
D = DID2 - Al2 A21 . (D4b) 

Similar equ~tions are obtained by starting from the Fourier 
transform Xli (w') = (21r) - 1/2 s:+: ':' exp( - iw't )X,.. (t) dt of 
Eq. (1). 

(XI (W'») 1 (D2 (w') Al2) 
\.X2 (w') = D (w') A21 DI (w') 
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~
I nZnXl (W' - nWL») P12 

J.l22 I nZnX2(W' - nwL ) . 
(05) 

If we also take the Fourier transform of condition (13) we 
have 

XI' (w')[eiw'T - eiwT ] = 0; 

we obtain the discrete set of harmonics 
w' = w + nw L 

(06) 

(07) 

(coinciding with the series spectrum). From (07) the identi
fication of (D5) with Eqs. (04) immediately follows. 
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are concerned with the equation of motion and consequently the time 
variable whereas in quantum mechanics one deals with the stationary state 
of the potential and periodicity is on the space variables. The differential 
operator is not necessarily hermitian in our case. The formal correspon
dence that we established between the oscillator coupled equations and the 
quantum mechanical formalism of a particle in a lattice guarantees the 
consistency of the two approaches: the one defined on the whole real axis 
(associated with the asymptotic Sommerfeld behavior) and the other de
fined on a period (associated with Bloch conditions). [n fact, the propaga
tion of a wave through a lattice can be thought of as a coherent multiple 
scattering by the various lattice elements. This point of view is developed 
in J.B. Pendry, Low Energy Electron Diffraction (Academic, New York, 
1974), Sec. IIIB. 
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in the context of the Fourier analysis of the amplitudes (see Appendix D). 
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weights are rapidly tending to zero (see also the Introduction on this 
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the equations without altering qualitatively and, to a reasonable extent, 
quantitatively, the physical system. (see also in Appendix C the delta func
tion approximation.) For an introduction to the Kronig-Penney models 
see: L. Brillouin, Wave Propagation in Periodic Structure (Dover, New 
York, 1946). Chap. 8, and also R.A. Smith, Wave Mechanics of Crystalline 
Solids (Chapman, London, 1961). 

"The Fourier analysis of differential equations with periodic coefficients 
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Watson, A Course of Modern Analysis (Cambridge, Univ. Press, 1935), 
Chap. 19. 
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A systematic algorithm is developed for performing canonical transformations on 
Hamiltonians which govern particle motion in magnetic mirror machines. These 
transformations are performed in such a way that the new Hamiltonian has a 
particularly simple normal form. From this form it is possible to compute analytic 
expressions for gyro and bounce frequencies. In addition, it is possible to obtain 
arbitrarily high order terms in the adiabatic magnetic moment expansion. The algorithm 
makes use of Lie series, is an extension of Birkhoff's normal form method, and has 
been explicitly implemented by a digital computer programmed to perform the required 
algebraic manipulations. Application is made to particle motion in a magnetic dipole 
field and to a simple mirror system. Bounce frequencies and locations of periodic orbits 
are obtained and compared with numerical computations. Both mirror systems are 
shown to be insoluble, i.e., trajectories are not confined to analytic hypersurfaces, 
there is no analytic third integral of motion, and the adiabatic magnetic moment 
expansion is divergent. It is expected also that the normal form procedure will prove 
useful in the study of island structure and separatrices associated with periodic orbits, 
and should facilitate studies of breakdown of adiabaticity and the onset of "stochastic" 
behavior. 

1. INTRODUCTION AND NOTATION 

In the study of a complicated dynamical system, one 
almost invariably seeks at a minimum to learn the answers to 
two fundamental questions. First, what areas of phase space 
are in fact accessible to the system for a given trajectory or 
class of trajectories? Second, where are the periodic and qua
siperiodic orbits, and what are their frequencies? Thus, for 
example, in the study of magnetic mirror machines one uses 
the magnetic moment "invariant" to "infer" that certain 
particles will indeed mirror and will not escape through the 
ends of the machine. In addition, one develops various ex
pressions or runs numerical codes to determine gyro fre
quencies, bounce frequencies, and those orbits for which 
these frequencies are commensurate. 

The purpose of this paper is to show how these ques
tions can be studied in detail for mirror machines. Our meth
od makes use of algebraic manipulations performed by a 
digital computer. We are able to produce analytic expres
sions for the frequencies and initial conditions associated 
with periodic and quasiperiodic orbits. H These expressions 
should prove to be useful in the study of island structure and 
separatrices associated with periodic orbits.,,5 In addition, 
we are able to obtain arbitrarily high order terms in the com
plete adiabatic magnetic moment expansion. This latter re
sult has already proved useful in demonstrating the "insolu
bility" of certain mirror machine problems/ and should 

"'Supported in part by the National Science Foundation under Grant No. 
GP-41822X. 

"'Present address: Naval Research Laboratory, Washington, D.C. 20375 

facilitate studies of the breakdown of adiabaticity and the 
onset of "stochastic" behavior6•

7 In particular, it has been 
shown for certain mirror machines that trajectories are not 
confined to analytic hypersurfaces in phase space. As a re
sult, the adiabatic magnetic moment expansion is divergent, 
and one can make no mathematical1y rigorous statement 
about confinement or the long-term behavior of orbits.' Such 
may in fact be the case for all mirror machines. 

More precisely, the purpose of this paper is to show that 
a certain class of Hamiltonians can be brought systematically 
to a particularly simple "normal form" by a sequence of 
canonical transformations. The class of Hamiltonians of in
terest will be called "mirror machine" Hamiltonians since 
they arise naturally in the study of mirror machines designed 
for plasma containment. By the word "systematically," we 
mean there exists an algorithm for analytical computation 
which can be explicitly implemented by a digital computer 
programmed to perform certain algebraic manipUlations. 

The meaning of the term "normal form" will be delin
eated further after the introduction of suitable mathematical 
machinery. For the moment, we make the following anal
ogy: In the study of a linear operator or matrix, it is often 
useful to perform similarity transformations to bring the ma
trix to diagonal or Jordan canonical form. Once this is done, 
it is a simple matter to read off the eigenvalues and eigenvec
tors, to evaluate functions of the matrix such as its exponen
tial and inverse, and to find matrices which will commute 
with the given matrix. In the study of a classical mechanics 
problem specified by a certain Hamiltonian, one can try to 
proceed in a similar spirit. One performs canonical transfor
mations on the Hamiltonian in the hope of bringing it to a 
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simpler form. Exactly what simple forms a given Hamilton
ian can be brought to is not as yet completely known and is 
still an area requiring active study. (Canonical transforma
tions are in general nonlinear, and thus the problem is intrin
sically far more complicated.) However, we will show that 
there is a normal form for any mirror machine Hamiltonian 
from which it is possible to compute the frequencies and 
initial conditions associated with periodic and quasiperiodic 
orbits. Thus, with the normal form method, it is possible to 
compute analytic expressions for bounce frequencies and for 
closed orbits. In addition, the normal form we will describe 
makes possible the construction of formal integrals of mo
tion for the Hamiltonian in question. Integrals of motion are 
functions of phase space variables which do not explicitly 
involve the time and which remain constant on trajectories. 
In the case of mirror machines, the integral of motion proves 
to be the complete adiabatic magnetic moment expansion. 
Consequently, it is possible to obtain arbitrarily high order 
terms in the complete adiabatic magnetic moment expansion 
providing one is willing to spend sufficient computer time. 
Finally, the normal form method for mirror machines is re
lated to similar transformation methods which have recently 
proven to be very useful in such diverse areas as celestial 
mechanics and molecular physics for both deep mathemat
ical proofs and practical calculations. 8 Thus we are at the 
threshold of a unified treatment of a wide variety of classical 
mechanics problems. 

Since our work requires the execution of a long se
quence of canonical transformations and also the inversion 
of these transformations, the remainder of this section is de
voted to the development of notation and a brief review of 
the method of Lie transformations which we have found to 
be particularly useful. In Sec. 2 we specify the nature of a 
mirror machine Hamiltonian and develop the normal form 
algorithm. Section 3 shows how use of the normal form algo
rithm leads to the construction of integrals of motion. Sec
tion 4 illustrates the application of the normal form method 
to two examples of charged particle motion in magnetic mir
ror fields, namely the magnetic dipole field and that of a 
simple model mirror machine. Comparisons are made for 
these two problems between numerical and analytical re
sults. In particular, we study the frequencies of periodic or
bits, the constancy of the series for the complete adiabatic 
magnetic moment expansion, and the insolubility of the sim
ple model mirror machine. A final section summarizes the 
conclusions of this paper. 

The general problem of interest will have n degrees of 
freedom described by the canonical coordinates QhQ2, ... ,qn 

and PhP2, ... ,Pn . For compactness of notation we have found 
it convenient to treat the q's and p's together by introducing 
the 2n variables Zh""ZZn defined by the relations 

(1.1) 

The method of Lie transformations makes essential use 
of Poisson brackets and the Lie algebraic structure associat
ed with them. We shall briefly review here the tools needed 
for this paper. A more detailed explication with proofs has 
been given earlier.' 
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Supposef(z) is a particular function defined on phase 
space. We associate withfthe Lie operator Fby the rule that 
if g is any other function, then F acting on g is defined by 

Fg = [f,g]. (1.2) 

Here the bracket [ , ] denotes the Poisson bracket. Note that 
Fis linear. 

Next we define the linear operator exp(F), called the Lie 
transformation associated with F andf, by the rule 

00 

exp(F) = I Fil} (1.3) 
o 

with the convention FO = I. 

Lie transformations have several remarkable proper
ties. Suppose d and e are any two functions. Then we find 

exp(F)(de) = (exp(F)d )(exp(F)e) (1.4) 

and 

exp(F)[d,e] = [exp(F)d,exp(F)e]. (1.5) 

Consequently, if we define new variables Zi by the rule 

zlz) = exp(F)z" (1.6) 

then we have 

(1.7) 

Here we have used (1.5) and the fact that [Zi ,Zj] is a number 
and hence is unchanged by exp(F). It follows from (1.7) that 
the new variables z(z) are related to the old variables Z by a 
canonical transformation. 

Conversely, if the z(z) are new variables related to the 
old variables z by a canonical transformation near the identi
ty of the form 

z,(z) = Zi + higher-degree terms, (1.8) 

then it can be shown that there exists a sequence ofhomogen
eous polynomials};,j., etc., of degree 3, 4, etc., such that 

(1.9) 

Similarly, the inverse to the transformation (1.8) or (1.9) can 
be written as 

(l.lO) 

In this latter expression thef's are considered as depending 
on the variables Z, i.e.,};(Z),j.(Z), etc.; and all Poisson brack
ets are taken with respect to the variables Z. 

Finally, suppose g(z) is a function defined in terms of 
some other function g(z) by the rule 

g(z) = g(z(z»), (l.ll) 

where z and z are related by (1. 9). Then it follows from con
sideration of a series expansion of g and repeated use of (1.4) 
that 

g(z) = ···exp(F,) exp(F.) exp(F) g. (1.l2) 

Note that in making canonical transformations, we take the 
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active viewpoint: trajectories and functions are transformed; 
the coordinate system remains fixed. 

With this preparatory background, we are now able to 
state more precisely our purpose. Suppose we wish to study 
the nature of the trajectories governed by a certain mirror 
machine Hamiltonian. For clarity, we denote this Hamilton
ian by the symbol hold. We assume that h old does not depend 
explicitly on time. Then our aim is to find a sequence of 
homogeneous polynomialsj;,~, etc., such that the trans
formed or "new" Hamiltonian h new, given by 

(1.13) 

has a particularly simple form. By "simple," we mean that 
h new should only depend on certain combinations of the var
iables z in such a way that it is easy to find functions i new, 
called integrals of h new, which do not depend explicitly on 
time and which satisfy the relation 

[i new,h new] = O. (1.14) 

Whenever such an i new can be found, then it is immedi
ately possible to find an associated integral i old of the original 
Hamiltonian. In analogy to (1.13 we define ['Old in terms of 
['flew by the rule 

i old = exp( - F,) exp( - F4) exp( - F,) ... ['l1ew. (1.15) 

We then find, using the definitions and (1.5), that 

[ ['Old ,h Old] 

= [exp( - F,) exp( - F4 ) .. ·i neW,eXp( - F,) 

X exp( - F4 ) ... h new] 

= exp( - F,) exp( - F 4) ... [i new,h new] = O. (1.16) 

Hence, i old is an integral of motion for the Hamiltonian hold. 
That is, 

d ' old 
[ - [ . old hold] - 0 ---I, -. 
dt 

(1.17) 

Of course, even when i new is a simple expression in terms of 
the p's and g's as will prove to be the case in Sec. 3, i old will in 
general be very complicated because of the Lie transforma
tions indicated in (1.15). 

Still more will prove to be possible. It is evident from 
(1.13), with the aid of (Lll) and (1.12), that h old and h new 
are related by a canonical transformation. We have 

h new(z) = h old(Z(Z». Therefore, if because of its simple 
form one can find the frequencies and initial conditions for 
the periodic and quasiperiodic orbits generated by h new, then 
it is easy to deduce the equivalent information for h Old. We 
will see in Sec. 4 that this is indeed the case. 

2. NORMAL FORM ALGORITHM 

We begin by assuming that the canonical coordinates z 

have been selected in such a way that the origin in phase 
space is an equilibrium point. Thus if the Hamiltonian h old is 
expanded about the origin, we obtain an expression of the 
form 
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hold = fh ?ld(Z), (2.1) 
2 

where each h ?ld is a homogeneous polynomial of degree i. 
Next, we assume that the linearized equations of motion 
about the equilibrium point have m zero frequencies (m < n) 
and n - m nonzero frequencies. That is, we assume that with 
a suitable choice of coordinates h ~ld has the form 

(2.2) 

where all the a's are positive. 

Hamiltonians ofthis form arise naturally in the study of 
mirror machines. How this comes about in detail will be
come apparent in Sec. 4, where we study two explicit exam
ples. Roughly speaking, one can say that a degree offreedom 
for which a frequency is zero corresponds to motion along a 
magnetic field line. For this motion there is no restoring 
force in lowest approximation. By contrast, the degrees of 
freedom associated with nonzero frequencies correspond to 
motion across field lines; and in this case there is a restoring 
force even in first approximation. 

As explained in the introduction, our goal is to find 
functionsj;,~, etc., such that h new given by (1.13) has a 
simple form. To study systematically what possibilities exist, 
it is convenient to introduce the notation 

h k = exp(Fd exp(Fk _ \) ... exp(F,)h Old. 

Then we have, for example, the relations 

h ' = exp(FJ)h Old, 

h'" = h new, 

and the recursion formula 

(2.3) 

(2.4a) 

(2.4b) 

hk=exp(Fdh k- l
, k>3, and h 2 =hold• (2.5) 

In analogy to the notation of (2.1), let us write 

hk=ihJ (2.6) 
j~ 2 

where each term h J is a homogeneous polynomial of degree 
J. Then from (2.5) we have the relation 

f h J = exp(Fk) f h 7 - I, k>3. (2.7) 
j~2 1~2 

Evidently, Eq. (2.7) implies the equality of terms of like de
gree. Our problem is to identify them. Let 9 k denote the set 
of homogeneous polynomials of degree k, and suppose/; and 
gj are two homogeneous polynomials of degree i and j, re
spectively. Then, since the Poisson bracket operation in
volves multiplication and two differentiations, we have the 
relation 

V;,gj]E9 i + j _ 2• (2.8) 

Employing this observation and the definition (1.3), we find 
from (2.7) the relations 
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h 2 = h 2 I + Fk h ~Id. (2. 9c) 

We can now draw several conclusions. First, we see that 
h ~ew = h ~ld and h ~ew = h Z. Second, the term h ~ew depends 
in a rather complicated way on Fk, Fk _ 1,··,F3 and 
h kid, h kl~ " ... ,h ~Id. Finally, if our goal is to make h ~ew "sim
ple," then by (2.9c), our last chance to do so occurs at the 
stage at which Fk is determined. 

It is apparent that (2.9c) is a key relation. In keeping 
with the notation of Sec. 1, let H2 be the Lie operator associ
ated with h ~Id. Then we have the relation 

Fk h ~Id = [(k ,h ~Id] = - Hdk' (2.10) 

Thus, we can also write (2. 9c) in the form 

h ~ = h ~ - 1 - Hdv (2.11) 

For further discussion, it is useful to regard all polyno
mials of degree k as elements of a vector space. Then H2 may 
be regarded as a linear operator mapping 9 k on to itself. 
Evidently, the term H2fk consists of all homogeneous poly
nomials in 9 k that are in the range of the operator H 2• (A 
vector y is in the range of an operator A if there exists a vector 
x such thaty = Ax.) Thus, with the aid of(2.11) we are able, 
by a suitable choice offk , to adjust h zew by any polynomial in 
9 k lying within the range of H 2• This is the fundamental 
result which we shall use in the rest of this paper. 

The exploration of the range of a linear operator is fa
cilitated by the introduction of a scalar product. When a 
scalar product is defined, the Hermitian adjoint of H 2, denot
ed by Hi, is also defined. Indicating the scalar product oper
ation by angular brackets, we have the relation 

(a,H i b ) = (H2a,b ). (2.12) 

The virtue of the introduction of a scalar product is that we 
can then use the result that each subspace 9 k can be decom
posed into a direct sum in the form 

fJ! k = &l k $vVk , (2.13) 

where &l k denotes the range of H2 and ,/Vk denotes the null 

space of Hi. 
The correctness of this result is easily verified for any 

operator A. First, note that the range of an operator A is itself 
a linear vector space. For suppose thaty andy' are contained 
in the range of A. Then there exist vectors x,x' such that 
y = Ax andy' = Ax'. Let a and a/ be any two scalars. We 
have ay + a'y' = A (ax + ax/), and hence ay + a/y' is also 
in the range of A. Now let the vectors U"U2,", form a basis for 
the range ofA. Without loss of generality, they can be select
ed to be orthonormal thanks to the Gram-Schmidt pro
cess.'O Second, let V"V 2," be the remaining orthonormal basis 
vectors needed to span the complete space. By construction, 
the v's can be taken to be orthogonal to the u's, and hence to 
the range of A. They will then also be in the null space At. 

That is, we will have A tv} = O. For let w be any vector. We 
find (w,A tv}) = (Aw,v}) = 0 because Aw is in the range of 
A. It follows that A tv) = 0 since w is an arbitrary vector. 
Conversely, any vector z in the null space of A t will be ortho
gonal to the range of A. For ify is in the range of A, we have 
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(y,z) = (Ax,z) = (x,A tz) = O.The verification is now com
plete, because any vector can be written as a linear combina
tion of the u's and v's since together they form a basis for the 
entire space. The portion of the expansion which involves 
the u's will be in the range of A, and the remaining portion 
involving the v's will be in the null space of At. 

We next consider the choice of a suitable scalar prod
uct. Its discovery requires a bit of trial and error. We have 
found the following definition to be convenient. Let I };m) 
denote the monomial defined by 

" [ (2'J',)! ] 112 = IT I 1,' - m,q',: + m,. 

i~ 1 (Ji - mJ!(Ji + mJ! I I 

(2.14) 

In this expression each}i is positive or zero, each}i satisfies 
-}i <,mi <ii' and each}i and mi is integral or half integral. 

For li;m) to belong to 9 k , we require 2(J, + ... + }n) = k. 
The monomials li;m) are linearly independent and clearly 
form a basis. Our scalar product will be defined by the re
quirement that they form an orthonormal basis, 

(J';m/I};m) = OjjOm'm' (2.15) 

Here, the quantity 0)) equals + 1 if all the indices denoted 
by j' and} are respectively equal, and it is zero otherwise. 

The computation of H 1 is a simple task. From (2.2) we 
see that h ~Id consist of the squares P7 and q;. For these func
tions we use the notation ad(p~) and ad(q~) to denote the 
associated Lie operators since in this case the capital letter 
convention is not convenient." Then using (1.2) and (2.14), 
we find upon computing the required Poisson bracket that 

ad(q;)IJ''':in ;m''''m,,) 

= 2(ji + mi + 1)1I2(ji - mi )'12 

(2. 16a) 

ad(p;) I }'''i" ;m,· .. m n ) 

= - 2(I - mi + 1)1I2(Ji + mJII2 

(2. 16b) 

We observe that, in analogy to quantum mechanics, ad(q;) 
behaves like twice an angular momentum raising operator. 
Similarly, ad(p~) behaves like twice the negative of an angu
lar momentum lowering operator. 12 It follows immediately 
or by direct computation that 

ad(q;)t = - ad(p;), 

ad(p;)t = - ad(q;). 

(2.17a) 

(2.17b) 

We are ready to specify our choice offk in relation 
(2.11). Using (2.13), we can uniquely write 

h~-I=rk+nk' (2.18) 

where rk is in the range of H2 and n k is in the null space of 
H 1. Next, we require thatfk satisfy the equation 

(2.19) 

This equation always has a solution because rk is in the range 
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of H2 by construction. I) With this choice forlk' we find from 
(2.11) and (2.18) the result 

(2.20) 

That is, it is always possible to chooselk in such a way that 
h 'kew for k>3 is in the null space of Hi. 

At this point we should make clear to the reader that we 
do not maintain that the imposition of (2.19) is always the 
optimal procedure. Indeed, we are studying other strategies, 
which will be the subject of another paper.14 However, the 
above procedure is clearly a mathematically attractive op
tion worth exploring. We shall see in the next section that it 
has interesting physical consequences because it leads direct
ly to the formal construction of integrals of motion. 

3. INTEGRALS OF MOTION 

In the last section, we made a partial exploration of how 
the choice ofthelk affected the form of h new. We found that 
by imposing (2.19), it was possible to arrange that each term 
h 'kew in h new (save for h ~ew) would be in the null space of H 1. 
In this section we will show that this choice leads to the 
determination of at least one and perhaps several integrals of 
motion for h new. 

Let us express the function h ~ld given by (2.2) in the 
form 

h ~ld = C + d, (3.1) 

where c and d are given by 

c = !am + 1(P;" + I + q;" + I) + ... + !an(P~ + q~), 
(3.2a) 

d = !(Pi + .,. + p;"). (3.2b) 

We shall show that c is an integral of motion for h new. That 
is, c satisfies the equation [c,h new] = O. 

The proof requires a series of steps. First, suppose that 
Ins) is a homogeneous polynomial of degree s. Imagine that 
In, ) is expanded as a linear combination of the basis vectors 
Ij;m) given by (2.14). Evidently we must have 
2(j1 + ... + j,,) = s for every term in the expansion and 
hence 2ji <;s for every factor in each I j;m). It follows that 

[ad(p;/]S+ II nJ = 0 i = 1,2,.··,m, (3.3) 

since ad(p;)t is proportional to a raising operator by (2. 16a) 
and (2. 17b). 

Let C and D denote the Lie operators associated with c 
and d, respectively, and consider the quantity 
[D t ]",(, + 1)1 nJ. Since all the ad(p;)t commute with each 
other, we can expand this quantity to obtain an expression of 
the form 

[D t]'n(s + 1)1 nJ 

= IP(p)[ad(p;nP' ... (ad(p;nfY"'1 ns), (3.4) 
p 

where the (3 (P) are certain coefficients. We note that in each 
term the exponents are non-negative and must satisfy 
PI + ... + Pm = m(s + 1). It follows that in each term there 
must be at least one exponent Pi such that Pi >(s + 1). This 
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implies by (3.3) that 

[ad(p;)tY'1 n,) = o. 
Therefore, we must have 

[Dt]m(s+ 1)1 nJ = O. 

From (3.1) we have 

H!=Ct+D t
, 

(3.5) 

(3.6) 

(3.7) 

Also, from (2.17) and (3.2a), Cis antihermitian, that is, 

C t = - C. (3.8) 

Solving (3.7) for D t and inserting the result into (3.6) gives 

[C + Hn"'<' t- 1)1 nJ = O. (3.9) 

Since C and Hi commute, the left-hand side of (3.9) can be 
expanded to give 

[cm(s+ I) + m(s + 1) cm(s+ I)-IH; 

(3.10) 

Let us now add the further hypothesis, as our notation may 
already have suggested, that In,) is in the null space of Hi, 

H; I nJ = O. (3.11) 

Then, all the terms on the left-hand side, except for the first, 
automatically annihilate Ins)' and we conclude 

crn(S+l)ln,) =0. (3.12) 

We are almost done. Since Cis antihermitian and maps 
9' s into itself, we know that its eigenvectors in 9' s must 
form a complete set in 9' s . Thus we can write an expansion 
of the form 

(3.13) 
y 

where the(3y are certain coefficients and the polynomials Ir> 
are linearly independent and satisfy eigenvector relations of 
the form 

(3.14) 

Insertion of the expansion (3.13) into (3.12) and use of(3.14) 
gives the result 

(3.15) 
y 

But, since the polynomials are linearly independent, we must 
then have (3yV;<s + I) = 0 for every r, which in turn implies 
Py Vy = 0 for every r. From this we conclude that 

(3.16) 
y 

We have shown that if Ins> is in the null space of H; it must 
also be in the null space of C. 

The result we have been working to prove now follows 
immediately. Thanks to our normal form algorithm, we 
have arranged that each h 'kew for k>3 is in the null space of 
H 1, and hence 

Ch zew = 0 for k>3. (3.17) 

Moreover, it is easily checked that 
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FIG. I. Motion of a trapped particle in a magnetic dipole field. 

Ch ~ew = Ch ~Id = [c,h ~Id] = O. (3.18) 

Consequently, we have 

Ch new = [c,h new] = 0, (3.19) 

and c is an integral of motion of h new as advertised. 

We have seen that the normal form algorithm of Sec. 2 
leads to the determination of an integral of motion i new for 
h new, namely i"ew = c. In some cases, for example when the 
frequencies a i are irrational in a way as to be incommensu
rate, it is possible to exhibit additional integrals. This is 
shown in the Appendix. 

It is worth remarking at this point that the normal form 
algorithm required for mirror machine Hamiltonians is con
siderably more complicated than that used in celestial me
chanics. In the latter case it can be shown that H; = - H 2, 

and then the analysis is far simpler than the preceding has 
been. 

4. EXAMPLES AND APPLICATIONS 

In this section we study two Hamiltonian systems 
which describe the motion of charged particles in magnetic 
mirror geometries. The first problem considered is that of 
the motion of a charged particle in a magnetic dipole field, 
the so-called St(hrmer problem. This problem is an idealized 
description of the Van Allen radiation. The second system 
considered is a simple model mirror machine characterized 
by the magnetic field given in cylindrical coordinates (P,ifJ,z) 
by 

B = (Bola2)[ - pzep + (a 2 + z2)ez ]. (4.1) 

The variable a is a typical length scale for the mirror. 

Our major tool for dealing with these systems is the use 
ofthe normal form algorithm. The algebra involved in carry
ing out the procedure is very lengthy, but completely rou
tine. Therefore, we have programmed a digital computer to 
carry out the necessary steps. In brief, we have written rou
tines using the language FORMAL to carry out the decompo-
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FIG. 2. A trapped orbit as seen inp,z coordinates. The initial conditions are 
z = 0, p = 1.07, P = 0, i = 0.0355. 

sition (2.18), solve (2.19) for fk' and perform (2.5) to move 
from h k ~ I to h k. The calculations were performed through 
sixth order for the SMrmer problem [Le., k = 6 in Eq. (2.3)] 
and through ninth order for the model mirror machine. 
Typical calculations required 45 min of Univac 1108 time. 
We expect that specially written routines for the same pur
pose which are currently under development will require 
considerably less computer time. 

Figure 1 shows the motion of a typical particle trapped 
by a magnetic dipole field. When the equations of motion are 
written in cylindrical coordinates, the axial symmetry asso
ciated with a dipole field and scaling of space and time can be 
used to reduce the problem to the determination of the orbits 
governed by the reduced Hamiltonian 

h (Pp,Pz,p,z) = ~(p~ + p;) + ~(l!p - plyJ)2. (4.2) 

That is, due to axial symmetry, the problem is reduced to one 
having two degrees of freedom. Once the motion in the p,z 
plane is determined so thatp(t) andz(t) are known, ifJ (t) can 
be found by a quadrature. Details are given in Refs. 2 and 4. 
Figure 2 shows a typical orbit as it appears in the p,z plane. 

The Hamiltonian (4.2) is not in the form of a power 
series, and consequently we cannot apply the normal form 
algorithm directly. However, we observe from Figs. I and 2 

0.10 

0.05 

q2 
0 
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-0.10 
-0.4 -0.2 0 0.2 0.4 

ql 

FIG. 3. The orbit of Fig. 2 as it appears in dipolar coordinates. 
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that the motion consists of gyration about a field line super
imposed upon motion along a field line. We therefore intro
duce orthogonal dipolar coordinates q, and q2 given by 

q, = z/~, q2 = ~/p2 - 1. (4.3) 

Roughly speaking, the coordinate q, describes motion along 
the confining field line, i.e., the guiding center motion, and q2 
describes motion perpendicular to the field line. This fact is 
illustrated in Fig. 3, which displays the orbit of Fig. 2 as it 
appears in dipolar coordinates. The motion has now been 
separated, in first approximation, into oscillations about 
qz = 0 superimposed upon motion along the q, axis. 

Now let P, and P2 be momenta canonically conjugate to 
q, and q2' Then after calculation, IS one finds that the Hamil
tonian (4.2) when expressed in terms of these new variables 
has a power series expansion. Explicitly, employing the no
tation (2.1), one finds for the first four terms 

h ~ld = !Pi + !(P~ + q~), 
h ~ld = !( - 4q~ - 6q1[Ji), 

h ~ld = !(6p~qT + 21qiPT + lOqi + 3qiqi + 9qTPT). 

Note that h ~ld has the form (2.2). 

(4.4) 

Before continuing, we should make a remark about the 
transformation (4.3). It can be shown that for q2 = 0, the 
transformation from A = tan-I(p/z) toql has a singularity for 
complex values of q, and is analytic only for I qll <3(3)112/16. 
J As a consequence, neither the Hamiltonian (4.4) nor the 
results derived from its normal form are expected to have 

meaning for Iqt!>3\l3/16. 

The stage is set for the application of the normal form 
algorithm of Sec. 2. The coefficients of the power series ex
pansion (4.4) are inserted into a properly coded computer 
program. Sometime later the coefficients for thefk generat
ing (2.3) and the coefficients for the h ~ew emerge. 

All the results obtained are too lengthy to record here. 
We find, for example, thatj; is given by 

j; = - 2P2q~ - 3PiP2 - ~p~. (4.5) 

The higher f's rapidly become much longer expressions and 
are of little direct interest. 

The normal form Hamiltonian is of direct interest. 
Through terms of order 6, and using a notation similar to 
(3.2a), that is C2 = !(P~ + q~), the normal form Hamiltonian 
is given by the expression 

h new = .!.n2 + C + (~ q2 _ ~2) 
zrl z 2 z I 2 2 

39 4 9 2 2 IS 3) + (--gezql + U;C2ql + ~2 • 

We see that h new is of the functional form 

h new = !Pf + g(cz,q,). 

(4.6) 

(4.7) 

That is, the normal form Hamiltonian is "simple" in the 
sense that it depends on the variables Pz, qz only in the combi
nation Cz = !(P~ + qD· This is, of course, what is to be ex
pected because according to (3.19), Cz is an integral of motion 
for h new. 
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It is also of interest to record some terms of the integral 
of motion i old obtained from (1.15) with i new = C2' They are 
also calculated by our computer program. We write 
l"ld = 1~ld + l~ld + l~ld + "', etc. The first few terms are given 
by 

i ~Id = !(P~ + qD, 

i ~ld = - 3piqz - 2q~, 
. old 27 2 2 117 2 2 3 2 2 15 2 2 1 2 2 
14 = SPiP2 + p~Plq2 + 'W2ql + 4'P2q2 - 4qlq2 

3 9 4 IS 4 55 4 
- ]!hP2q,qZ + 1?1 + SP2 + ~2' 

(4.8) 

The industrious reader is invited to verify for himselfthat the 
Poisson bracket (1.17) in fact vanishes using the expansions 
(4.4) and (4.8). Incidentally, that it does so has been verified 
directly as a check by a computer programmed Poisson 
bracket routine. 

The series i old has great utility in the examination of the 
nature of motion in a dipole field in fine detail. It can be used, 
among other things, to show that the SMrmer problem is 
insoluble. What this means is described extensively else
where.' We shall give a parallel but much abbreviated treat
ment of the question of insolubility later on in this section 
when we discuss the model mirror machine example. 

As advertised in the first section of this paper, the nor
mal form Hamiltonian may be sufficiently simple that it is 
possible to find the frequencies and initial conditions for pe
riodic and quasiperiodic orbits. We shall now see that this is 
the case for the St0rmer problem. 

Observe that the Hamiltonian (4.6) is of the form 

h new = /3 (cz) + !Pi + !wZ(c2)qi + ll(cz)qi + "', (4.9) 

where 

/3 (cz) = Cz - ~~ + ~~ + "', 
2 2 

w2(C Z) = 9cz + ~~ + ''', 
8 

39 
ll(Cz) = --ge2 + .... (4.10) 

Since Cz is an integral of motion and therefore constant in 
time, we conclude that the motion inp" q, governed by h new 

is that of an anharmonic oscillator described by the Cz depen
dent parameters WZ(c z), 1l(c2), etc. This circumstance sug
gests that we should attempt to bring the quadratic part of 
(4.9) to the form (!a)(PT + qi), which is analogous to (3.2a) 
as far as the variables p"q, are concerned, and then we should 
again apply some normal form algorithm. 

Consider the canonical transformation generated by 
the function gz given by 

(4.11) 

Note that g2 is homogeneous of degree 2 as far as the varia
bles q" PI are concerned. We find that 

exp(GZ)C2 = C2, 

exp(Gz)p, = p IW'I2, 

exp(G2)q, = q,/W'I2. 
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FIG. 4. The frequency ratiow,/w 1, as computed from Eq. (4.17), plotted as a 
function of the value of p. The other initial conditions are z = 0, p = 0, and 
h = 0.002907. For comparison, actual periodic orbits obtained numerically 
are plotted as points. Initial conditions for these orbits were supplied by R. 
De Vogelaere (private communication). The type of orbit is shown at the top 
of the figure. 

Consequently, we find that 

exp( G2)h new = /3 (C2) + !w(c2)(Pi + qi) + y(c2)qi + "', 
(4.13) 

where 

(4.14) 

We see that apart from the term /3 (C2), which plays no 
role in the determination of the Ph q I motion, the trans
formed Hamiltonian (4.13) has a quadratic part of the form 
(3.1) with the term ofthe form (3.2b) completely absent. 
Now consider the Lie operator associated with this quadrat
ic part. It will be antihermitian because of the analog of (3.8), 
and hence the null spaces of the analogs of H2 and H! will 
coincide in this case. 

Let h * denote the result of applying the normal form 
algorithm a second time. We write h * = · .. exp(G4) exp(GJ) 

exp(G2) h new where the functions gJ, g.,'" which lead to GJ, 

G., .. · and which may involve C2 as a parameter are still to be 
determined. It follows from the discussion in the previous 
paragraph that one can arrange to have h * lie in the null 
space of ad(Pi + qD. If this is done, h * will only depend on 
the variables Ph ql in the combination CI = !(Pi + qt)· Of 
course, h * may also depend on C2• After calculation employ
ing the normal form algorithm, we find the explicit result 

h *(C I'C2) = /3 (c2) + W(C2)C I + 13ci/(16 + 2c2) 

- 25857 162208c2~ \12 [ 1 + (c2/8) ]-512d + .... 
(4.15) 

Let us introduce variables ifh and ifh which are canoni
cally conjugate to the variables CI and C2 by means of the 
equations 

(4.16) 
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Evidently the pair Ci' <Pi for each i are action-angle variables. 
Consequently, we have 

¢i = (Jh *) = W;(C h C2). 

JCi 

(4.17) 

Since the C i are integrals of motion (h * is independent of the 
CPi thanks to the normal form algorithm), the frequencies Wi 

are independent of the time. Consequently, Eq. (4.17) can be 
integrated directly to give 

(4.18) 

Thus, combining (4.16) through (4.18), we find that the mo
tion of the qi' Pi is periodic with the frequencies WI and w2• 

Since h old and h * are related by a canonical transformation, 
it follows that the motion described by h old must be quasi
periodic with the two fundamental frequencies WI and W 2• In 
particular, orbits for which the ratio w21 WI is a rational num
ber will be closed, and therefore will be completely periodic. 

Suppose we consider all the orbits for which the energy 
has a particular set value and for which the fundamental 
frequency ratio is rational, w 2/wI = min. Since h * and the 
Wi depend only on C I and C2, these two conditions determine 
the values of the integrals C I and C2' However, <p? and <p ~ are 
undetermined. Consequently, we expect that those periodic 
orbits having a particular energy and frequency ratio will 
form a two-dimensional surface in phase space. However, 
direct numerical integration of orbits for the St(6rmer prob
lem shows that this is not the case. Instead, one finds that for 
a fixed energy, there are only a finite number of orbits having 
a specified rational value for wl/w2' Put another way, for a 
fixed energy, the closed (and therefore periodic) orbits in 
phase space are isolated curves, and do not form a two-di
mensional surface. 16 It follows that the normal form process 
that we have described in this paper must be divergent for the 
St0rmer problem. 

Weare currently working on a different normal form 
procedure in order to overcome this difficulty. I. However, 
we wish to point out here that the apparently formal expres-
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FIG. 5. A continuation of Fig. 4 showing analogous results for those orbits 
whose initial conditions are such that p > 1. 
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TABLE I. A comparison of initial conditions for periodic orbits estimated 
using the normal form (4.21) in (4.17) and initial conditions obtained exact
ly by the numerical integration of trajectories. There are no orbits with 
rotation number less than 10 for this energy (h = 0.01). 

Rotation number Estimated Numerically determined 
6),/6), q, q, 

10 0.1413772 0.1413772 

II 0.1349294 0.1349264 

12 0.1294129 0.1294038 

13 0.124624 0.124608 

14 0.120415 0.120393 

15 0.116678 0.116650 

16 0.113330 0.113298 

17 0.110308 0.110272 

18 0.107561 0.107523 

19 0.105050 0.105009 

20 0.102743 0.102700 

22 0.098638 0.098592 

24 0.095083 0.095035 

27 0.090542 0.090493 

30 0.086722 0.086672 

33 0.083447 0.083397 

36 0.080596 0.080547 

39 0.078084 0.078036 

sions (4.15) and (4.17) for the Wi still are useful. For when 
periodic orbits are located numerically and Oh/WI is then 
computed from (4.15) and (4.17) using the numerically de
termined initial conditions, one finds that the ratio is in fact 
nearly rational. Figures 4 and 5 illustrate how wen this 
works. From these figures we see that the results are quite 
accurate for nearly equatorial orbits, but are worse for orbits 
whose mirror points are further down the guiding field line. 
Moreover, we remark that for initial values of p satisfying 
0.9383 <p < 1.082, which includes most of the interesting 

region of the figures, the value of ql exceeds 3\·/3/16 some
where on the trajectory, and consequently we expect trouble 
on that basis alone. Thus, the accuracy of our results is much 
better than we have any reason to expect. 

We devote the remainder of this section to a discussion 
of orbits in the simple model mirror machine whose magnet
ic field is given by (4.1). In particular, we shall focus our 
attention on those orbits for whichpc,b = O. These orbits do 
not encircle the central axis of the mirror machine, but in
stead pass continually through it. Hence, one cannot use 
energy conservation arguments to preclude their extending 
arbitrarily far down the length of the machine. After suitable 
scaling, we arrive at the simple Hamiltonian 

(4.19) 

Here ql is proportional to z and q2 is proportional to p. 

In this case the Hamiltonian is considerably simpler 
than that for the St0rmer problem. Consequently, we were 
able to carry out the normal form algorithm to higher order 
within the computer time available. The result through 
terms of ninth order is 

h new = .!.n2 + c +.lc q2 + ~2q2 + (~3q2 _ ~2q4). 
U" I 2 2 2 I 16 2 I 16 2 I 48 2 I 

(4.20) 
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As before, we may now perform a variant of the normal form 
algorithm a second time to arrive at a final Hamiltonian 
which only depends on the variables C1 and C2' The result is 

h *(chc,) = C 2 + (c, + id + id)l12c1 

- ~(1 + AC2 + Adt1c2Ci + .... (4.21) 
32 

A numerical study of the periodic orbits for a fixed val
ue of the energy shows that they are again isolated, and do 
not form a two dimensional surface. In particular, various 
periodic orbits have initial conditions of the following form: 
ql = 0;P2 = 0; q2 variable and taking on various discrete val
ues; and PI determined by energy conservation once qh q2, 
and P2 have been specified. Table I shows the initial value of 
q2 for various periodic orbits in the case for which the equa
tion hold = 0.01 fixes the energy. Each integer in the column 
labeled "rotation number" is defined to be the number of 
oscillations undergone by the variable q2 during one oscilla
tion of ql' It corresponds physically to the number of gyra
tions a charged particle makes during one complete mirror
ing cycle, and should ideally equal the ratio W2/WI computed 
by the normal form algorithm. This is very nearly the case. 
The column labeled "estimated q," is the value of q2 comput
ed by requiring that the ratio W 2/W 1 computed using (4.21) 
and (4.17) be exactly equal to the rotation number in ques
tion. (We have, of course, also required that hold = 0.01, 
P2 = 0, and ql = 0.) 

The agreement between the columns "estimated q," 
and "numerically determined q," is remarkably good, and 
illustrates the utility of the normal form approach even 
though the series employed must ultimately be divergent. 
We observe that the agreement for the model machine prob
lem is much better than it was for the St0rmer problem. This 
is because in (4.20) the ratio of the coefficient of the terms 
involving qi is smaller by a factor of C2 than the correspond
ing ratio for (4.6). This circumstance can be traced to the fact 
that (4.19) contains no terms of order 3 [whereas (4.4) does], 
and is a special feature of orbits with p c,b = O. 

Because of its simplicity, the model mirror machine 
problem is an ideal context in which to examine the integral 
of motion produced by the normal form algorithm. We have 
computed i old through terms of ninth order using (1.15) with 
i new = c2• The entire expression is too lengthy to record, and 
is best transferred directly from one computer program to 
another. The first few terms are given by 

i ~Id = !(P~ + qD, 
i ~Id = 0, (4.22) 

i ~Id = A(P~~ - p~q~ - 2p~q~ + 2q~q~ + 4p!/l2qlq2)' 

Examination of these terms and those of higher order shows 
that iold contains within it all the terms in the power series 
expression for the magnetic moment, E 1/ B: 

El/B = W~/(1 + !qT) + ~q~ + ~q~q~ 
(.4.23) 

There are also additional terms in i old beyond these. They 
represent corrections required to make up the complete adia
batic magnetic moment expansion. 
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III 

strength at the mirror point is 1.5 times its value at ql = 0. The vertical scale 
is arbitrary, and to separate the curves a different constant has been added 
to each. 

Since i old, as a series, contains all the terms in (4.23), it is 
reasonable to sum these terms explicitly. When this is done, 
we will obtain a quantity, denoted by i,um, which contains 
E1/ B exactly plus all terms of the remainder of the complete 
adiabatic magnetic moment expansion through the highest 
degree to which i old is computed. The quantity i sum may be 
expected to be more nearly constant than i old. More explicit
ly, through terms of order nine we write 

tum = l'Old - !p~(1 -1qT + !qi - kq7) + !P~/(1 + 1qi)· 
(4.24) 

Note that the series for the magnetic moment E1 / B given in 
(4.23) diverges for Iqll > (2)11'. We therefore do not expect 
that the function io1d truncated at a finite degree will be a 
good integral of motion for orbits which mirror beyond 
Iqll = (2)112. But this does not rule out the possibility of i sum 

being very nearly constant, when truncated at high degree. 

To examine the constancy of i old and i slim as integrals of 
motion, we have integrated numerically the equations ofmo
tion. Figure 6 shows graphs of i old, taken through 5th, 7th, 
and 9th order respectively, as a function of time over an 
orbit. The orbit starts at ql = 0 at t = 0, mirrors at t~22, 
recrosses the median plane ql = 0 at t~44, mirrors again at 
t~66, etc. It is evident that the constancy ofiold improves as 
more terms in the series are included. (We will see later, 
however, that the series must ultimately diverge, so that im
provement cannot continue indefinitely.) Also shown is the 
quantity i,um, computed from (4.24) with iold taken through 
ninth degree. It remains remarkably constant over the entire 
orbit. Finally, the quantity E11B is plotted to demonstrate 
that i old is superior to the magnetic moment except at mirror 
points, and that i sum is superior everywhere. Results of sever
al numerical integration runs for a range of initial conditions 
show that this behavior holds in general. 
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We close this section with the presentation of numerical 
evidence that the model mirror machine problem, like the 
St0rmer problem, is insoluble. What it means for a classical 
mechanics problem to be "insoluble" and how this can come 
about has been described in detail elsewhere: In essence, it 
means that there are, in fact, no analytic functions of the p's 
and q's which are integrals of motion and therefore satisfy 
(1.17). Consequently, trajectories in phase space are not con
fined to lie on analytic hypersurfaces. Instead, they may 
wander in a very complicated way, and are sufficiently com
plex so as to preclude their explicit representation. It also 
follows that the complete adiabatic magnetic moment ex
pansion is divergent. Finally, it can also be shown that any of 
the standard methods of classical mechanics, such as pertur
bation series or solution of the Hamiltonian-Jacobi equation, 
must also fail. In particular, there is no known way of pre
dicting the long-term behavior of trajectories; and in the case 
of mirror machines, long-term containment cannot be math
ematically guaranteed. 

One method of testing numerically for the existence of 
integrals of motion is to plot the values of some independent 
pair of variables each time a trajectory in phase space crosses 
the median planeql = O. If the result of such a plot isa collec
tion of points which have the appearance of lying on a 
smooth curve, then the existence of an integral is suggested. 
although not proved. By contrast, if no such regularity oc
curs, the existence of an integrtal is ruled out. Figure 7 shows 
variations in io1d (through ninth order) plotted againstp, for 
successive median plane crossings. It is evident that these 
points are scattered, and the existence of an integral of mo
tion is precluded. Thus, the model mirror machine, despite 
its simplicity, is insoluble. More detail may be found in Ref. 
3. 

5. CONCLUDING SUMMARY 

In Secs. I and 2 a partial exploration was made of the 
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effect of canonical transformations on mirror machine Ham
iltonians, and a certain normal form was shown to be always 
possible. In Sec. 3 it was shown that this normal form led to 
the existence of a formal integral. Section 4 treated two ex
amples of mirror machines, and normal form methods were 
used to obtain expressions for bounce frequencies and the 
location of periodic orbits. The lengthy algebraic calcula
tions required were performed by computer. Good agree
ment was found between analytical and numerical results for 
periodic orbits. In addition, it was shown that the integral of 
motion produced by the normal form method is in fact a 
series for the complete adiabatic magnetic moment expan
sion. Finally, it was shown that, like the SMrmer problem, 
the simple model mirror machine does not possess an analyt
ic third integral of motion. Therefore its complete adiabatic 
magnetic moment expansion is divergent, phase space tra
jectories are not confined to lie on analytic hypersurfaces, 
and the problem, despite its apparent simplicity, is insoluble. 
In particular, there is no mathematical guarantee of long
term containment. 
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APPENDIX 

Suppose that the frequencies a i in (2.2) exhibit some 
degree of incommensurability. 17 In particular, we assume 
that there are I and only I linearly independent equations of 
commensurability between the frequencies am + 1, ... ,an- We 
write these relations in the form 

n 

I JI;fXj = 0, i = 1, ... ,1. 
j=m+ I 

Equivalently, we write 

Jla=O 

(AI) 

(A2) 

where a is a vector with entries am + 1 ···an, and JI is an 
I X (n - m) matrix with integer coefficients, rank I, and in
dexed so that m + 1 <)<n. 

Using a notation similar to (3.2a), we write 
n 

c= I ah (A3) 
j=m+ 1 

where 

_ 1(P2 + 2) Cj-"].j qj' (A4) 

We also write 
n 

c= I app (AS) 
j=m+ 1 

It is evident that the various Lie operators ~ mutually com
mute, since they involve differentiation with respect to dif-
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ferent variables. Also, from (2.17) they are all antihermitian. 
Finally, they each map g; k on to itselffor each value of k. It 
follows that there exists a basis in which the Cj are all simul
taneously diagonal. 

We next assert that the eigenvalues of each Cj are the 
integers multiplied by i. To see this, we introduce monomials 
in the single pair qs' Ps defined by 

I; ) (p .)j+m(p .)j-m lIs;ms = s + lqs' 's - lqs' '. (A6) 

Here, as before, the quantitiesjs and ms are integral or half 
integral. We find, after simple computation, that 

Csljs;ms) = - 2imsljs;ms)· (A7) 

Since any monomial in the various variables can be built of 
products of the form (A6), and since these monomials obvi
ously form a basis, our assertion is proved. 

Let lAm + 1· .. An) denote an eigenvector of the various 
Cj • It is constructed from products of monomials of the form 
(A6). We have 

(A8) 

where theA's are integers. It follows from (AS) and (A8) that 

ClAm + c .. An) = (i i ajAj ) lAm + C"An)· (A9) 
j= m + 1 

Since Cis antihermitian, we may rewrite (A9) in the form 

<Am + 1· .. Anl C = (i. i ajAj) <Am + 1· .. Anl. (A 10) 
j=rn+ 1 

Now take the scalar product of both sides of (A 10) with the 
vector I h new). We find, using (3.19), the result 

0= <Am + 1'''An I C I h new) 

= (i i a~j)<Am + 1'''Anl h new). 
j=m+ 1 

(All) 

Thus, for lAm + 1,"An) to appear in h new, the eigenvalues Aj 
must necessarily satisfy the relation 

n 

I ajAj=O. (A12) 
j=m+ 1 
By the hypothesis (A 1) or (A2), there are only I linearly 

independent relations of the form (A12) with integer coeffi
cients. It follows that for each set of A 's obeying (A 12) there 
must be other coefficients P~"·P1 such that 

I 

Aj = IP1J1 ij 
i =- 1 

or, using matrix and vector notation, 

A = 1p).. 

(A13) 

(A14) 

We are almost done. Let Ym + I '''Yn be a set of real num
bers such that the vector Y with entries Y

1 
is an eigenvector of 

JI with eigenvalue zero, 

Jly = O. (AlS) 
By the nature of JI, there will be n - m - I such vectors Y 
which are linearly independent. Using (A14) and (AlS), we 
find that the scalar product between any A obeying (Al2) 
and any Y obeying (AlS) vanishes, 

(A,y) = (1p).,y) = (fJ).,Jly) = O. (AI6) 
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Now define operators Cy by the rule 
II 

Cr = I Yj~' (AI7) 
-- m+ I 

There will n - m - I such operators which are linearly inde
pendent. They evidently have the property that 

CrIA", 11"'At/) = i(A,y) I Am+I"'A n ) =0 (AI8) 

when (AI2) holds. Since the only vectors lAm + 1"'An> occur
ring in the expansion of h new are those for which (AI2) 
holds, we must also have 

Cyh new = o. (AI9) 

It follows that the n - m - I functions i ;ew defined by 
i ~ew == c

Y
' where 

Cy = i YIj 
j~m + I 

are integrals of motion for h new. 

(A20) 

We note that, in this notation, Ca is the integral already 
found in Sec. 3. We also remark that in the extreme case in 
which 1= 0, i.e., all the a's are irrational in a way as to be 
completely incommensurate, then each cj is an integral of 
motion for h new. 
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The distribution of zeros of the partition function is studied for a one-dimensional symmetric two
component lattice gas. It is shown explicitly that the (complex) activities of the two components 
need not in general be of equal magnitude for the partition function to vanish, although such is 
the case if the geometric mean activity is sufficiently high. The effect of boundary conditions on 
the distribution of zeros is also studied. 

1. INTRODUCTION 

Lattice versions of the two-component model intro
duced by Widom and Rowlinson have proved their theoreti
cal value in enlarging our understanding of the statistical 
thermodynamics of interacting systems and phase transi
tions.l The very first role played by these models2 was the 
demonstration of the versatility of the Peierls contour tech
nique of proving the existence of a phase transition-origin
ally developed for Ising spin systems. In the basic two-com
ponent lattice model of Ref. 2, each component excludes the 
other from its "sphere" of nearest-neighbor sites, while not 
interacting at all with other molecules ofthe same type (ex
cept that multiple occupancy of any site is always forbid
den). It was shown that in two or more dimensions, if the 
activities of the two components are (real and) equal, as that 
common activity is increased a value is reached at which a 
demixing phase transition occurs. Alternatively, we can say 
that above the critical activity the equilibrium state is not 
unique but is dependent on the boundary conditions. 

The requirement that the two activities be equal is cru
cial to the success of the Peierls argument, just as the as
sumption of zero magnetic field is crucial to its success when 
applied to Ising spin systems. Just because the requirement is 
needed to make the proof work does not, of course, prove the 
converse of the theorem. In the Ising case, however, we also 
have the Yang-Lee "circle theorem"3 which insures analytic 
thermodynamics unless the (complex) exponential of the 
magnetic field is of unit magnitud~onsequently, if the 
field is real, it must be zero for a phase transition to occur. 

We have a fairly analogous resuW for the lattice Wi
dom-Rowlinson gas, in which the two independent varia
bles are taken to be the ratio of the two activities and their 
(geometric) mean. The ratio than plays a role analogous to 
that of the magnetic field in the Ising case and the mean 
activity is the analog of the temperature. While the Yang
Lee circle theorem holds at all temperatures, we were only 
able to prove the corresponding result (nonanalyticity im
plies modulus of ratio equals one) for the lattice Widom
Rowlinson case for sufficiently high mean activity (suffi
ciently low temperature in magnetic language). 

alSupported in part by the National Science Foundation Grant No. 
CHE76-11253. 

It was not clear whether the failure of the proof at low 
activities was a shortcoming in the technique, or whether it 
has greater significance. What is expected physically is that, 
for real values of the activities of the highly symmetric mod
el, any nonanalyticity should occur at ratio one. However, 
permitting the ratio to assume complex values could con
ceivably result in a locus of singularities that crosses the real 
axis only at the point one-but that locus might not be a 
circle. 

Consequently, this study ofthe one-dimensional ver
sion of the model was undertaken in hopes of shedding some 
light on this question with an essentially exactly soluble 
model. Additionally, it was found that this model also gives 
some information on the effect of boundary conditions on 
the distribution of zeros of the partition function. 

2. THE MODEL 

The one-dimensional, two-component Widom-Row
linson model on a lattice is described by the transfer matrix 

T = ()12 X;2 y~2), 
yll2 0 Y 

where x andy are the activities, respectively, of particles of 
type 1 and 2. The transfer matrix reflects the exclusion of 
adjacent unlike particles and the absence of any interaction 
between neighboring like particles or between a void site and 
any type of site. If (tPP I and (tPfl stand for the vectors 

(tPpl = (1,1,1) 

and 

(tPfl = (I,V;,V;), 
then the grand partition functions for L sites with periodic 
("p") and tree (''/'') boundary conditions become 

Ep(x,y) = (tPpITLltPp), 

Ef(x,y) = (tPfITL-1ItPf)' 

In either case, for real positive activities x and y, evalu
ating the partition function becomes a matter of determining 
the dominant eigenvalue ofT, at least in the thermodynamic 
limitL---+ oo . In order to study zeros of the partition function 
however-which are not in general restricted to real and 
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positive activities-it is necessary to include all eigenvalues 
and match boundary conditions. We thereby obtain expres
sions of the form 

Sa = aaA f + baA f + CaA f, (1) 

where the A;'S are the eigenvalues ofT-functions of x and 
y-and where the label a can be either p orf The straightfor
ward approach is then to study the algebraic equation 

Sa (x,y) = 0, 

which can be solved in favorable cases. 
A more powerful method for periodic boundary condi

tions is based on the observationS than lnEp can fail to be 
analytic in its dependence on x and y only when the domi
nant eigenvalue fails to be unique (again, in the thermody
namic limit). This leads to equations of the sort 

IAI I = IA21 > IA3 I 
and other permutations of the subscripts. 

The secular equation for T, with roots A I ,A2, and A3 , is 

(2) 

and shows that the two activities actually enter most natural
ly through their arithmetic and geometric means. We will at 
times use the definitions 

xY=Z2 

and 

l+x+y=S 

so that Eq. (2) becomes 

A 3 - sA 2 + ~ A + Z2 = O. (3) 

We study two special cases to explore (I) boundary con
dition effects on the zeros and (II) the effect of the ratio xly 
on the zeros. To study (I) we impose the simplifying condi
tion that the ratio xly be one and to study (II) we impose the 
simplification of periodic boundary conditions and the re
quirement that the product xy = Z 2 be real. 

3. CASE (I): EQUAL ACTIVITIES 

For equal activities it is readily learned that the three 
roots of Eq. (2) are 

AI =x, 

A2 = H (1 + x) + (x2 + 6x + 1) 112], 

A3 =H(1 +x) - (x2 +6x+ 1)112], 

(4a) 

(4b) 

(4c) 

and that the expansion coefficient af in Eq. (1) vanishes for 
free boundary conditions. The vanishing of Sf then leads to 

(5) 

in the thermodynamic limit L-. 00. Interpreting this last 
equation as an equation for the (common) activity x, it is 
easy to show that x must be real and negative and in the 
range 

- 3 - 2V2<x< - 3 +2V2. (6) 

This follows from noticing that Eq. (5) means that IA2/A31 
= 1, which in tum requires (x2 + 6x + 1)112 to be pure 

imaginary. 
Now, for periodic boundary conditions, all three coeffi-
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FIG. I. Locus of zeros, equal activities, and periodic boundary conditions. 
With free boundary conditions the complex zeros disappear, while negative 
zeros extend further (to - 3 - 2Yz). 

cients in Eq. (1) are nonzero, andA I must also be included in 
the analysis. The easiest way to do this is by way of the Kat
sura approach. S One of the three equations is 

(7) 

It may be shown that Eq. (7) is satisfied as long as x is real 
and in the range 

(8) 

which is part of the line segment represented by Eq. (6). 
The remaining equations 

IAI I = IA2 I> IA3 I 
and 

IAI I = IA3 I> IA21 
allow x to be complex. Its possible values may be shown to lie 
on the curve 

ei4\ _ 1 
(9) x= 

e- i4\ + 1 

parameterized by cpE[17/2,31T12) - {1TJ (see Fig. 1). 
In a certain sense we can say that the periodic boundary 

conditions render the system more interacting and more ca
pable of cooperative behavior. Hence, compared to the zeros 
for free boundaries, some of the zeros have moved off the 
negative real axis. There is, of course, no phase transition in 
this one-dimensional system-that would require that some 
of the zeros lie arbitrarily close to the positive real axis. 

4. CASE (II): UNEQUAL ACTIVITIES 

Now we address the following question: Is it possible 
for Sp(x,y) to vanish if x=/=y? Intuition certainly expects a 
negative answer if x and yare both restricted to real, positive 
(Le., physical) values. This intuition is based on the symme
try operation of exchanging type 1 particles for type 2 every
where, analogous to spin flips in an Ising model in zero field. 
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The original Yang-Lee work3 showed that the Ising parti
tion function with complex argument e - PH cannot vanish 
unless Ie - PH I = I-so if H is real it must be zero. 

Inasmuch as there is an analogous circle theorem for 
the Widom-Rowlinson model' (any number of dimensions) 
for sufficiently high activities, it is natural to wonder ifthere 
is a corresponding theorem requiring Ix/yl to be one any 
time that ~ (x,y) vanishes. 

Actually, that statement is false, as the present one-di
mensional example shows. Besides periodic boundaries, the 
other simplification we make is to study only pairs of com
plex variables x and y such that xy = Z2 with z real. This 
reduces by one the number of variables to manipulate since 
Arg(x) = - Arg(y). It develops, however, that this still pro
vides sufficient latitude to find pairs (x,y) of this sort where 
x*y* but ':p(x,y) = 0. (Clearly, if x = y*, then Ix/yl = 1.) 
The proof consists of constructing the pairs of points with 
the just named property x*y* but':p(x,y) = 0. We also 
learn conditions (on z) that permit such asymmetric zeros. 

Notice that the secular Eq. (3) implies the three sym
metric equations 

AIA2 A3 = - Z2, 

AIA2 +AIA3 +A2A3 =Z2, 

AI +A2 +A3 =5' 

(lOa) 

(lOb) 

(lOc) 

Our goal is to produce three complex numbers Ai satisfying 
these three equations with the additional restraint that two 
of them (say AI and A2 ) have the same magnitude 

(11) 

We must also impose the condition that 5 not be real for 
Imet) = ° implies that Im(x + y) = 0, which means that 
x = y* since Arg(x) = - Arg(y). 

We thus look for solutions of Eq. (10) of the form 

AI = r ei(V' ~- tl, 

A2 =rei(l/!+tJ, 

(12a) 

(12b) 

with ¢ and X real and ¢*O, assuming z real and 5 not real. 
Clearly, from Eq. (lOa) we have 

and then from Eq. (lOb) it follows that 

AIA2 =Z2- A3 (A I +A2 ) 

(12c) 

=Z2(1 +r-le-i(I/!+XJ+r-le-i(l/!-x». (13a) 

Since A I A2 = ,ze2il/!, the equation 

~e3i!!' = z2(r eil/! + 2 cosX) (13b) 

replaces Eq. (lOb). 
Now the imaginary part ofEq. (13b) is independent of 

x: 
,zsin3¢ = rsin¢. 

Since we are interested in nonzero values of ¢, we may divide 
both sides of this last equation by sin¢, using sin3¢ 
= 3 sin¢ - 4 sin 3¢, to obtain 
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4 sin2¢ = 3 - (z/r)2. (14) 

Since ¢ is to be real, there is implied the condition 

z/r<3 1
/2. (15) 

Next the real part ofEq. (13b), i.e., 

~cos3¢ = Z2r cos¢ + YcosX 

= ~cos¢(4 cos2¢ - 3), 

may be solved for cosX using Eq. (14). The result is simply 

Z2COSX = - ~cos¢. (16) 

Requiring 0< cos 2X < 1 yields another conditions onz and r: 

r4(,z +Z2) <4Z4. (17) 

Equations (15) and (16) give, for a specified z, restric
tions on the possible values of r. A final restriction is implicit 
in Eq. (12c) since IA31 must be less than IAI I = IA21 = r: 

z2j,z <r 

or 

(18) 

To summarize, if we use the common magnitude of the 
two largest eigenvalues to parameterize our description, that 
parameter r must simultaneously satisfy the lower bound 

r> max (3 - 112Z,r/3) (19) 

and the upper bound implicit in Eq. (17). As z grows larger 
the upper bound is of order z 112 while the lower bound is of 
order z 2/3, It follows that there is a number Zo above which 
all conditions cannot be met, and therefore above which the 
circle theorem result must hold. It is not difficult, in fact, to 
discover that Zo = 33

/2 = 5.196 ... 
The program, then, for z < Zo is to choose first any r in 

the range defined by the lower boundary [Eq. (19)] and the 
upper bound [Eq, (17)]. Using this chosen value for r, Eq. 
(14) defines a real value of ¢ and then Eq, (16) defines X
also real. We then work backwards: Equations (12) give the 
eigenvalues Ai corresponding to activities x andy, which are 
given by xy = Z 2 and 1 + x + y = ~Ai' Since the two largest 
eigenvalues are degenerate, the partition function (in the 
thermodynamic limit, with periodic boundary conditions) 
will vanish. As an example, with z = 4 and r = 2.55 we ob
tain ¢ = 0.376, X = 2,872, and then x = - 3.53831 
+ l.50236i,y = - 3.83123 - 1.626732. Clearly, Iyl > Ixl 

(by some 8%). Of course, x and y could be interchanged. 

5. DISCUSSION 

We can only speculate that similar results would be ob
tained for a Widom-Rowlinson lattice gas in a higher dimen
sion, but it now seems most likely. At least we know that the 
dimension-independent circle theorem4 cannot be extended 
to low activities for any arbitrary lattice system. There may, 
however, be other more appropriate descriptions of the dis
tribution of zeros at low activities that would be independent 
of dimensionality or lattice type. 
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ing explicitly at the one-dimensional version of the general 
system studied in Ref. 4. 
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Using a characterization of metastability recently introduced by Sewell, taking the "lifetime" ofa 
state to be determined by the evolution ofthe polarization density only, we show that the infinite 
Ising model can support metastable states, describing polarization in opposition to a weak 
external field, even in the presence of globally acting thermal perturbations. 

1. INTRODUCTION 

Theories of metastability can be classified according to 
their applicability to systems with either long or short range 
forces, as well as according to their structural or dynamical 
nature. A structural characterization usually involves some 
notion of thermodynamical stability or the presence of an 
analytic continuation of equilibrium states, whereas dyna
mical theories may emphasize the long lifetime of the state, 
suitably defined. In ideal cases, it is believed, the structural 
properties ensure the dynamical ones. 

Among the rigorous results obtained so far, we mention 
in particular the scheme proposed by Penrose and Lebowitz, 
offering a dynamical characterization for systems with both 
longl and short2 range forces, a study by Griffiths, Weng, 
and Langer) on the slow relaxation of the polarization densi
ty in the Ising-Weiss model (see also Ref. 4), and finally the 
results of Lanford and Ruelle5 concerning the absence of 
metastability in a finite range lattice gas, when a structural 
characterization is adhered to. 

Recently, however, various aspects of metastability 
have been combined in a general scheme proposed by Sewell 
in Ref. 6. There it was proposeu that one may distinguish 
"ideal" and "normal" metastability, the former, though re
alizable in systems with long range forces only, having such 
strong structural propenies that they ensure the infinite life
time (see e.g., Refs. 7-9) and the latter, while having much 
weaker stability properties, seemingly describing metastabi
lity as it is observed in most cases. 

For classical lattice and continuous systems with hard 
cores,7 as well as for quantum lattice systems,9 it is possible to 
define metastability by three properties. As only a very limit
ed class of model systems may support such states-in par
ticular, short range systems are excluded-this metastability 
has been termed "ideal" in Ref. 6. 

Definition 1.16: A state w is said to be ideally metastable 
if it satisfies the following three conditions: 

1. It does not minimize the system's free energy density 
functional, Le., it is not globally thermodynamically stable. 

2. For all bounded regions, w minimizes the restriction 
of the free energy density functional to the set of states differ-

a) Aspirant N.F. W.O. Belgium; on leave of absence from the University of 
Leuven. 

b)Permanent address: Instituut voor Theoretische Fysika, Celestijnenlaan 
200D, B3030 Leuven, Belgium. 

ing from w only in that region, i.e., w is locally thermody
namically stable, and therefore8 satisfies the KMS condi
tions, or DLR conditions in the classical case. 

3. w minimizes the restriction of the free energy density 
functional to some reduced state space n (0) that is closed 
under space translations and convex combinations. 

One readily sees that condition 2 in the above definition 
is too strong a property to be required for metastability in 
general systems. States satisfying the following weaker con
ditions will be called normal metastable states. In extreme 
cases the definition reduces to that of 1.1. 

Definition 1.26: Let .xff be the algebra of observables for 
the system, .xff 0' a subset of .xff, and r a class of dynamical 
semi groups of.xff (Le., strongly continuous semigroups of 
completely positive maps Yt (tER + ),10 arising from localized 
couplings of the system to some reservoir in thermal equilib
rium. Let n (0) be some reduced state space of .xff as in Defini
tion 1.1. A state w(O) in n (0) is then said to be metastable with 
respect to (n (O),.xff 0 ,r) if, besides conditions 1 and 3 above, 
it has the property. 

2'. There is a function t/J on R + and a positive number T, 

corresponding to a time that is very long by observational 
standards, such that, for all A in .xff 0 and all Y in r, 

Iw(O)(Yt(A ) - w(O)(A) I < t/J (t 1r)IIA II 
with lims~o tf{s) = a and, by preference, T > To 
X exp(B / kT) with To of the order of standard observational 
times, and B an activation energy required to remove the 
system from n (0). 

Condition 2' is a way of defining the lifetime of a state; it 
requires that, in the presence of certain globally acting ther
mal perturbations, the expectation values of a class of rel
evant observables decay "extremely slowly" to their equilib
rium values. It is important to compare this definition with 
the one in Ref. 1 that measures lifetimes in terms of the con
ditional probability that the system being in n (0) at time zero 
has escaped from n (0) by time t. Roughly speaking, the set 
.xff 0 in Definition 1.2 has been taken as the set of all 
observables. 

In Ref. 2 a study was made of metastability in finite 
Ising model systems, in the spirit of this latter characteriza
tion. It was found that, although decay rates from n (0) can 
be made very small, they nevertheless grow with volume. 
Therefore, metastability is not possible in the infinite Ising 
model, at least not in the class of states studied there. 

It is the purpose of this paper to show that the infinite 
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size Ising model may support normal metastable states in the 
sense of Definition 1.2, even subject to global thermal pertur
bations. We shall consider states polarized in opposition to a 
weak external field, and thermal perturbations as described 
by the GlauberlI dynamics. A rigorous proof that this semi
group actually arises from a coupling to a Markovian reser
voir in equilibrium was given in Ref. 4, whereas an extention 
of the dynamics to an infinite system was shown to exist in 
Ref. 12. This model, commonly referred to as the stochastic 
Ising model, proved to be of great use in studying equilibri
um properties. 13 

The reduced space of "wrongly polarized" states is ide
alized as follows. 2 Supposing the external field to be negative, 
we consider the state space fl (c), c being a positive number, 
consisting of those states that give zero weight to configura
tions where clusters of negative spin are present, with area 
exceeding a given value of c2

• It is hoped to single out a 
posteriori a critical value which best satisfies the metastabi
lity requirements. 

We find that, for low temperatures and for c chosen in a 
suitable interval, any state minimizing the restriction of the 
free energy density functional to fl (c) has property 2' and is 
therefore (fl (c),.J?/ 0 ,r )-mc;tastable if .J?/ 0 is taken to be the 
set of spin observables and r the globally acting Glauber 
dynamics. 

The article is organized as follows. In Sec. 2 we con
struct the relevant class of states and the dissipative dyna
mics. The basic estimates are derived in Sec. 3, the main 
result being Theorem 3.3. Finally, a brief discussion is pre
sented in Sec. 4. 

2. STATES AND DYNAMICS 

As we shall consider states on the infinite Ising lattice, 
we first introduce some appropriate notation. X 
= { - 1,1}Z' will denote the set of spin configurations on 

the lattice, whereasXA ,X;\ (with..1 = l?'\A ) are taken to be 
the set of configurations in A, A, respectively. In general A 
will be a finite subset ofZ2. Endowed with the product topol
ogy, all three spaces X, X A' and X;\ are compact. 

GivenxEX,x ,1 represents its projection onXA • We shall 
occasionally write x as (X,1 ,xx). Conversely, any X A in X A 

can always be considered as an element of X by identify~ng 
x A with (x A ,p;\). Here p;\ denotes the configuration in A in 
which all spins are positive. When no confusion is possible, 
we shall delete the subscript A and consider x as an element 
of either X A or X. 

Next, we define two transformations on X. If xEX and 
j,kEZ2

, then Xi will denote the configuration defined by 

xj(k) = x(k) forj=l=k 

= -x(k) forj=k, (2.1) 

and xi denotes the configuration 

xi(k) = x(k - J) for all k. (2.2) 

It is particularly useful for our purposes to represent 
each configuration by a set of nonintersecting polygonal 
contours that separate spins of opposite sign (Ref. 14 and 
references therein). A set of contours, together with the 
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specification of the spin value at a particular lattice point, 
uniquely determines the configuration. In this language an 
outer contour is one which is not enclosed by another con
tour. If {; is any finite contour, then I{; I is its length, 0 ( (;) the 
region enclosed by {;, and 10 ( (;) I the area of this latter set. 
We now introduce an infinite-volume version of a reduced 
configuration space used in Ref. 2. 

Definition 2.1: If c is any positive number, X C is the set 
of all configurations x such that if (; is any outer contour 
associatedwithx,forwhichx(k) = - 1 forsomekinO({;) 
andadjacentto{;, then 10 ({;)I .;;;c2

• We alsodefineX~ by X~ 
= [xEX A I 3 yEX C such that y A = x l and then define X ~ 

analogously. Let Xc, resp. X~, resp. X~, be the characteristic 
function of X C in X, etc. 

Since a sequencex(n) inX converges tox ifand only iffor 
all finite A there is an no such that for n > no, x~) = X A' it 
follows that Xc is a closed set of X, and that it is therefore 
compact in the relative topology. 

Let then .J?/ be the C *-algebra of all complex continuous 
functions on X with the uniform topology. The local obser
vables for the bounded region A are the elements of .J?/ A 

,c1',1 = {fE,iflf(x) = f(x ,1 )}. 

For a given c we also define .ifc
, 

,cf" = {fE,iflf(x) = 0 for xU'}' 

wecan define .cf'~, ,(>/~, analogously. We here introduce two 
other subsets of d that will be used later. First we may 
consider ,if 0; if sf.. is the observable Sk (x) = x(k), 

,cf'o = {Sk IkEZ2
}, (2.3) 

a set which will appear in the characterization of metastabi
lity; second, we shall need the following auxiliary algebra 
,W,-, 

,if F = {fE.ifl f(x) = f(x ,1 ) for all x and for some 

finite A l (2.4) 

There is a one-to-one correspondence between states on 
,if, and (regular Borel) probability measures on X. We shall 
call this latter set n. Similarly fl C is the set of (regular Borel) 
probability measures on X C (isomorphic to the state space of 
.c/'). n.1 and n ~ then have an obvious meaning. 

Definition 2.2: n (e) is the convex set of (regular Borel) 
probability measures on X, with support in XC. The map 

n (c) ----> fl' 

(d c (c) I 
0) ---->0) =0) x' (2.5) 

is an isomorphism. 
We now introduce a particular class of states in n (e); in 

Sec. 3 we shall show that at least one of these is a metastable 
state. The local Ising Hamiltonian in the presence of an ex
ternal magnetic field h (that will be taken negative in the 
sequel) is defined as follows. If the system is in the configura
tion x, then its energy for the region A is given by 

H.t (x) = -!h I Sk (x) - J I (Sk Sk' )(x) 
koo,1 k.k '00,1 

- J I (Sk Sk' )(x). (2.6) 
kE,1 

k '( Ii 
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Here the primed sum indicates summation over nearest 
neighbors, with each pair counted once only. We refer in a 
formal way to the "interaction H (J,h )." 

Definition 2.3: We shall denote by Oi'/J.h any translation
ally invariant state that satisfies the DLR equations for the 
constraint system (dC,X c,n (c» with respect to the interac
tion H (J,h ) and at inverse temperature p. 

In other words, W<rJ.h satisfies the following set of equa
tions.15.16.5 For all finite A, kEA, xAEXA, andx,iEX,i (using 
Definition 2.1) 

(e)« » (e) [x'd ] - (~) [x 'dx - ] X XA,X,i W,i A, X,i -WA A, A' 

X (c)«XA ,X,i »W~) [(XA)k ;dX,i ] 

=X(C)«(XA)k,X,i»eXp [-PHA«XA)k'X,i) 

+ PHA «XA ,XA-» ]W~) [XA ;dX,i ] 

Here, w~) [x A;'] is the measure on X,i for which 

w(e)(f) = L f w~) [x A ;dx ,11 I «x A ,x,.{» 
XA,EXA 

for all/in d. Clearly W<rJ.h belongs to n (c). 

(2.7a) 

(2.7b) 

Adapting the techniques in Refs. 16 and 5, we obtain an 
existence theorem by using the correspondence (2.5). Let 
ad}. Defining the map 

Ta: d - d , 

I~Tal, 

(Ta f)(x) = I(x~. (2.8) 

we say that a sequence of probability measures ,uA. on XA• 
(with An a sequence of finite volumes tending to infinity in 
the sense of Van Hove), averaged over translations, con
verges to a measure,u on X if for allf in d we have 16.5 

I~i~ lAIn I a~" xJ:,,, ,uA" (X)(T - a I)(x) = ,u(f), (2.9) 

In this case we write 

lim fiA.(f) =,u(f). 
n~ 00 

Theorem 2.4: Let A n be as above. Let w~. be the prob
ability measure on An, assigning to each x in X A. the 
probability 

with 

w~. (x) = [z ~.1- 1 exp [ - PHA «x, PA» 1x~. (x) 
(2.10) 

z~. = L exp [-PHA«Y'PA»1x~.(y). 
)'EXA. 

Then there is a subsequence A n' and a state W<rJ.h as in Defini
tion 2.3 such that, for all finite A and alliEd A' 

lim jjf (I) = w(c) (I) 
• A.'IA fl,h 
n~oo 

Moreover, W<rJ.h minimizes the restriction of the free energy 
density functional to n (e). • 

So far, we have established the existence of at least one 
state, with the properties 1 and 3 in Definition 1.2.1' That 
W<rJ.h is not globally thermodynamically stable is seen by the 
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fact that Eqs. (2.7) are incompatible with the DLR equations 
without constraints. 

Let us now introduce a class of dynamical semi
groups.l1-13 For a given kEf}, 

define (k ) as the set of nearest neighbors of k (2.11) 

and c(k,.) as the observable 

c(k,x) = [1 + exp [PhX(k) + 2pJx(k) 1~)X(I)]]-1 
(2.12) 

For fixed k and x, c(k,x) is the (normalized) conditional 
probability of a spin-reversal at k, given the configuration x. 

Theorem 2.5 (Ref 12, Theorem 4.2): Define the map 

2" F:d F - d F by 

(2" Ff)(X) = L c(j,x)[/(x) - I(x)]; (2.13) 
jEZ' 

Then the closure 2" of 2" F generates a dynamical semi
group r" fER + , on d. Moreover, if, given a finite A, 2" A is 
the map 2" A:dA - d A, 

(2" A f)(x) = L c(j,x)[/(x;) - I(x)] (2.14) 
jEA 

and r ~ the semigroup it generates, then, for all g in .0/ A and 
all finite to, 

lim sup Ilr ~(g) - r,(g)11 = o. • 
A -- 00 O<.t<Jo 

We may consider T a , (2.8), as a map d A - d A _ a and 
obtain 

Lemma 2.6: (1) For all aE'l}, for all finite A :Ta r ~ = 
r ~ - aTa 

(2) r satisfies the principle of detailed balance. 
Proof (1) Let/be in d A and x in X. Then 

[(Ta2"A)/](x) 

L c(j,xa) [j«xa») - I(xa
)] 

jEA 

L c(j-a,x)[j«xa») - I(xa
)] 

jEA 

L c(j,x)[j«xa)j+J - I(xa)] 
jEA - a 

L c(j,x) [j«x)a) - I(xa
)]. 

jEA - a 

(2) This principle, which asserts that, for any finite A, 
any jEA, and any xEX, 

c(j,x)exp [-PHA(X)] = c(j,x j) exp [-PHA(x;)], 

is easily verified using (2.6) and (2.13). • 

As is well known, the property of detailed balance is the 
result of a coupling to a Markovian reservior. See Ref. 4 for a 
derivation of a (more general) Glauber-type semigroup from 
first principles. 

Lemma 2.7: For alliin d, for all h <0, and for allp, 

lim W<rJ.h(y,(f»=Wfl,h(f). 
,~ 00 

Here W fl,h is the (unique) equilibrium state for the interac
tion H (J,h ), at inverse temperature p. 
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Proof This is a direct consequence of Ref. 19, Appen-
dix, and Corollary 3.17 in Ref. 13. • 

3. METASTABILITY 

As yet, no conditions have had to be imposed in order to 
show the existence of a state W<tJ,h , having properties 1 and 3 
of Definition 1.2. We shall finally obtain an estimate on the 
dynamics of the polarization densities so as to establish prop
erty 2'. Since we shall rely partially on an estimate in Ref. 2, 
we must now impose the following conditions on 13 and e: 

13> 2(ln 6)/J, 

e <4(f3J - 21n 6)/ f3lh I. 

(3.1) 

(3.2) 

We shall temporarily fix 13 and h in what follows, and thus 
delete all subscripts referring to these parameters. Let us 
denote the set 

(3.3) 

Lemma 3.1: Let A, A be the two finite subsets of l?, 
with k a fixed lattice point in X Take w~ as in Theorem 2.4, 
y;t as in Theorem 2.5. If A ' is the set! aEZlla + A ~A ), Then 

!!..w~ [y,\s,,)] = _1_, I I I c(j,x).+ 
dt IA I aEII' jEll xEX',(j) Z ,1 

X [(y;! + uSk t a)(X)] - [y;! +- aSk t a)(X)] 

X exp [ - {3H,1 (X)] (3.4) 

Proof We shall identify x with (x,p A)' We obtain, by 
(2.9) and Lemma 2.6, 

w~ (y;!Sk) 

I -
= -IA'I I I w~(x)(1' ~aJ1Sk)(X) 

aEA' xEX" 

= ~I I I w~(x)(y;!+aSk+a)(X). 
IA aEA' XEXA 

Therefore, by (2.14) and using the fact that y;! + a Sk + a is 
independent of the coordinates not in (a + A), we have 

d -c (A"\ ) 
-W,1 r, Sk 
dt 

2668 

= IAI 'I a~' Xt;A w~ (x) ~ e(j,x) 

X [(y;! + aSk + a)(x j) - (y;! + aSk + a)(x)] 

= I~ 'I a~' ~ xt;A (y;! +GSk+a)(x) 

X [c(j,x j)w~ (X j) - e(j,x)w~ (x)] 

= IA
1

'1 I I (y;!+aSk+a)(x), Z1c 
aE;\ I JEA A 

X( I. e(j,x)exp [-f3H A(x)] 
{XEXAI 

XJEX~} 

I e(j,x) exp [ - {3HA (x) 1). (3.5) 
{XEXAI 

xEX~} 
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Applying Lemma 2.6 again, (3.5) equals 

= ZI, IAI'I I, I ( I .(,,;1 \ aSk +cJ)(X) 
:1 (JE-/l )l:A {XE:.X ,I 

xl,-X',} 

XC(j, X) exp[ - f3HII (X)] - I (y;!+- aSk + a)(x) 
{xeX ,I 

X(X'\} 

X c(j,x) exp [ - f3H,1 (X)]) 

= _1_" _1_, I I ( I (y,1 +- as" +- a )(x) 
ZillA I ac,1' jEll {xE~'1 

x leX \(J)} 

Xe(j,x) exp [ - f3HII (x)] 

- xC~(j)(";1+as,, fU(x)c(j,x)exp [-f3HII(X)]) 

A "change of variables" in the first sum (x 1---+ x j) and a final 
application of Lemma 2.6 then lead to (3.4). • 

So far, not very much information about the dynamics 
has been used, apart from detailed balance and translation 
in variance. The finite range structure of the dynamics, how
ever, gives us a bound on the propagation velocity of r, 
which is volume independent, even if contributions of all 
lattice sites are added. Ifj and k are two lattice points, then 
I j - k I denotes their distance. 

Lemma 3.2: If k, A, A are chosen as in Lemma 3.1, if 
K = sup jEZ,SUPXEX le(j,x) I and v = I (k) I, the number of 
nearest neighbors of k, then 

I I(Y;! + aSk +- u)(X J - (y;! + aSk+ a)(X) I 
aEA ' 

<2v~1[exp(2Kvt)-11 +2+32KteXp(4Kvt) 

::g(t). (3.6) 

Proof 

(,,;1 + aSk + a)(x j) - (,,;1 + aSk + a)(x) 

00 t n 

= n~o -;;T{[(X' A+- aYSk + a l(X J) - [(X' A + aYSk +cJ lex)} 

For general A and k we have, for n ;;;, 1, 

(X'~ Sk )(x) - (.Y'~ Sk )(x) = I dp)(lz '''''/n ;x) 
(I" ... Jn)EA n I 

(3.7) 

The term d/)(lz ""'/n ;x) is k-dependent; as we temporarily 
keep k fixed, we shall omit any reference to it. The n = 1 
term will be denoted by ujl)(x). Formula (3.7) should be read 
as follows: 

dJ)(x) = - 2e(k,x )Sk(X j) + 2e(k,x)sk(X), (3.8) 

ujn)(lz , ... ,1" ;x) = e(l" ,x j )at ~ 1)(12 , ... ,In _ l;X j) 

- e(ln ,X)U\" ~ 1)(12 , ... ,in _ 1 ;X). (3.9) 

These recursion expressions are readily obtained using 
(2.14) and the fact that S k (x) depends on the k th coordinate 
only. 

We show that, for all x and all (/2 , ... ,In ) EA n - 2, 

Ik - jl > n=:>d/)(l2 , ... ,In ;x) = O. (3.10) 
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Clearly the result is true for n = 1, as is seen by inspection of 
the form (3.8). Suppose now that the result (3.10) is true for 
n - 1, and suppose Jj - k I > n. 

(a) Let lin - k I> n - 1, then, by the induction hy
pothesis, it follows that 

cit - 1)(12 , ... ,In - 1;X) = 0 

as well as 

(n - 1)(1 I .) - 0 U", 2 ,0", n _ I ,x - . 

Therefore, using (3.9), we obtain cI;)(l2 , ... ,In ;x) = O. 

(b) Let Int(j), then we obtain, using (3.9) andintroduc
ing, when necessary, cI?)(x) = Sk(X) - Sk(X), 

clj")(12 '''''/n ;x) 

= e(ln ,x) [at - 1)(12 , .. ·'/n _ I;X j) 

- at - 1)(12 , ... ,/n _ 1 ;X)] 

= e(/" ,x) [e(l" _ l' Xii" ])a)~,2)(12 , ... ,/,,_ 2;X jl) 
- e(ln _ 1 ,x)oi~-,2)(/2, ... ,ln_ 2;X) 

- e(ln _ 1 ,XI a)n - 2)(/2 '''''/n _ 2 ;X, ) 
" /I - 1 n 

+ e(lll _ 1 ,x)oi~ -,2)(11 , ... ,In _ I ;X) 

= e(/",x) [ajn - 1)(11 '''''/11 _ ! ;Xl) 

- ajn - 1)(11 '''''/11 _ ! ;x)], 

which is zero, because of the induction hypothesis. 
As it is impossible, when U - k I > n, to find I II such that 

lIn - k I<n - 1 and simultaneously I"E(j), we conclude 
that 

clj'VI, .. ·,IIl;X) = 0 for [j - k I >n. 

Note also that 

cI?)(x) = 0 whenever j*k. 

If, on the other hand, Ik - jl <n, there is possibly a 
contribution to the nth term, which, however, by (3.9) and 
the above analysis is bounded by 

2 for n = 0, 

(t l ln!)K"vn -
I2,,+1 forn>l. (3.11) 

Fixingj, we finally have to add up contributions from 
all lattice points k. We subdivide the lattice in a number of 
squares, the zeroth consisting of Ul only, the nth having 
verticesj + (± n, ± n), and thus consisting of 8n points, a 
distance d>n away fromj. 

Because of the results (3.10) and (3.11), we know that 
the contribution of the nth square (n> I) is bounded by 

hence 

00 00 t m 

+ I 8n I 7mvm - 12m + I 

n = 1 m = n m. 

<2 + 2v - I [ exp (2VKt) - I] 
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+ 16v- 1 f n f (2VK?m 
n= 1 m = n m. 

<2 + 2v - 1 [ exp (2vKt) - 1 ] 

+ 16v - I f n [ exp (2VKt )] (2VKt)" 
Il~ I n! 

• 
Although the bound (3.6) isA independent, it is presumably 
not the best possible, since it grows exponentially with t. The 
occurrence of a summation over the lattice, however, seri
ously worsens the situation. 

We now state the main result, which, after a suitable 
range of values for f3 and e has been chosen, will entail the 
existence of a metastable state with respect to (n (e).srI o,r). 

Theorem 3.3: If f3> 2ln61J and e <4(f3 J - 21n6)1 
f3lh I, h < 0, there exists a state Wo/lh' as in Definition 2.3, and 
a function G of (t, f3,h,e,K), bounded in [J, h, and c such that 

IWo/lh [y,(Sk) - Sk] I <G(t,[J,h,C,K) 

X exp [- (f3J -ln3)4c + [J Ih le2
]. (3.12) 

Proof It follows from Lemma 3.1 that 

IcLi~ [r1(Sk) - Sk ] I 
= _1_, ILL L c(j,x) 

IA I aEA' lEA xEX'A(]) 

X exp [ - f3HA (x)].[Z~]-1 

X f du [(r: + aSk + a )(X ;> - (r: + aSk + a )(X) ] ,. 

(3.13) 

Hence, by Lemma 3.2, letting i(t) beS~dug(u), we obtain the 
upper bound for (3.13): 

<i(t)_I_, L L c(j,x)exp[-f3HA(X)]·[Z~]-1 
IA I lEA xEX'A(}) 

If now conditions (3.1) and (3.2) are satisfied, then by 
Ref. 2, Theorem 2, there is a bounded function F such that 
the above, in tum, is bounded by 

<i(t)F(f3,h,c)(IA IliA 'I)K 

X exp [ - ([J J -ln3)4c + f3lh leI] 

G(t, f3,h,C,K)(IA IliA 'I) 
Xexp [- (f3J -ln3)4e + 13 Ih leI] 

Finally, let Wo/lh be any state as constructed in Theorem 
2.4, A a typical element in the approximating subsequence, 
and A such that kEA. Then, deleting subscripts, we have 

Iw(C) [y,(Sk) - Sk]! 

< !w(e) [y,(sd - Sk] - w(e) [r1(Sk) - Sk]! 

+ Iw(e) [r1(Sk) - sd - cLi~ [r1(Sk) - Sk ] I 
+ IcLi~ [r1(Sk) - Sk] I 

< IIY,(Sk) - r1(sk)11 

+ Iw(e) - cLi~)(r1(sd - Sk) I 
+ G (t, [J,h,e,K)(IA IliA 'I) 
Xexp [ - (13 J -ln3)4c + [J Ih leI]. 

By Theorem 2.5, for all E, there is aAo such that, for A:2Ao, 
lIy,(sd - r1(sk)11 < E/2. By hypothesis for all E, for aliA, 
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there is a A o' such that for all A ;dAo 

I (lU(e) - W~)[r:(Sk) - Sk ] I < EI2 

and 

IA IliA 'I < 1 + E 

asA tends to infinity in the sense of Van Hove. Hence, for all 
E, we have 

IlU<£h [Yt(sd - Sk] I <E + (1 + E)G(t,/3,h,e,K) 

X exp [ - (/3 J -ln3)4e + /3lh le2
], 

which proves the result. • 
We can now fix a range of values for e such that the 

metastability requirements are best satisfied, i.e., such that 
the lifetime of lU<£h be as long as possible. For large /3, it is 
shown in [2] that a maximum is reached if e belongs to the 
interval 

~ _ (2(J - Ih 1»)112,;;.e,;;. 2J (2(J - Ih 1»)1/2 
Ih I Ih I '" '" Ih I + Ih 1 ' 

in which case the bound turns out to be of the following 
nature: 

IlU(~h [Yt(sd - Sk ] I 
d(t)KF(/3,h,e) exp [ - 4/3JP/lh 1 

Upon calling r(h) = exp [4/3J2/lh I](basically J 2/1h 1 is the 
energy required to remove the system from {} (e», we obtain 

IlU~\ [Yt (Sk) - Sk ] I < t/J(t /T(h ». 
And in particular, 

lim IlU~\ [Yt(sd - Sk] I = 0 
II .0 

i.e., the metastability becomes perfect in the limit h _ O. For 
higher temperatures it can similarly be seen that the argu
ment ofthe exponential in (3.12) is a bound on the activation 
free energy required to remove the system from {} (e). 

4. DISCUSSION 

As we stated earlier, the main point of this article is that 
we have shown that an infinitely extended (classical) system 
with short range forces can support metastable states when 
an appropriate characterization (Ref. 6, [4.2]) is adhered to. 

We have constructed a state which, even in the presence 
of a globally acting thermal perturbation, has a very long 
lifetime, in the sense that the expectation values of the local 
spin observables remain constant in the limiting regime 
where the external magnetic field tends to zero. A criterion 
proposed in Ref. 1, precludes the possibility of metastability 
in the same infinite model,2 as the results on the escape rate 
obtained there for finite systems indicate a proportionality to 
the volume. 

It is of interest to note that computer simulations (Ref. 
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20 and references therein) already showed an absence of any 
volume dependence in the relaxation time of the spin obser
vables in finite stochastic Ising models. This result was ob
tained using periodic boundary conditions. If on the other 
hand, open boundary conditions were used, then some de
pendence becomes apparent for small systems. We suspect, 
however, that for larger systems this dependence is not pre
sent, as it is a surface effect only. Moreover, at low tempera
tures, there seemingly is a unique metastable state. 

We finally comment that the methods used here can be 
extended to any finite-range stochastic Ising model and to a 
class of semi groups with c(k,x) as in Ref. 4. Indeed, the only 
difference is to multiply the c(k,x) considered here with 
some function g(k,x), depending on (- 4hx(k) 
- Jx(k )L/E(k )x(/)] only. 
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A continuum theory is presented for the nematic liquid crystals subject to electromagnetic 
interactions. Complete field equations, jump conditions, and constitutive equations are obtained. 
The thermodynamic restrictions are studied. The field equations obtained are employed to 
examine the problem of Fredericksz' transition. 

1. INTRODUCTION 

In a previous paper I we gave a continuum theory of 
liquid crystals based on the micropolar continuum mechan
ics. Basic to this theory is the concept of orientable points 
with microinertia and degrees of freedom involving transla
tions and rotations. As discussed, the liquid crystal theory so 
constructed contains the director theories in the special case 
of incompressibility, perfect alignment, and threadlike ele
ments. An important consequence of the theory is that the 
liquid crystal theory rightly belongs to micropolar contin
uum mechanics. The present work represents further devel
opment of the liquid crystal theory in that the electromag
netic interactions with the flow field are taken into account. 

Literature contains a number of papers dealing with the 
magnetic effect in liquid crystals. However most of this work 
is concerned with special situations and problems, e.g., ef
fects of uniform magnetic field with flow orientations. The 
literature on electrical effects are even more scarce. The state 
of art up to 1974 in this field is well described in the review 
article by Stephen and Straley' and in deGennes' book.3 

The purpose of the present article is to develop system
atically the field equations, jump conditions, and constitu
tive equations of nematic liquid crystals from the basic prin
ciples of micro polar continuum theory. We make no 
assumption as to the nature of E-M fields and consider inter
actions of nonuniform electric field, magnetic field, heat 
conduction, and flow field in an orientable flow field. The 
elements of nematic liquid crystals need not be threadlike or 
incompressible and considered to possess arbitrary microin
ertia tensor. In Sec. 2 we summarize pertinent kinematical 
results. In Sec. 3 balance laws of micropolar continuum me
chanics and electromagnetism are presented. The electro
magnetic force and couple are those given by Dixon and 
Eringen,< DeGroot and Suttorp,' and Maugin and Eringen6 

in connection with deformable bodies. It was necessary to 
express Maxwell's equations in a comoving frame ofrefer
ence with the points of the body. This is done (cf. Refs. 4-6) 
by means of Lorentz invariance of Maxwell's equations to 
within an approximation lie' where c is the speed oflight in 
vacuum. (For a fully Laurentz invariant theory see Grot and 
Eringen.7)ln Sec. 4, we develop the constitutive theory and 
study thermodynamic restrictions and the requirement of 

a'The present work was supported by the National Science Foundation. 

the material frame-indifference on the constitutive equa
tions. Section 5 is devoted to the development of properly 
invariant constitutive equations for stress, couple stress, po
larization, magnetization, heat, and electric conductions. 
Thermodynamic restrictions and the material stability on 
the constitutive moduli are discussed in Sec. 6. In Sec. 7 we 
indicate the passage to the director theory when the molecu
lar elements of liquid crystal can be considered straight, 
threadlike filaments. The theory is now complete and ready 
for application. As an example, in Sec. 8, we give the solution 
of the classical Frederiksz' problem of rotation of nematic 
elements under a uniform magnetic field perpendicular to 
the long axes of molecules. The results of this solution are 
specialized to threadlike elements in Sec. 9. Finally compu
tation has been carried out for this case and the results are 
plotted in Fig. 2. The results are gratifying in that they agree 
with what is already known experimentally. 

2. KINEMATICS 

In our previous formulation of mechanics of liquid 
crystals, I we have shown that the foundation of the theory of 
liquid crystals may be based upon the micropolar continuum 
mechanics. In a micropolar continuum a material point pos
sesses mass density p and an inertia tensor j kl' The motion of 
a material point is described fully by a translation and a 
rotation. Referred to a rectangular frame of reference X K' 

K = 1,2,3 in the reference state, a material point X is chara
cerized by its position vector X K and a director E attached to 
the point. The motion of X is then described by the following 
two sets of equations: 

(2.1) 

of which the first one expresses the translatory motion of X 
and the second one orientation Sk of BK , at time t (the rota
tion of a microelement). The repeated indices are summed 
over 1, 2, 3. The inverse motions are posited to be unique, i.e., 

XK =XK(x,t), BK =XKkISk' (2.2) 

where XKk' = XkK' so that 

Xk.KXK.I = {jkl' XK.kXk.L = {jKL' 

(2.3) 
XkKXIK = {jkl' XkLXkK = {jKL' 

where an index followed by a comma indicates partial differ
entiation, e.g., Xk,K-JxkIJXK , X K.k = JXKIJxk , Hence
forth we also employ a superposed dot to indicate the materi-
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al time derivative. The angular velocity vector V k is then 
introduced by 

(2.4) 

For a fluent body by considering the relative motions from 
the configurations at time t we have obtained strain mea
sures, cf. Ref. 1, 

~"I = XK,kXIK' Ykl = ¥kmnXmKXnK,/ 

and the rate of deformation measures 

ak/ = UI,k + Vkl , bkl = vk,/ 

where 

(2.5) 

(2.6) 

(2.7) 

is the so-called gyration tensor, where E kim is the alternating 
tensor. Indices following a comma denote partial differenti
ations with respect to space variables and a superposed dot 
indicates the material derivative. 

We have shown that XkK'Ykl and Vk can be expressed in 
terms of an axial vector cfJk and its material time rate by (cf. 
Ref. 9, p. 20, 29, 34) 

XkK = [COs¢'c5kl + (1 - cos¢' )nknl - sincfJEklmnm] c5IK , 
(2,8) 

Ykl = nkcfJ,I + sincfJnk" - (1 - cos¢') Ekmnnmnn,I' 

V k =Ak/~/' 
where 

Akl = 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Here cfJ and n have simple physical interpretations: cfJ is the 
angle of rotation and n is the unit vector along the axis of 
rotation of a microelement. c5 kl is the Kronecker delta and 
c5kK is the shifter (direction cosines between X K and x k). 
When the spatial and material frames of reference coincide 
then c5kK is the same as the Kronecker delta. 

3. BALANCE LAWS 

The balance laws ofliquid crystals are the same as those 
of the micropolar continua. Within the volume r of the 
body excluding the points that lie on a discontinuity surface 
u which may be sweeping r with a velocity u, these laws are 
expressed as (cf. Eringen8,9) 

Mass: 

ap + ( ) ° pUk ,k = , at r-u, 

Microinertia: 

D' 'lkl . . ° -- -Vkmhm -Vlmlkm = , 
Dt 

Momentum: 

tkl,k + p(1t - VI) = 0, r - u, 

Moment o/momentum: 

mkl,k + Elmntmn + p(/, - t71) = 0, 

r-u, 

r-u, 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

Energy: 

pi - tklakl - mklblk - qk,k - ph = 0, r - u, (3.5) 

Entropy inequality: 

pij - (qJ(),k - pb>O, r - u, (3.6) 
where 

p = mass density, Uk = velocity vector, 
jkl = micfoinertia tensor, Vkl = gyration tensor, 
tkl = stress tensor, It = body force density, 
mkl = couple stress tensor, II = body couple density, 
E = internal energy density, qk = heat vector, 
'TJ = entropy density, () = absolute temperature, 
h = the energy source, b = entropy source. 

Equations (3.1)-(3.5) are, respectively, the local balance 
laws of mass, microinertia, momentum, moment of mom en
tum, and energy, and (3.6) is the expression of the second law 
of thermodynamics. Spin inertia t7 k is defined by 

(3.7) 

For future use we also need the integral of (3.2) as given by 
Eringen10

: 

jkl = JKLXkKXIL> (3.8) 

where J KL is the microinertia tensor at the natural state of 
the body. For liquid crystals it may be interpreted as the 
moment of inertia tensor per unit mass of a molecular ele
ment (or an aggregate). 

Mechanical balance laws must be supplemented by the 
electromagnetic balance laws. 

Gauss' law: 

V·D = qt' III r - u, 

Faraday's law: 

1 * V X if + - B = 0, III r - u, 
c 

Magnetic flux: 

V·B = 0, III r - u, 

Ampere's law: 

1 * 1 V xcW" - - D - -)' = 0, in r - u. 
c c 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

These laws are written in a coordinate system co-moving 
with the points of the body so that they are Lorentz invariant 
to within U 2/ c 2 in terms of the fields defined by 

1 1 
If = E + - v X B, cW" = H - - v X D, 

c c 
(3.13) 

1 /" = J - qt v, J( = M + - VXP, 
c 

where c is the velocity of light in vacuum, if is the electric 
field, oW' is the magnetic field, /" is the conduction current, 
and J( is the magnetization expressed in terms of the labora
tory fields, 

D = dielectric displacement vector, 
E = electric field vector, 
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B = magnetic flux vector, 
H = magnetic field vector, 
P = polarization vector, 
M = magnetization vector, 
J = total current vector, 
qJ = free charge density. 

As we know P and M defined by 

P=D-E, M=B-H (3.14) 

arise from electric and magnetic multipoles. In (3.10) and 
(3.12) "star-derivative" occurs. This is defined by 

* . 
A" =A" +A"vl,l -AIVk.I' (3.15) 

The body force f, body couple I and the energy source h 
is the sum of purely mechanical parts and E - M parts, i.e., 

pf=pfa + Mf, pi = Pia + MI, 
(3.16) 

ph =pho + Mh, 

where fa, 10 and ha are of purely mechanical origin and 
M f, M I and M h are the contributions arising from the inter
action of E-M field with the body. These are given by (cf. 
Maugin and Eringen6

) 

Mf= qf'G' + + [/ + p] XB + (p'V)'G' + (VB)Jr, 

Ml=PX'G'+JrXB, (3.17) 

Mh =p'G'.(Plp) -Jr.B + /.if - MI·v. 

For some purpose we also need electromagnetic momentum 
G [which in the co-moving frame is given by 
:§ = (l/c)if X &0' where &0' = ~ + Jr] and the Poynting 
vector Y: 

I 
G= -EXB, Y=c'G'X~. (3.18) 

c 

If we now introduce Helmholtz' free energy 

I 
if!=E-eT/- -P·if 

p 
to replace E in (3.5) and write the classical expression 

(3.19) 

b = hole in the entropy inequality (3.6) we can eliminate ho 
between (3.5) and (3.6) to obtain the generalized Clausius
Duhem (C-D) inequality for the micropolar electromagnetic 
bodies: 

- p(¢ + T/B) + t"la kl + mklb", + B - 'q·VB - p./f 

- j/.B - M1.v + /.if>O. (3.20) 

This inequality places restrictions on the state of the body 
and it is fundamental in the development of the constitutive 
theory. 

Jump Conditions: If the body is swept by a discontinuity 
surface a(t) moving with a velocity u in the direction of its 
positive unit normal n then the following jump conditions 
must be satisfied at the discontinuity surface a(t) 

fp(v - u)}n = 0, (3.21) 

[pj,Av, - u,)]n, = 0, 

[p(v" - udv, - t"l - (Mt"l + UkGI)] n k = 0, 

[pal(v" - ud - m kl ] n" = 0, 
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(3.22) 

(3.23) 

(3.24) 

[(~pv.v + !pu·v + pE +! E·E +! B·B)(vk - Uk) 

- (tkl + Mtkl + UkG1)V1 - (qk - Y k)] nk = 0, (3.25) 

[PT/(vk - Uk) + e - 'qdnk >0. (3.26) 

These are the balance laws accompanying each one of the 
mechanical laws (3.1)-(3.6). In these equations we intro
duced Maxwell stress tensor Mt, defined by 

Mtkl =PkWI -BkJ/ 1 + EkEI + BkBI 

- ~(E.E + B·B - 2.A'.B)Okl' (3.27) 

As discussed by Maugin and Eringen M t, M f, and G satisfy 
the identities 

aG, 
Mtklk - -- = Mit, EklmMtlm = M1k' . at (3.28) 

For electromagnetic fields the jump conditions, on u(t ), are 

[D}n = wJ ' (3.29) 

nx[W + 1/c)BX(v - u)] = 0, (3.30) 

[B}n = 0, (3.31) 

nx[~ - (l/c)DX(v - u)] = ~ %, %·n = 0 
c 

(3.32) 

where wJ is the surface charge density and % is the surface 
current density which is tangential to the surface a. We note 
that by making a coincide with the exterior surface of the 
body from the jump conditions (3.21)-(3.26) and (3.29)
(3.32) we can derive the boundary conditions. 

4. CONSTITUTIVE EQUATIONS 

The state ofliquid crystals subject to electromechanical 
effects is determined by the characterization of the depen
dent constitutive variables (response functions) 

g'={ if!;T/,tk/tmk/tq,P,J/,/} (4.1) 

as functions of certain independent variables that character
ize the constitution of the body in motion. For the first-order 
rate-dependent, orientable, fluent materials, independent 
variables may be established according to axioms of causal
ity and objectivity as (cf., Eringenll) 

(4.2) 

Thus for the constitutive equations of liquid crystals we 
write, symbolically, 

g' = Y(~). (4.3) 

This means that every member of (4.1) is a function of all 
members of (4.2). These functions are scalar-valued func
tions for if! and T/; vector-valued functions for q, P, Jr, and 
/ and tensored-valued functions for tkl and mk,. The consti
tutive equations are restricted by 

(i) the axiom of objectivity (material frame
indifference), 

(ii) the second law of thermodynamics, 
(iii) the axiom of time reversal. 

The axiom of objectivity requires that the response functions 
remain form invariant under time-dependent rigid motions 
of the spatial frame of reference, with density fixed, as de-
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scribed by 

i(X,t) = Q(t )x(X,t ) + Co (t ), 
(4.4) 

XK (X,t ) = Q(t )XK (X,t ), 

where Co (t ) is an arbitrary time-dependent translation and 
[Q(t) I represent the full group of orthogonal transforma
tions, i.e., 

QQ / = Q TQ = I, detQ = ± 1. (4.5) 

The axiom of objectivity requires that response functions 
transform according to 

.7(~) = .r(,:]I), (4.6) 

where :y and.r are given by 

:y = {p l,e,QjQT, QyQT detQ, 

X QaQl; QbQT detQ,Q'Ve,Qif,QB detQ}, 
(4.7) 

.r = {¢,77,QtQl,QmQT detQ,Qq,QP,Qj/ detQ,Q/}. 

We first investigate the consequence of C-D inequality. To 
this end we note 

(4.8) 

Ip deriving (4.8)1 we used (3.1) and for (4.8)2 we employed 
XkK =VkIXIK,D(XK,k)IDt= -XK,rvr,k,and(2.6). Upon 
substituting ,¢, calculated from (4.3), with!?! = ¢, in the 
same way as argued in our previous work, I the C-D inequal
ity yields: 

77 = - a¢, a¢ = a¢ = a¢ = 0. (4.9) 
ae aakl abk, ae.k 

Since ¢ must satisfy (4.6) for arbitrary rigid motions it is 
simple to show that 

a¢. a¢. a¢ a¢ 
Thr + Tirl - a. l• YIr - aYri +PJ;I 

'ikr 'irk 'Pkr Yr, 

a¢ . a¢ . 
= -a-lkr + -a-ir" 'ilr 'i rl 

From the C-D inequality it then follows that 

ot"a" + omklblk + ~ qk e.k - (p :; + p}w 
-p(;~ + AI}B+/.if>O, 

where 

and 

1T= 
a¢ 

- --, ¢ = ¢(p \e,j,y,if,P). 
ap I 

(4.10) 

(4.11 ) 

(4.12) 

(4.13) 

Here 1T is the thermodynamic pressure, £t and Em are the 
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equilibrium parts of the stress and couple stress tensors, 
respectively. 

Further the inequality is linear in the Wand B. If it is to 
be maintained for all possible values of Wand B we must 
have 

(4.14) 

Dt"alk + Dmk,b'k + (lIe)qke.k +/,,(5'k>O. (4.15) 

Ifwe assume that D t, om, q and / are continuous functions 
of a, b, Ve and if from (4.15) it follows that 

Dt=Dm=O, q=/=O when a=b=O, 

Ve =~' = O. (4.16) 

We have therefore proved: 
Theorem: Constitutive equations of liquid crystals are 

thermodynamically admissible if and only if they are of the 
forms (4.9), (4.12), (4.13), (4.14) subject to (4.15) [conse
quently (4.16)] and the invariance under time reversal. 

The invariance under the axiom of time reversal im
poses conditions that the free energy and the entropy pro
duction (4.15) shall be invariant when the sign of time is 
reversed. This is carried out in the next section. 

5. POLYNOMIAL CONSTITUTIVE EQUATIONS 

A. Equilibrium constitutive equations 

The axiom of objectivity (4.6) places restrictions on the 
constitutive equations for ¢, D t, D m, q, P, .11 and /. For the 
scalar function ¢ of two second-order tensors j, y and two 
vectors if and B, (4.6) implies that 1/1 will be a function of 
certain minimal number of invariants of these tensors and 
vectors. The complete set of invariants of two symmetric 
tensors j, Ys, one skew-symmetric tensor Y A and two vectors 

j,Ys=!(y+yl), Y1=!(y-y'),'(f,B (5.1) 

can be constructed by use of tables given by Wang L2 or 
Smith!). (Actually these lists need be augmented since y is a 
relative tensor.) Because of the number of matrices and vec
tors involved, the list of these invariants is too long. Fortu
nately, in most physical problems the effects of the high de
gree invariants leading to nonlinar constitutive equations are 
negligible. We therefore retain only the invariants, each hav
ing a total degree less than or equal to three. Moreover, 1/1 
must be invariant under the axiom of time reversal. Since B 
alters its sign with the time reversal several invariants con
taining the first power of B are excluded. In addition we 
assume that the natural state (y = 0, if = 0, B = 0) is stress 
free. With these considerations after much effort we find that 
only the following list of 15 invariants contributes to the free 
energy: 

II = try, 12 = try2, I, = tr(yy'), 14 = trj, 

Is = tr(yj), I" = tr(y2 j), 17 = tr(ylyj), 

Ix =tr(yy/j), I" = 'f}$, 110 = if.j6), III =B·B, 
(5.2) 

112 = B·jB, II, = tr(yltD ), 114 = tr(jy6" I»~' 

liS = tr(jyI 6' D)' 
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where ~ Dkl = € kim ~ m' The polynomial form of ¢, up to and 
including all third degree terms, is therefore given by 

¢ = !AJ~ + !A2n / 4 +A3 / 1/ s + !A4/2 + !As/2/4 

+ !A6 / 3 + !A7 / 3/ 4 + A g/6 + !A9 / 7 + !AIO/g 
-(l/2p)[(el +e2/4)/9 +e3/ 10 +Vtl +112 / 4)/11 

+ I1JI2 + 2(e4 + es/ 4)/13 + 2e6114 + 2e7 / Is ]' (5.3) 

Using (4.13) and (4.14) we obtain 

EmT/P= [AI try+A2 trjtry+A3 tr(yj)]I+A3jtry 

+ (A4 + As trj)yT + (A6 + A7 trj)y 

+Ag(jyT + yTj) +A9yj +AlOjy + ~ 
p 

x(e4 + es trj)~ D + ~ e6j~ D - ~7 ~ Dj, 
P P 

Pk = [(e l + e2 trj)Dkl + e3 jkl] ~I - (e4 + es trj) 

X€kijYij - e6€kijjilYIj + e7 €kijYiljlj' 

J(= [Vtl +112 trj)I+113j]B. 

Several observations are in order: 

(5.4) 

(5.5) 

(5.6) 

(a) Constitutive Eqs. (5.4)--(5.6) include all first and 
second degree physical phenomena that arise from the orien
tational and electromagnetic effects. Here the microinertia j 
play the role of "anisotropy indicator." The anisotropy 
changes with the rotations of the nematic elements. Thus all 
terms containing j possess the anisotropy due to intrinsic 
rotations. 

(b) The terms involving the coefficients e4 -e7 represent 
"curvature piezoelectric" effect. Because of the factor y in 
these terms of(5.5) the rotation gradients produce polariza
tion in the absence of the electric field. This possibility was 
recognized by Meyer.14 In the director theory this effect is 
indicated by the contributions [cf., Ref. 2, Eq. (4.44)]: 

¢p = - elz(V·n)n·E - e3z (n·Vn).E, (5.7) 

where n is the director. In contrast to the two terms here, in 
(5.3) there are four terms (with coefficients of e4 to e7 ). Ifwe 
pass to the director theory by writing 

Xu = nk, n·n = 1, jkL = 10 (Dkl - nknJ (5.8) 

as shown in Ref. 1, the invariants 113 , 114 , and liS reduce to 

113 = !(V.n)n.if - (n·Vn).if, 
(5.9) 

/14 = 10 / 13 , liS = - !/o(V·n)n.if 

which show that, in this special case, the three invariants 
coalesce to two, thus reducing the four terms involving e4 -e7 

to two as in the director theory. For the electrostatic case, in 
fact, we obtain the following correspondence between these 
coefficients and elz and e3z : 

(5.10) 
e3z = - (l/2p)[e4 + 10 (2es + e6 )]. 

Based on experiments of Haas et al., IS the experimental value 
of e3z for MBBA was estimated by Helfrich16 as le3z I 
= 7.10 - 4 cgs. It is clear therefore that for nematic liquids 

having arbitrarily shaped molecules (e.g., wedge-shaped and 
crescent-shaped molecules considered by Meyer) there may 
be curvature piezoelectric effects more general than those 
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that can be accounted for by the director theory. 
Finally from (5.4) we observe that purely electric field 

can produce couple stress because of its interactions with the 
rotation. 

(c) Magnetic field is not coupled with the rotation gra
dients because of the nature of the time reversal property of 
J( and B. If we consider again the special case of threadlike 
molecules then (5.6), by use of (5.8)3 in the magnetostatic 
case, can be solved for M in terms of H 

M = X1H + Xa(H.n)n, 

where 

(5.11) 

Xl = Vtl + 2112 / 0 + 11310)1(1 -111 - 2112 / 0 -113 / 0)' 
(5.12) 

Xa = -113/(1-111 -2112 / 0 -113 10)(1-111 -2!-t2 / 0)' 

Equation (5.11) is identical to that known in the director 
theory (cf., de Gennes,l p. 81). Consequently all magnetic 
effects studied by means of the director theory are contained 
in the present theory. Note however that, for the nematic 
liquids having molecules which deviate appreciably from 
straight threads,jij is not expressible in the form (5.8)3' and 
that (5.11) represent only an approximation. 

[While experimentally observed magnetic susceptibili
ties of magnetically oriented phases indicate uniaxiality such 
interpretations is dependent on the external characteristic 
length scale. It is well known that the molecular shapes of 
nematic liquid crystals can differ appreciably from straight 
threads, for example, molecules such as 4-amino -3, 4" -dini
tro-p-terphenyl,17 or polymeric substances which have flexi
bilities in the main chain that form nematic phase. IS Even in 
P AA the shape of molecules are more ellipsoidal than 
threadlike (ratio of major to minor axes is roughtly 2.5 to 1, 
cf., Ref. 19). If the molecular aggregates (cybotactic groups) 
are considered to be microelements instead of individual 
molecules than the microinertia tensor will be considerably 
different than that of a threadlike element. There is some X
ray evidence for the existence of such aggregates in a nematic 
phase.20 Recently, liquid crystals having disklike molecules 
have been reported.2

1.
22

] 

B. Nonequllibrium constitutive equations 

To construct the polynomial constitutive equations for 
the nonequilibrium fields Dt, Dm, q, and,F we must con
struct their generators in terms of the argument vectors and 
tensors y, j, a, b, va, if, and B. The number of generators of 
these vectors and tensors are so many that exact form of 
these constitutive equations are lengthy. Fortunately the 
nonlinear effects arising from the products of the argument 
vectors and tensors are not important in most applications 
except possibly in the case of intense fields and high flow 
rates. We therefore construct only the constitutive equations 
that are linear in these fields and their products with j since j 
is the anisotropy indicator. Moreover, we exclude y from 
these equations since the viscoelastic torsional effects are not 
considered. These effects may be important in problems 
where the relaxation phenomena must be taken into ac
count. Remembering that D t, j, a are absolute tensors; q, ,F. 
va, if are absolute vectors; D m, b are relative tensors, and B 
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is an axial vector, the constitutive equations read 

ot= [a l tra+a2 trjtra+a3 tr(ja)]I+a4jtra 

+ (as + a 6 trj)a + (a7 + as trj)aT + a 9ja 

+ aloaj + alljaT + a l2 a Tj, (5.13) 

om = [PI trb + P2 trj trb + P3 tr(jb)]1 

+ P4j trb + <Ps + P6 trj)b + <P7 + Ps trj)bT 

+ P9jb + PIO bj + PI I jbT + PI2 bTj 

+ [<PI.' + PI4 trj)1 + Pld](\78)o + PI6(\78)oj 

+ [<P17 +P18 trj)I+Plqj]if o +P2oifoj, (5.14) 

q18= [(KI +K2 trj)I+Kd]\78+ [(K4 +Ks trj)I+K6 j]if 

+(K7 +Kg trj)bo + Kq(bj)o +KIO(jb)o (5.15) 

/" = [Cal + a 2 trj)1 + a 3 j]if 

+ [(a4 + as trj)1 + ad]\78 + (a7 + as trj)bo 
+aq(bj)o +alO(jb)o' (5.16) 

In anticipating that C-O inequality will annihilate several 
effects from (5.13) we have excluded terms involving Band 
products of j and B. Another important condition on these 
equations is imposed by the invariance of the entropy in
equality under the time reversal. In classical electrodynam
ics, the implications of this condition was studied by several 
authors. For a recent treatment, we refer to Borghesani and 
Morro.2J 

With the reversal of time if, j, and \78 do not alter their 
signs. If the entropy inequality (4.15) is to remain in one sign, 
we must have 

(5.17) 
a7 =PI7' as =Plg, a 9 =Plq, a lO =P20' 

The time reversal also implies the Onsager reciprocal rela
tions which place the following restrictions of a i and Pi: 

(5.18) 

It is interesting to observe that Eq. (5.13) is not coupled with 
the E-M fields and it is identical to that of the purely me
chanical theory. I We notice the possibilities that tempera
ture gradient and electric field can produce couple stress. 
These are the so-called hidden effects which do not contrib
ute to the entropy production. Conversely, the rate of rota
tion gradient may cause heat and electric conduction irre
spective of temperature gradient. These effects appear to 
have not been noticed before in the literature. In addition, we 
notice the Seebeck effect (coefficients of a4 to a 6 ) and Peltier 
effect (conefficients of K4 to K6 ), both of which are anisotro
pic in that they depend on j. 

The laws of heat conduction and electric conduction 
(5.15) and (5.16) are anisotropic depending on the form of j 
at each instant. The anisotropy is in general not uniaxial as in 
the case (5.11) and becomes so when the nematic liquids are 
considered threadlike. In this regard the remarks made 
about (5.6) also apply here. 

Below we give compact forms of constitutive equations: 
Equilibrium constitutive equations: 

if; = !AUk/YuYk/ + Eij" Y'j 'l!" + !Eij '1?i 'li j + !MijBiBj' 
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aif; 
1]= --a8 

Emu = pAjiklYkl + pEjikEk' 

Pk = -pEijkYij -pEkjEj' 

M" = -pMk;Bj' 

where 

Aijkl =(AI +A2 trj)DijDkl +A 3 (J/)kl +ikIDij) 

+ (A4 + Astrj)Di/Djk + (A6 +A7trj)DikDjI 

+ Ag(Ji/DJI. + ijk D,,) + A 9 (JjlD ik + ],kDjI)' 

Eij' = ~[(e4 + estrj)tijk + e6 tjkJIi + e7tikJIj], 
p 

Eij = - ~[(el + e2 trj)Dij + eJij]' 
p 

Mij = - ~[(ul + 112 trj)Dij + 1l3iij]' 
P 

Nonequilibrium constitutive equations: 

otij = ajik1ak/, 

Omij =Pjiklbkl +PJ;k 8,k +P'jik'li k, 

qJ8 = Kij8J + Kij'l!j - b Jkibjk' 

/"i =aij'1?j +a~8J -P'jkibik' 

where 

a iikl =(al +a2trj)DijDkl +a3 (JijDkl +ikIDij) 

(5.19) 

(5.20) 

(5.21 ) 

+ (as + a 6 trj)Di/Dik + (a7 + as trj)DikDil 

+ a q (JikDi/ + ii/Dik ) + a IlijlDik + a IJikDil' 

P~f.. = [<PI.' +PI4 trj)DjI +Plsijl]t/ik +PI6 t jlJIi' 

P~jf.. = [<P17 +Plstrj)DjI +Plqijl]t/if.. +P20 t jlJI" 

Kij = (KI + K2 trj)Dij + KJij' 

a'i = (al + a2 trj)Dij + a 3iij' 

K:j = (K4 + Ks trj)Dij + KJij' 

aZ = (a4 + as trj)Dij + aJij' 

andPijkl is identical to the expression of aijkl with a i replaced 
byPi' 

6. THERMODYNAMIC RESTRICTIONS 

In this section we study thermodynamic restrictions 
arising from the entropy inequality (4.15) and the conditions 
under which the free energy is nonnegative. Upon employing 
(5.21) in (4.15) we see that the contributions a and b to the 
entropy production uncoupled from those of if and \78 so 
that (4.15) is not violated if and only if 

aijklaijakl>O, (6.1) 

Pijklbijbkl>O, (6.2) 

Kij8,k8,i +aij'lii'lij + (K'ji +aZ)'lii8J>0. (6.3) 

The inequality (6.1) was already investigated in our pre-
vious work. I The necessary and sufficient conditions for 
(6.2) not to be violated are given by (7.12) of Ref. 1. (We note 
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however, that the inequalities (7.13) of Ref. 1, derived from 
(7.12) with extra conditions that (7.12) remain valid for all 
jii' are sufficient but not necessary. 

The consequence of inequality (6.2) is identical to that 
of (6.1) with a ijkl replaced by {3;jkl' 

The inequality (6.3) may be written in the compact 
from 

Ka/3AaA/3 >0, a,{3 = 1,2, ... ,6 

where Ka/3 = K/3a and 

A; = e,;, A;+ 3 = 'li;, 

(6.4) 

Kij=K;j, K;+3J+3=U;j' i,j=I,2,3, (6.5) 

K; + 3J = Kj ,; + 3 = !(Kj, + u~). 
It is now clear that Kij is a nonnegative, 6 X 6 matrix. There
fore, according to a theorem of algebra, the necessary and 
sufficient conditions for (6.4) not to be violated for all A; are 
that all sequential subdeterminants accepting the main diag
onal elements as their main diagonal elements must be non-
negative, i.e., 

detKa/3 >0, for a,{3 = 1, 

for a,/3 = 1,2, 

for a,/3 = 1,2,3, 

for a,/3 = 1,2,3,4, 

for a,{3 = 1,2,3,4,5, 

for a,/3 = 1.2,3,4,5,6. 

(6.6) 

Since in (6.6), the first three subdeterminants are un
coupled from the others, we see thatKij is by itself an nonneg
ative matrix. By exchanging e.; and 'li; one can deduce that 
U;j is also a nonnegative matrix, i.e., 

Kije,ieJ>o, uij'li;'lij>O. (6.7) 

Referred to the principal axes ofjij' Kij is simplified to 

Kij = (KI + K2 trj + KJ;;)Oij' (6.8) 

where underlined indices are not summed. It is now clear 
that the quadratic form (6.7)1 is nonnegative if and only if 

(6.9) 

Sincej;; >0, (6.9) is not violated for allju if and only if 

KI>O, K2>0, 2K2 +K3>0. (6.10) 

[In our previous work I [Eq. (6.4)3]' (6.10)3 was given 
as K, >0. This is necessary but not sufficient since tr j = 0 
impliesi;; = 0 but the converse is not true. Ifwe write (6.9) 
for i = 1 in the form KI + K2 (jl I + j22 - i33) + (2K2 + K3) 
XiII >0, we obtain (6.10).] 

The situation for uij is identical to (6.8)-(6.10). 

For the stable equilibrium it is required that the free 
energy be nonnegative for all 1', 'iff, and B. This places restric
tions on A;, eo andll; in (5.3). An inspections shows that the 
contribution of the magnetic flux B to the free energy is un
coupled from those of l' and 'iff fields. Hence the necessary 
and sufficient conditions for the magnetic free energy to be 
non-negative for all B is 

III +1l2 trj+1l3iu<0. (6.11) 

2677 J. Math. Phys., Vol. 20, No. 12, December 1979 

This in turn is not violated for all];; if and only if 

f..LI <0, f..L2<0, 2f..L2 +f..L3<0. (6.12) 

Most liquid crystals are diamagnetic. With the applied 
field their long axes are oriented in the direction of the field. 
This is indeed observed, for example, in P AA and MBBA. In 
order for this to occur, we must have f..L3 < O. Under the con
dition (6.12) this is possible since f..L3 < - 2f..L2 where 
- f..L2 >0. It is interesting to note that this inequality does not 

exclude the case f..L 3 > 0 which also occurs in some liquid 
crystals where the orientation oflong axes are perpendicular 
to the direction of the magnetic field. 

To investigate the restrictions on the remainder of the 
free energy we write it in the compact form 

4 

! I K~A fA j>O, 
a=l 

where 

A : = YI I' A ~ = Y22' A ~ = YJ3' 

A ~ = Y23, A ~ = Y32, A ~ = 'l/ 1 , 

Ai =Y31' A~ =Y13' A~ = 'li 2, 

Ai=Y12' Ai=Y21' Aj='li3, 

and K ij = K j; in the principle axes ofi ij are given by 

K & = A;ifL' i,i = 1,2,3, 

Kil =A 2323 , Ki2 =A 2332 , K~2 =A J2J2 , 

(6.13) 

(6.14) 

Ki3 = -K~J =!E231 , K~3 =EII , Kil =Aml , 

Ki2 =A 3113 , K~2 =A1313' 
(6.15) 

K;3 = - Ki3 = !Em, K~3 = E22 , Kil =A I212 , 

Ki2 =A 122I , Ki2 =A 2I21 , Ki3 = -Ki3 =!Em, 

K4 -E 33 - 33' 

Referred to the principal axes of j we have 

A;jkl = [AI +A2trj +A3(ji; +ikk)]tSijOkl 

+ [A4 + A5 trj + A8 (];i + iJL) ]Oi/Ojk 

+ [An +A7 trj+Aq(j;i +iiL)]Oik 8j1' 

E 1 ( . . . ) ijk = - Eijk e4 + e5 trJ + eo};; - e7JiL ' 
p 

Eij = - J..(e l + e2 trj + e3];i)' 
p 

(6.16) 

It is now clear that the four 3 X 3 matrices K '"', a = 1,2,3,4 
are uncoupled. According to a theorem of algebra the neces
sary and sufficient conditions for K a to be nonnegative are 

I K~I K~21 
K~>O, a a >0, detK;;>O 

K 21 K 22 
(6.17) 

for a = 1,2,3,4. From the first one of these for i = 3 and 
a = 2,3,4 we deduce that eii >0 or 

e l + e2 trj + e3];i <0 

which is not violated for all iii if and only if 

e l <0, e2 <0, 2e2 + e3 <0. 

Similarly, from (6.17) I for a = 1,2,3,4 we obtain 
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Al +A4 +Ao +(A2 +As +A7)trj 

+ 2(A3 +Ag +A9V;;;;;'0, 

A6 + A7 trj + A9 (jn + j33 );;;'0, 

A6 +A7trj+A9(j11 +j22);;;'0, 

A6 +A 7 trj+A9 (j33 +jll);;;'O. 

(6.20) 

Similarly, by expanding (6.17)2 and (6.17)3' one can obtain 
other conditions which we do not produce here, as the mat
ter is now reduced to a routine. (A set of conditions on A; 
were obtained in Ref. 1 for purely mechanical case.) 

7. PASSAGE TO DIRECTOR THEORY 

Most liquid crystals are constituted by straight, thread
like molecular elements. For such nematic liquids, one may 
simplify the basic equations by the introduction of the direc
tor concept. Suppose that B K is the common direction of the 
treadlike molecules at the natural state, then we may write 

dl. = 5, = XkKBK, BK = XkKdk, (7.1) 

where d" is a vector of unit magnitude called the director 

d"d" = 1. (7.2) 

The independent variables appearing in the constitutive 
equations and the rotational inertia irk are replaced by 

V'I = dkdl - dkdl + Wkl' V = dXd + !vxv, 
a"l = dkl + d,dl - d"dl, bkl = Vk.l, 

(7.3) 

. D (. ) 
(71. = - hlVI, 

Dt 

where 10 is the microinertia (per unit mass) of an element 
about an axis through its mass center, perpendicular to the 
long axis. As usual, deformation and vorticity tensors d and 
ware given by 

d kl = !(vu + VI•k ), W kl = !(Vk•1 - VI.k ) (7.4) 

and the invariant time rate indicated by a superposed (0) on 
vectors is defined by 

d" = dk - w"ldl. (7.5) 

Employing (7.2)-(7.5) in the balance laws and constitutive 
equations, we obtain the field equations of nematic liquid 
crystals whose molecular elements are straight threadlike. 
These equations are now partial differential equations for the 
velocity field Vk and the director field dk • 

8. FREDERICKSZ' TRANSITION REVISITED 

Here we discuss the rotations of nematic liquid crystals, 
contained between two glass slides, under the action of con
stant magnetic field H perpendicular to the directions of the 
nematic elements. This problem is known as the Freder
icksz' transition, first observed by Fredericksz and Zolina. 24 

The solution can be used to determine some of the material 
constants. Various approaches to the problem based on vari
ational principle exist, cr., Stephen and Straley 2 and referen
ces therein. Here we give the direct treatment by use of the 
field equations and constitutive theory to illustrate the pre-
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sent development. Note also that our nematic elements are 
not necessarily threadlike and the method of approach is 
perfectly general and applicable to more complex static and 
dynamic problems. 

We consider the nematic elements are placed between 
two parallel glass plates with their long axes initially perpen
dicular to the glass plates. The nematic liquid is at rest 
(v = 0) however under the influence of an applied uniform 
magnetic field H, parallel to the plates, they can rotate in the 
(x,y) plane, Fig. 1. Thus 

¢>I =¢>2 =0, ¢>3 =¢>(y). (8.1) 

From (2.11) we have n l = n2 = 0, n3 = 1 so that (2.9) gives 

rkl = ¢> '0I2 0u' 

Using (8.1) in (2.8) and (3.8) we obtainjkl 

jkl = (J~I -J~/jk3 -J~3013 +J~30k3013)COS2¢> 

+ (J~IOk3 +n3 013 

- 2l~30k3013) cos¢> + J~30k3013 
+ (- E,r3J~1 + Ekr3J~3013 
- ElrJ~r + EIr3J~rOk3) sin¢> cos¢> 

+ (- Ekr3013J~3 - Elr30k3J~r) sin¢> 

+ Ekr3 EIs3 J~, sin2¢>, 

(8.2) 

(8.3) 

where ¢> is polar angle measured from the x axis in counter
clockwise direction and 

J~I =JKLOkKOIL' (8.4) 

For the present configuration and rodlike elements we have 
J KL = 0, K=f=L, For threadlike elements we may also 
approximate 

J~I = J~3 = r, all other J~I = ° 
so that for threadlike elements (8.3) gives 

jll = Jo cos2¢>, j22 = Jo sin2¢>, 

j33 = J O
, jl2 = Jo sin¢> cos¢>. 

The couple stress and the stress tensor are given by 

mj; /p = Aji¢>', tji = - pt);j - pA;3t)j2¢> '2, 

where 

(8.5) 

(8.6) 

Aj; =AJ230ij +(A4 +As trj)0i20j3 +(A6 +A7 trj)O;30j2 

+A8(j,20j3 + 8;zj3) +A9j 2j O;3 +A](,j;30j2' (8.7) 

The problem being static in nature, the dissipative stress van
ishes, Substituting (8.6) into (3.3) and (3.4) with vanishing 
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mechanical body loads and inertia we obtain the field 
equations 

P,i + (pA23Di2ep ,2)' - Bj,iMj = 0, (8.8) 

(pA 2i ep ')' + Eij2( - pAj3ep ,2) + EijkMjBk = O. (8.9) 

These are field equations for the incompressible nematic liq
uid crystals subject to magnetic field. They are, in fact, valid 
for plane distortions of nematics having any orientations and 
any arbitrary magnetic field. 

The E-M balance laws read 

(8.10) 

Constitutive equations for the B field are given by 

M = B - H = V11 + 112 trj)B + 113jB. (8,11) 

Since Band H are assumed to depend ony only from (8.10) it 
follows that 

Bz = const, HI = H = canst, H3 = canst, (8.12) 

SincejlJ = j2J = 0, from (8.11) it follows that 

MI = BI - HI = V11 + 112 trj + 11:J11 )BI + 11:J12 B2' 

M2 =B2 -Hz = 113j21 BI +V11 +112 trj+I1:J22)B2, 
(8.13) 

M3 = B, - H, = V11 + 112 trj + 11:J33)BJ • 

The boundary conditions at y = ± h requires that 

[HI]=O, [H3] =0, [B2 ]=0. (8.14) 

The first of these is satisfied since HI = H = canst; the sec
ond and third can be satisfied by taking H3 = B2 = 0, This 
through (8,13)3 gives B J = M J = 0 and the remaining two 
equations of (8.13) may be solved for 

MI = XI (ep )H, M2 = - H2 = X2(ep )H, (8.15) 

where 

(8.16) 
.1 (ep) = 1 -111 -112 trj -11:JII ' 

Equations (8,8) for i = 1,3 show that P = p(y) and for 
i = 2 it can be integrated to give 

(8,17) 

where Po is a constant of integration. 
Equations (8,9) for i = 1,2 are satisfied identically and 

for i = 3 lead to 

f(ep)ep" + ~ :~ ep ,2 - k (ep )H 2 = 0, (8,18) 

where we set 

f(d; ) = pAn = P(A6 + A7 trj + A9j22 + A lui33) 

= !eft) - f2 cos2ep + I, sin2ep), 

AI, =pA 9j21 = ~ :~, 
(8,19) 

fo =p[2A n + (2A7 +A9)trJO] + (2A 1O -A9)J~3' 

fz =pA g (J71 -J~2)' I, = 2pA9J~2' 

keep) =113jI2/.12, 

The problem is now reduced to solving (8.18) for ep, After-
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ward (8.17) gives the pressure rise p. It must be noted that 
unlike the classical approach the pressure p cannot be ig
nored. Had we droppedp from (8.8) we would have arrived 
at a contradiction here in the sense that there would be two 
equations (8.15) and (8.16) for the determination of ep. 

Differential equation (8.18) may be reduced to a first
order equation by writing 

tcfJ ,2 = ¢(cfJ ), 

[f(ep )¢(ep ) l.~ - k (ep )H 2 = O. 

By integrating once we obtain 

2¢ = ep ,2 = H2F(ep;epJ, 

where epc is a critical angle at which ep , = 0, and 

F(ep;epJ = 2f-l(ep) i~ k(5)dS· 
~, 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

Integrating (7.22) once we find the general solution, in a 
region of cfJ where F> 0 

±y - Yo = H - I f~ F - 112(,,;cfJJd1], (8.24) 

where Yo is a constant of integration. In the region where 
F < 0 the only solution is ep = const. The two integration 
constants epc andyo are determined from the boundary 
conditions 

ep ( ± h ) = rr /2. (8.25) 

Note that the trivial solution cfJ = rr/2 satisfies (8.25). 

The pressure is given by 

p = Po + H2[ixi( cfJ) - f( ep )F( ep;epc)). (8.26) 

From (8.3) forjij we have 

jll = (J~1 + J~2) + !(J~1 - J~2) cos2ep - J~2 sin2cp, 

j22 = !(J~1 + J~2) - !(J~1 - J~2) cos2cfJ + J~2 sin2ep, 

j12 = J~2 cos2cp + !(J~1 - J~2) sin2ep. 

Hence .1 and k (cfJ ) are given by 

.1 (ep) = .110 - .111 cos2cfJ + .112 sin2ep, 

.110 = 1 -111 -112 trJD - V13 /2)(J~1 + J~2)' 

.111 = V13/2)(J~1 -J~2)' .112 =113J?2' 

k (ep ) = 11:J12 = _1_ d.1 . 
.1 2 2Ll 2 dep 

Consequently (8.23) gives 

F(cfJ;cfJc) =f-l(cfJ )[.1 -I(epc) -.1 -1(ep)]. 

9. THREADLIKE ELEMENTS 

(8.27) 

(8.28) 

(8.29) 

If the elements of nematic liquids are considered to be 
threadlike then we may take 

J~I=J~3=Jo, allothern,=O. (9.1) 

With this k (ep ) reads 

k (ep) = !/13r sin2ep [1 -111 - (2J.t2 
+ 11;/2)Jo - V13 /2)J0 cos2ep ] - 2. (9.2) 
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FIG. 2. Fredericks transition. 

To study the angle changes from,p = 1T/2 (the angles at the 
walls) we introduce 

8 = 1T/2 - ,p, 8e = 1T/2 - ,pc' 0<,8<, 1T. (9.3) 

First, we study the case of small angles 8 which allow lineari
zation of (8.18) so that 

8" + A 28 = 0, (9.4) 

where 

A 2
=2flJ JDH2/(1-fll -2fl2JD)2(fo +/2)' (9.5) 

The solution of (9.4) satisfying the boundary conditions 
8 ( ± h ) = 0 exists if 

sinAh = 0 or Ah = n, n = 0,1,2,.... (9.6) 

Excluding the trivial solution 8 = 0, for the critical field this 
gives 

H = n1T (1 _ _ 2 JO)(fo +/2 )1/2 
, h fll fl2 2 JO 

flJ 
(9.7) 

Note thatH, is real since all of the quantities in the radical of 
(9.7) are real positive quantities. (The fact that/(,p );>0 was 
shown in our work I which expressed thatfo + h > O. We 
also know that fl J > 0.) 

Returning to the general case (8.22) may be written as 

2tf; = 8 ,2 = (H /vhH,)/g(8;8c>r,s) (9.8) 

where 

g(8;8, ,r,s) 

= (1 + r cos28)(1 + s cos28 )/(cos28 - cos28J, 

v = 2(1 + rcos28,)/r(1 + r)\1 + s), 

r = flJo/(2 - 2fll - 4fl2 J O - flJO), 

s =/2//0 = A q r/[2A 6 + (4A7 +A9 +AIO)J°]. 

Integrating (9.8) we obtain 

ylh = (vH, IH)G(8;8"r,s), 

where 
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(9.9) 

(9.10) 

(9.11) 

since we expect that 8 ( - y) = 8 (y) and therefore () '(0) = 0 
and we have ee = e (0). The remaining boundary condition 
at the wall gives e (h ) = 0, i.e., 

H /vHe = G (O;eJ,s) (9.12) 

and this determines ()e' The solution in the region 
- h<y<O is given by ()( - y) = e(y). 

An examination of g(8;8e ,r,s) reveals that this function 
is nonnegative only in the region 0<,e<,8e. For e> ee we 
have the only solution 8 = const. 

It now remains to evaluate the hyperelliptic integral in 
(9.11). For the following two special cases (9.10) can be ex
pressed in terms of elliptic functions. 

Case (I): s = 0 

ylh = - (vHJH)[ ;(1 + rcos28J]112 

X [(1- r)F(A,sin8e) + r(1 + cos2ee ) 

Xll (8,sin2ee , sinee )]. (9.13) 

Case (il): r = s 

y/h = - (vHJHV2)[(1- r)F(A, sinee ) 

(9.14) 

where F and II are, respectively, the elliptic functions of the 
first and the third kind and 

A = arcsin(2cos28 - 2cos28e)1/2 

X (l - cos28J - 1/2(1 + cos28) - 1/2. (9.15) 

By settingy = hand 8 = 0 in these equations we obtain 8, as 
a function of vH 1 He' 

We observe that classical treatment of this problem as 
discussed for example in Refs. 2 and 3 cannot be obtained by 
selecting a special value for anyone of the parameters. How
ever, if we note that floJo <{ 1 and therefore in the expression 
(9.2) we may neglect (PJol2)cos2,p as compared to unity 
then the case (i) gives the classical result. 

Finally, the case of molecules making any fixed angle 
other than 90° with the boundaries can be treated equally 
easily. In this case the boundary conditions (8.25) are re
placed by,p ( ± h ) = ,pb where,ph is the angle made between 
x axis and the long axes of the molecules at the boundary. 

Calculations have been carried out to obtain the critical 
angle 8e as a function of the magnetic field as given by (9.12). 
The results are plotted in Fig. 2, for various values of the 
parameters r,s. The result is as expected. In the neighbor
hood H IvH, ~ 1 magnetic elements begin to rotate severely 
depending on the properties, rand s, and quickly become 
horizontal. This result is very similar to the one already 
known in the director theory and observed in laboratory 
experiments. 

ACKNOWLEDGMENT 

I am indebted to Dr. F. Balta for the computer work. 

I A.C. Eringen, "Micropolar Theory of Liquid Crystals," Liquid Crystals 
and Ordered Fluids, edited by Julian F. Johnson and Roger S. Porter 
(Plenum, New York, 1978), Vol. 3, pp. 443-74. 

A.C. Eringen 2680 



                                                                                                                                    

'M.J. Stephen and J.P. Straley, "Physics of Liquid Crystals," Rev. Mod. 
Phys. 46, 617-704 (1974). 

'P.G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974). 
'R.C. Dixon and A.C. Eringen, "A Dynamical Theory of Polar Elastic 
Dielectric-I," Int. J. Eng. Sci. 9, 359-77 (1965). 

'S.R. De Grott and L.G. Suttorp, Foundations of Electrodynamics (North
Holland, Amsterdam, 1972). 

'G.A. Maugin and A.C. Eringen, "On the equations of the electrodynamics 
of deformable bodies of finite extent," J. de Mecanique 16, 101-47 (1977). 
'R.A. Grot and A.C. Eringen, "Relativistic Continuum Mechanics," Int. J. 
Eng. Sci. 4, 611-70 (1966). 

'A.C. Eringen, "Linear Theory of Micropolar Elasticity," J. Math. Mech. 
IS, 909-24 (I 966). 

9 A.C. Eringen, Foundations of Micropolar Thermoelasticity (Springer-Ver
lag, Wien, New York, 1970). 

IOA.C. Eringen, "Simple Microftuids," Int. J. Eng. Sci. 2, 205-17 (1964). 
lIA.C. Eringen, "A Unified Theory of Thermomechanical Materials," Int. 

J. Eng. Sci. 4, 179-202 (I 966). 
1'C.C. Wang, "A New Representation Theorem for Isotropic Functions: 

An Answer to Prof. G.F. Smith's Criticism of my paper on Representa
tions for Isotropic Functions," Arch. Rational Mech. Anal. 36, 166-97 
(1970). 

llG.F. Smith, "On a Fundamental Error in Two Papers ofC.-C. Wang: "On 
Representations for Isotropic Functions, Part I and II," Arch. Rational 
Mech. Anal. 36, 161-65 (1970). 

I'R.B. Meyer, "Piezoelectric Effects in Liquid Crystals," Phys. Rev. Lett. 

2681 J. Math. Phys., Vol. 20, No. 12, December 1979 

22,918-21 (1969). 
I'W. Haas, J. Adams, and J.B. Flannery, "New Electro-Optic Effect in a 
Room-Temperature Nematic Liquid Crystals," Phys. Rev. Lett. 25, 
1326-327 (1970). 

I'W. Helfrich, "A Simple Method to Observe the Piezoelectricity of Liquid 
Crystals," Phys. Lett. A 35, 393-394 (1971). 

J1p. Culling, G.W. Gray, and D. Lewis, "Mesamorphism and Polymor
phism in Simple Derivativesp-Terphenyl," J. Chern. Soc. 2699 (1960). 

l'A. Roviello and A. Sirigu, "Mesophasic Structures in Polymers. A Pre
liminary Account on the Mesophases of Some Poly-Alkanoates of p-p' -Di
Hydroxy-a,a' -Di-Methyl Benzalazine," Polymer Lett. 13, 455-63 (1975). 

191.G. Chistyakov and V.M. Chaikovskii, "Study of the Structure of Nema
tic p-Azoxyanisole in Magnetic Fields," SOy. Phys. Crystal 12, 770-74 
(1968). 

lOA. De Vries, "Evidence for the Existence of More than One Type ofNema
tic Phase," Mole. Crys. and Liquid Crys. 10,31-7 (1970). 

2JS. Chandrasekhar, B.K. Sadashva, and K.A. Surish, Pramana 9, 471 
(1977). 

"A.M. Levlut, "Structures ofa Disk-Like Mesophase," J. Physique Lett. 
40, L81 (1979). 

"R. Borghesani and A. Morro, "Time-Reversal Invariance and Thermody
namics of Electromagnetic Fields in Materials with Memory," Annali di 
Matematical Pura ed applicata (VI) IC (1974). 

"V. Freedericksz and V. Zolina, "Double Refraction of Thin Anisotropic 
Liquid Layers in the Magnetic Field," Zeits. f. Krist. 79, 255-67 (1931). 

A.C. Eringen 2681 



                                                                                                                                    

The growth of wave discontinuities in piezoelectric semiconductors 
M. F. McCarthy 
National University of Ireland, University College, Galway, Ireland 

H. F. Tiersten 
Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, 
New York 12181 

(Received 18 July 1979; accepted for publication 22 August 1979) 

The reference coordinate description of the general nonlinear differential equations describing 
the interaction of finitely deformable, polarizable, n -type semiconductors with the quasistatic 
electric field is applied in the study of acceleration waves in piezoelectric semiconductors. As a 
consequence, the mechanical and dielectric nonlinearities are included in the treatment as well as 
the semi conduction nonlinearity. The general equation for the propagation velocity of the 
disturbance is obtained as a function of the state of the material immediately ahead of the 
wavefront. In the special case of plane waves entering a homogeneous steady state, the growth 
equation for the amplitude of the acceleration wave is determined and, of course, the propagation 
velocity and coefficients in the growth equation depend on the propagation direction, but 
otherwise are constant. The relation between acceleration waves and the formation and 
propagation of acoustoelectric domains is indicated. The solutions of the growth equation 
indicate the formation of a shock in a finite time for conditions conducive to domain formation 
except in certain unusual cases possibly occurring with purely transverse acceleration waves. In 
the course of the treatment the condition for the threshold field for domain formation is 
determined under quite general circumstances. When the electrical conduction equation, which 
can be quite general in this treatment, is specialized to the simple form usually employed for 
anisotropic semiconductors, the aforementioned more general condition reduces to the 
anisotropic generalization of the well-known elementary result. In addition, the behavior of weak 
waves is discussed. 

1. INTRODUCTION 

In a previous investigation the theory of one-dimen
sional acceleration waves was applied I to a one-dimensional 
version of general rotationally invariant nonlinear electro 
elastic equations derived earlier from a well-defined macro
scopic modee of deformable semiconductors. In that treat
ment an analytical description of the formation and propa
gation of purely longitudinal acoustoelectric Idomains in 
piezoelectric semiconductors was obtained. The analysis in
dicated that for electric fields above a threshold value the 
amplitude of the acceleration wave would always increase 
without bound and become a shock. A natural and logical 
extension of the previous one-dimensional work is the treat
ment of three-dimensional acceleration waves, in which 
acoustoelectric domains with transverse mechanical dis
placement components can be considered. Recently, in the 
case of the quasistatic electric field the general nonlinear 
electroelastic equations for deformable n-type semiconduc
tors2 were transformed Yrom the unknown present coordi
nate description to the known reference coordinate descrip
tion, which is the form needed here and in general for the 
treatment of problems. 

In this paper the theory of three-dimensional accelera
tion waves4-12 is applied to the above-mentioned reference 
coordinate description"' of the general rotationally invariant 
nonlinear electroelastic equations for deformable n-type se
miconductors in order to analytically describe the formation 
and propagation of acoustoelectric domains, with both 

transverse and longitudinal components of mechanical dis
placement, in piezoelectric semiconductors subject to high 
electric fields. The analysis results in an expression for the 
amplitude of the acceleration wave (or domain) which exhib
its the competition between dissipation due to electrical con
duction and the semiconduction and mechanical nonlineari
ties in producing decay or growth of the acceleration wave 
(or domain). As in the case of the purely longitudinal accel
eration wave treated earlier, I the possibility of the amplitude 
of the more general three-dimensional plane acceleration 
wave increasing without bound and becoming a shock is 
clearly indicated. However, in the special case of purely 
transverse acceleration waves, circumstances can exist un
der which it is not possible for the amplitude to grow. Never
theless, if any longitudinal motion is present in the accelera
tion wave, the possibility of the amplitude increasing 
without bound always exists. During the course of the analy
sis the expression for the velocity of the wave (or domain) as 
a function of the state of the material immediately ahead of 
the wave front naturally is obtained. 

2. BASIC FORMULAS AND EQUATIONS 

The macroscopic model of an elastic n-type semicon
ductor employed in Ref. 2 consists of three interacting, inter
penetrating continua, which consist of (i) a lattice contin
uum which has a positive charge density; (ii) a bound 
electronic continuum which has a negative charge density 
and which can displace slightly from the lattice continuum 
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and thus produce electric polarization; and (iii) a free elec
tronic continuum which has a negative charge density, negli
gible inertia, and is a conducting compressible fluid which 
experiences a force of resistance from its motion with respect 
to the lattice continuum. 

Initially, the lattice continuum and the bound electron
ic continuum all occupy the same region of space and hence 
have the same reference coordinates XL' The motion of a 
point of the lattice continuum is described by the mapping 

Yi =Yi(XL,t), y=y(X,t), (2.1) 

which is one to one and differentiable as often as required. 
Here the Yi denote the present coordinates of material (lat
tice continuum) points and XL' the reference coordinates, 
and t denotes the time. We consistently use the convention 
that capital indices denote the Cartesian components of X 
and lower case indices, the Cartesian components ofy. A 
comma followed by an index denotes partial differentiation 
with respect to a coordinate 

ag aG 
g,i = -a (y"t), G L = -(XK,t), (2.2) 

Yi . aXL 

and the summation convention for repeated tensor indices is 
employed. 

Since reference coordinates are employed in our study 
of the propagation of acceleration waves in elastic semicon
ductors, the integral forms of the equations required in this 
work consist ofEqs. (2.41)-(2.44) of Ref. 3, which we repro
duce here in the form 

i NL.fiJ LdSo = r jidVo, (2.4) 
SO Jv;) 

r w~dVo = r NL (cp + cp e)dSo, (2.5) Jvo Jso 

(2.6) 

where NL denotes the outwardly directed unit normal to a 
reference element of area and So denotes the surface enclos
ing the reference volume Vo. Equations (2.3)-(2.6) are the 
reference integral forms of the conservation of linear mo
mentum of the combined continuum, the charge equation of 
electrostatics, the conservation of linear momentum of the 
free electronic continuum, and the conservation of total elec
tric charge. In Eqs. (2.3)-(2.6), K Lj , M Lj , and .9~j denote 
the reduced mechanical Piola-Kirchhoff stress tensor, the 
reference free-space Maxwell electrostatic stress tensor, and 
the reference free electronic pressure tensor, respectively; vi' 
.fiJ L' w~, and /1. denote the velocity of the solid, the refer
ence electric displacement vector, the reference local electric 
field exerted on the free electronic fluid, and the reference 
electric current vector, respectively; Po, ji, cp, and cp e denote 
the reference mass density, net reference charge density, 
electric potential, and free electronic chemical potential, re
spectively; and d I dt is the material time derivative. The asso
ciated constitutive equations and additional required rela-
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tions take the form 

K Lj = POYj.K a!~K' M Lj = JX L,i T f, 
aX 

.9 Lj = JXL,jpe, .fiJ L = EOJXLiEi - Po a~ L ' 

" _ (,,")2 aE
e 

p-..,.. , 
af,le 

(2.7) 

aYi 
J = detYi.K' TtS 

= EoEiEj - !EoEkEkDij, Vi = ~' 

Ei = - CP,;. EKL = !(CKL - DKL ), 
CKL = Yi,KYi,L> ~ L = - CP,L> 

X=X(EKL'~L)' E"=Ee(f1:), cp"=a(f,lcE'')jaf,l(', 

(2.8) 

n ~ = n ~(f,le,W~,ELM'~ L)' (2.9) 

where TtS, EKL , and CKL denote the free-space Maxwell 
electrostatic stress tensor, the material (reference or Lagran
gian) strain tensor, and Green's deformation tensor, respec
tively; Ei' ~ L' and n ~ denote the Maxwell electric field, the 
reference (or rotationally invariant) measure of the electric 
field, and the rotationally invariant constitutive vector that 
accounts for the relative flow velocity of the free electronic 
fluid, respectively; pe, X, f,le, and Ee denote the free electronic 
pressure, a particularly convenient thermodynamic state 
function related to the stored internal energy per unit mass 
of the deformable solid, the free electronic charge density, 
and the stored internal energy per unit charge of the free 
electronic fluid, respectively; and Eo is the permittivity of 
free space. 

When the variables are appropriately differentiable, 
from Eqs. (2.3)-(2.6), we obtain the differential equations 

SLj.L = POu), 

.fiJ L.L = ji, 

w~ = CP,L + cp ~L , 

/ L.L +,ii = 0, 

where 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

SLj = KLj + MLj - .9L, (2.14) 

and we have employed the dot notation for partial differenti
ation with respect to time. We now note that we have an 
additional relation between the net reference charge density 
ji and the free electronic charge density f,le, which can be 
written in the form 

ji = ff,le + of,l', (2.15) 

where of,l' is the reference residual lattice charge density, 
which is a constant. From Eqs. (2.7)6' (2.8)7' (2.9)2-4' and 
(2.12), we can write 

/1. =:/ L(EKM,'fI K,GK,f,le), (2.16) 

where 

GK = f,l~K' (2.17) 

If we define i by 13 

X = X - EOJEk E k l 2po, (2.18) 

then by virtue ofEqs. (2.8)4--7 and (2.9)1 and the chain rule of 
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differentiation and the well-known relations 

J = V detCLM , C la. 1 = XK,/XL'/' 

we can write 

(2.19) 

x = X(EKL>~ L)' (2.20) 

Now, from Eqs. (2.7)1_5' (2.8), (2.9)1' (2.14), (2.19), and 
(2.20), with the aid of the differential relations 

aJ aXN . j _ -X X --=JXKi , - V' M' (2.21) 
a(Yi.K) . a(Yi.M) ,., .j' 

and the chain rule of differentiation, we obtain 

S aX JX e Q 
l.j = POYj.K -aE - L.jP ,.2) L = 

LK 

aX 
-Po a~ L • 

(2.22) 

It is clear from Eqs. (2.7)5' (2.8) 1.5-6' (2.20), and (2.22) that 
we may write 

SLj = S;)Yj.K ,?ffi'M,f.1C),fiJ I. = g L(EKM'~ d, (2.23) 

and for later use we note that the constitutive response func
tions (2.16) and (2.23) as well as all the others are C 2 func
tions of their arguments. 

3. GENERAL PROPERTIES OF ACCELERATION WAVES 

Let (J' be a propagating surface which may be represent
ed in (y,t) space by the equation 

f(y,t) = o. (3.1) 

The unit vector 0 normal to (J' and its speed of displacement 
u" are given by 

f, 
n·= --, 
, If I. I Un == (3.2) 

Corresponding to (J', we have the alternative representation 
of the surface L in (X,t) space by means of the equation 

.7(X,t) =f[y(X,t),t 1 = 0. (3.3) 

The unit vector N normal to L and its speed of propagation 
Us are given by 

·(7.K 

NK = 1.7 I' 
.1. 

.r 
(3.4) 

1·7.L I 

It is a simple matter using Eqs. (3.2)-(3.4) and the chain rule 
of differentiation to show that 

where 

and 

U= u" - V'o (3.6) 

is the local speed of propagation of the surface. 
Let l/J(X,t) be a function which suffers ajump disconti

nuity across the surface L, but is a continuous function ev
erywhere else. We define the jump [l/J] in the function l/J to be 

[l/J 1 = l/J -l/J ~ , (3.7) 
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where l/J - and l/J I are the limiting values of l/J immediately 
behind and just in front of a point lying on L, respectively. 
The surface L is said to be an acceleration wave if the field 
Yi (X,t ), Vi (X,t ), and FiL (X,t ) are continuous everyw here but 
vi(X,t), FiI. (X,t), and FiL.M(X,t), as well as all higher order 
partial derivatives of Yi(X,t), suffer jump discontinuities 
across.L, but are continuous functions everywhere else. 
From the geometric conditions of compatibility14.15, we can 
obtain 16 

[FiKJ] = SiNKNL = aiFpKFq/npnq, Si = [NMNRF,M.R]' 

(3.8) 

[Vi] = U~\Si = U 2ai , Si =B;,a" B;, = Fil;F'jKninj' 

At this point it should be noted that we need make no as
sumptions with regard to the continuity properties enjoyed 
by the electric potentialtp(X,t ) = tp[y(X,t ),t Jorthefreeelect
tronic charge density fl"(X,t) apart from assuming that at 
points not on .L these functions together with their partial 
derivatives of all orders are continuous. The vector a is called 
the amplitude vector of the acceleration wave. If we write 
a = ar, where r·o>O, Irl = 1, then if a > ° the wave is said to 
be expansive, while a wave for which a < 0 is said to be com
pressive. Ifr = 0, the wave is longitudinal, while ifr·o = 0, it 
is transverse. 

The jump conditions across a surface of discontinuity .L 
can readily be obtained from the integral forms in Eqs. (2.3)
(2.6) along with the fact that Ei remains bounded. The re
sulting jump conditions thus obtained consist of Eqs. 
(2.46)1_2' (2.47)1 , (2.49) and (2.50) of Ref. 3, which are re
quired in this work and we reproduce here in the form 

Nd/d - UN [Ii] = 0, 

NdSKj] +POUN[vj ] =0, 

[tpe] =0, [tp]=O, 

Nd9 K ] =0. 

In view of Eq. (2.9)3' Eq. (3.11)1 may be written 

;pe( flc - ) _ ;pe( fle + ) = 0, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

and if we assume that a;P(fl'')/afl'=I=O it follows (the argu
ment is given by Coleman and Gurtin6

) thatf.1"is continuous 
across.L, i.e., 

[f.1,] = O. (3.14) 

Furthermore, since Eq. (2.15) is of the form 

Ii = Jf.1" + ofl', of.1' = constant, (3.15) 

it follows, since J = detFiK is continuous across .L, that 

[Ii] = O. (3.16) 

Next, since tp is continuous across .L, from the geometric 
condition of compatibility 14 and Eq. (2.8)7' we have 

[~K] = iiNK' ii = - [NI.tp.L]' (3.17) 

Thus, in view ofEq. (2.23h, we may write Eq. (3.12) in the 
form 

N K§ K(ERL'~:; + iiNM ) - NK§ K(ERI>'f/~) = 0, 
(3.18) 

and if we assume that a§iJ K/a~ I. =1=0 it follows from Eq. 
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(3.18) that ii = ° and hence from Eq. (3.17) that 

[)ff K ] = 0, (3.19) 

and thus the reference electric field '!l is continuous across 
~. Now, in view ofEq. (3.14), from Eq. (2.17) and the geo
metric condition of compatibility we have 

[GK]=wNK, W=[NL,u~L]' (3.20) 

so that, on using Eqs. (2.16), (3.14), (3.16), (3.19), and (3.20), 
we may rewrite Eq. (3.9) in the form 

NKJr K(ERL,)ff M,G t + wNu,ue) 
A 

- NK/ K(ERL,)ff M,G t "ue) = 0. (3.21) 

From the assumption that aJr K/aGL *0, it follows 
from Eq. (3.21) that w = ° so that 

[GK ] = 0, (3.22) 

which means that GK is continuous across~. As a conse
quence of Eqs. (2.16), (2.8)s_6' (2.23), (3.14), (3.19), (3.22), 
and the definition of an acceleration wave, we have 

(3.23) 

and thus Eqs. (3.9)-(3.12) are satisfied identically. Other im
portant conditions resulting from Eqs. (3.19), (3.22), and the 
conditions of compatibility l4,ls are 

[)ffK,L] = - [ip,KL] = -aNKNL,[WK] = UNaNK, 

a = [NRNsip,RS]' 

[GK,L] = V(KL]' = wNKNL,[GK ] = - UNwNK, 

W = [NRNs,u~RS]. (3.24) 

From Eqs. (2.10), (2.22), (2.7hs' (2.8)s_6' (2.9)1_2' and 
(2.21), we obtain 

AjKpLFpL,K + BjKL)ff £OK + ~/(GK = POuj , 

where 

(3.25) 

(3.26) 

a§L 
-- = Fj'll/B K"L' aFjK ,,' 

aSKj ap" 
Hjl( = a'IJ" = - JX '-(fL"), ,.... K,j afLc 

and 

ai 
S·'I, -P -

n - 0a'E ' 
KL 

_ J2i 
CKNLS - Po a'E aE ' KN LS 

a2~ 
B - X K,\L - Po aa:o aE 

(:) L K'I 

(3.27) 

(3.28) 

(3.29) 

Since SKj('",,) is by hypothesis a C 2 function, it follows that 
the coefficients in Eqs. (3.26)-(3.28) are continuous across 
the singular surface~, Thus, taking the jump in Eq. (3.25) 
across ~ and employing Eqs, (3.8)1,4' (3,22), and (3.24)1' we 
obtain 

(3.30) 

2685 J. Math, Phys" Vol. 20, No. 12, December 1979 

We now need the expression for a in terms ofs. From Eqs. 
(2.11) and (3.27) we have 

- BjLKFjL,K + nKL)ff L,K = ji, 
where 

A 

(3.31) 

aiiJ /( a2i 
nKL = -- = - Po (3.32) 

acg L acg Ka)ff L 

Since § K (.,.) is a C 2 function, it follows that the coefficients 
in Eq. (3.31) are continuous across the singular surface~. 
Thus, on taking the jump in Eq. (3.31) across I and using 
Eqs. (3.8)1' (3,16), and (3.24)1' we find 

a = - {;Ljsj' 

where 

(3.33) 

L, = B,LKNLNK = FjMBMLKNLNK' {; = (nKLNKNL) - I. 

(3.34) 

The substitution ofEq. (3.33) into (3.30) with the aid ofEqs. 
(3.26) and (3.34)1 yields the following propagation 
condition: 

(Qp - Po UV>jp)sp = 0, 

where 
A A 

Qjp = Qjp(FrL,'(l K,N'o,f) = AjKpLNKNL + {;LjLp 

(3.35) 

= OjpSKLNKNL + FjLFpMCKLRMNKNR + {;LjLp = Qp 
(3.36) 

is the acoustic tensor. We note that Qp is symmetric and for 
fixed n it is a function of the deformation gradient FrL , the 
reference electric field )ff K at the wave front, but is indepen
dent of ,uc, the density of free electronic charge at the wave 
front. It follows from Eq. (3.35) that the amplitude a of an 
acceleration wave traveling in the direction n in a piezoelec
tric semiconductor must be a proper eigenvector of the sym
metric acoustic tensor Qp and the speed of propagation UN 
~ust be such that Po U ~ is the corresponding eigenvalue of 
Qjp. 

The equation (3.35) was derived by Truesdell l7 for ac
celeration waves in elastic media. It has since been derived 
by a number of authors for acceleration waves in a variety of 
media.7

-
9 We note in particular that the acoustic tensor 

(3.36) has precisely the same form as the corresponding 
acoustic tensor which occurs in the theory of wave propaga
tion in elastic dielectrics. 10 

Equations (3.35) admit a nontrivial solution if and only 
if 

(3,37) 

and this equation determines the possible speeds of propaga
tion for a given direction of propagation n. On the other 
hand, if the amplitude a of a wave is known, then the corre
sponding speed of propagation is determined by the formula 

U 2 - Q" Po N - jpajaplajaj. (3.38) 
A 

Since the acoustic tensor Qjp is symmetric, it has three real 
eigenvalues. However, at this stage it is possible that all of 
these eigenvalues may be negative, in which case no real 
waves will exist at all. We now wish to record the conditions 
which guarantee the possible existence of at least some real 
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waves. A detailed analysis of the situation for purely elastic 
materials has been given by Truesdell, 18 Truesdell and 
Noll,!" Wang and Truesdell,20 and Chadwick and Currie. 2 

I 

Once the deformation gradient and electric field ahead 
of the wave are known, it follows from Eqs. (3.5)1' (3.29), 
(3.34), (3.36), (2.8)5_6' and (2.9)1 that the acoustic tensor 
depends on n only, i.e., we have 

Q/Frl" 'li K ,N M) = ~p (n), 

for fixed FrL and 'li K' If 

QIj(n)ninj > 0 

(3.39) 

(3.40) 

for all unit vectors n, the material may be said to have posi
tive longitudinal piezoelectricity. Truesdell l8 has shown that 
when Eq. (3.40) is satisfied, there exists at least one direction 
in which a longitudinal wave may exist and propagate. If the 
acoustic tensor is strongly elliptic in the sense that 

(3.41) 

for all unit vectors nand j..L, it then follows (Truesdell IS
) that 

there is at least one direction of propagation in which a longi
tudinal wave and two transverse waves with orthogonal am
plitudes may exist and propagate. In particular, it should be 
noted that if the strong ellipticity condition (3.41) is satisfied 
and if the deformation and electric field are uniform ahead of 
the wave, then there exists at least one direction in which a 
plane longitudinal and two plane transverse waves may exist 
and propagate for all times. For propagation in all other 
directions under the above-mentioned circumstances, the 
three plane waves are, of course, not necessarily either pure
ly longitudinal or purely transverse, but may consist of an 
admixture of all mechanical displacement components. 
Nevertheless, in the most general case, if the propagation 
velocities are distinct, the three plane waves have mutually 
orthogonal mechanical displacement fields. In the next sec
tion, we examine the manner in which the amplitUdes of 
such waves vary as they traverse the material. 

4. GROWTH AND DECAY OF PLANE ACCELERATION 
WAVES 

In this section we derive the differential equation which 
determines the manner in which the amplitude of a plane 
acceleration wave varies as it traverses the material. It is 
assumed that the material ahead of the plane wave front is at 
rest in a state of homogeneous strain, is subject to a uniform 
electric field, and that the charge density of the free electron
ic fluid is uniform and constant prior to the arrival of the 
wave front. 

The differentiation of the equation of motion (3.25) 
with respect to t, with X fixed, yields 

AjKPLFpL.K + BjKL 'fi L.K + HjKGK + Cj = POvj , (4.1) 

where 

with 
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e j = AjKPLqMFpLKFqM + BjKPLMFpL.K '6' M 

+ HjKpLFpL.KP" + BjKpML 'li L.KFpM 

+ BjKL.Wt'I.K'6'M + HjKPLGKFpL +~KGKP"' 
(4.2) 
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2 ....... 
AjKpLqM = J SK/JFpLJFqM 

= DjpFqNCKLMN + DjqFpNCKMLN 

+ OpqFjNCKNLM 

+ FjNFpTFqR eKNLTMR 

- JXM,q(XK.jXL.p - Xl..jXK.p)p" 

+ J(XK.qXM,jXL,p + XK.jXW.pXL,q 

- XL.qXM.jXK.p - XL,jXK.qXW.p)p", (4,3) 
2 ....... 

J SKj 
BjKpLM = JF J'li = OjpBKLM + Fj,vFpsBKNLSW' 

pL M 

and 

(4.4) 

In view of our earlier assumptions on the continuity of the 
response functions SKJ(""')' the coefficients in Eq. (4.3) are 
continuous across the singular surface I. On taking the 
jump in Eq. (4.1) across I, keeping in mind our assumptions 
concerning the uniformity of the rest state of the material 
ahead of the wave front and making use of the relation 

[ 'PtP 1 = 'P f [tP 1 + tP + ['P 1 + ['P][ tP ], 

and employing Eq. (3.22) we obtain 

AjKpL [FpL,K] + BjKL [~' L.K] + HjK [GK] + [ej ] 

= Po [vj ], 

where 

(4.5) 

(4.6 ) 

[Cj ] = AjKpLqM [FpI .K ] [FqM ] + BjKpIM! [FpL,K ] ['6'M] 

+ [ FpI ][ if M,K ] l + BjKIM ['li l.,K ][ '6' M ]. (4.7) 

Since we are dealing with a plane wave front entering a uni
form state, from the compatibility conditions and the defini
tion of an acceleration wave, we have22 

[FrI,K] = brNIN K' br = [NMN.~· FrM,s]' 

Os 
[Vi] = U~bi + 2U~ Tt' (4.8) 

['6' I,K] =f3NINK,/3 = - [NRNs¢.RS]' 

where 0 f / Or is the displacement derivative23 off Substitut
ing from Eqs. (3.8), (3.24), and (4.8) into Eq. (4.6), we obtain 
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2 Osj 
- 2po UN 8t - U"AjKpLqMN KNLN MSpSq 

+ 2U"aBjKPLMNKNLNr,{sp - UNa2BjKLMNKNLNM 

=0. (4.9) 

We now need the expression for U) in terms of s. To this 
end, with the aid of Eqs. (2.16) and (2.8)5_6' we rewrite Eq. 
(2.13) in the form 

~KrLFrL.K + ~KL iff L.K + ilKL GL.K + SKGK + /i = 0, 
(4.10) 

where 

(4.11) 

In view of the continuity assumptions on;-K("""')' it fol
lows that the coefficients in Eqs. (4.11) are continuous across 
the singular surface. Hence, on taking the jump in Eq. (4.10) 
across ~ and employing Eqs. (3.8), (3.22), and (3.24)1.4' we 
have 

U) = v( - ~KrLNLNKsr + a~KLNKNL - [/i]), (4.12) 
where 

(4.13) 

Taking the material time derivative of Eq. (2.15), we obtain 

(4.14) 

the jump in which, with Eqs. (2.8)1' (3.8)3' (3.14), (3.22), the 
kinematic condition of compatibility, 1 5 and the definition of 
an acceleration wave, yield 

[/i1 = - /-l"JXK.; U"s;NK, 

where we have employed the well-known relation 

j=JXK.,F;K 

(4.15) 

(4.16) 

in obtaining Eq. (4.15). The substitution of Eqs. (3.33) and 
(4.15) into Eq. (4.12) enables us to write 

(4.17) 

where 

(4.18) 

We now must express.8 in terms of sand b. To this end 
we take the material time derivative ofEq. (3.31) to obtain 

- B;LKF;L.K + nKL If L.K - BiLrSKFrsFiL.K 

- B;LK,.,AIfMFiL.K + tiL iff M.K) + nKLM IfM iff L.K 

=ji (4.19) 

where 

which is continuous across the singular surface. Clearly, all 
the coefficients occurring in Eq. (4.19) are continuous across 
the singular surface~. Thus, on taking the jump in Eq. (4.19) 
across~, recalling the time independent uniform state ahead 
of the wave front, and employing Eq. (4.15), we have 
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- BiLK [FiL.K] + nKL [If L,K] - B;LrSK [Frs] [FiL.K] 

- B,LKM([If M) [FiL.K] + [tiL] [iffM.K]) 

+ nKLM [lfM][iff L.K] = [/i1. (4.21) 

Substituting from Eqs. (3.8), (3.24), (3.33), (3.34), (4.8), and 
(4.15) into Eq. (4.21), we obtain 

.8 = t L pbp - tUNJ/-leXK,iNKSi + UNtMuSiSj' 

where 

Mij = (- B,LjMK + 2tB'LKMLj + t 2n LMKL;L) 

XNKNLNM· 

(4.22) 

(4.23) 

We now substitute from Eqs. (3.33), (4.17), and (4.22) 
into Eq. (4.9) and employ Eqs. (3.34)1 and (3.36) to obtain 

'" 2 2 OSj 
(Qjp - Po U NOjp)bp = 2po UN 8t + ajpsp + ajpqSpSq' 

where 

ajp = tUNJj1"LjXK.pNK + vUNHjKNK~p' 
and 

a jpq = UNtLjMpq + UN [AjKpLqM + 2tBjKPLMLq 

(4.24) 

(4.25) 

+t2BjKLMLpLq]NKNLNM' (4.26) 

Note that Eqs. (4.24) serve to determine the components of 
the amplitude b of the third order discontinuity induced by 
the acceleration wave. However, for the moment, our prima
ry objective is to use Eqs. (4.24) to obtain the differential 
equation governing the evolutionary behavior of the ampli
tude a of the acceleration wave. In Sec. 6 we study the solu
tion of Eq. (4.24) in greater detail and we discuss both in
duced discontinuities and higher order waves. 

Using Eqs. (3.5), (3.8)4--6' (4.23), (4.25), and (4.26), we 
may rewrite Eq. (4.24) in the form 

(Q
'" 2 2 oaj _ _ 

jp - Po U NOjp)bp = 2po U - + ajpap + ajpqapaq. ot 
where 

(4.27) 

a jp = tUJj1eLjnp + VUHjKFsKnS~p, (4.28) 

ajpq = utL/ Jpq + U [AjKPLqM + 2BjKpLMLq 

+ t 2BjKLMLpLq] FrK FSL FtMnrnsn" (4.29) 

and 

Mpq = [ - BpKqLM + 2tBpKLMLq + t 2nKLM] 

XFrK FsL FtMnrnsnt· 

We may write 

aj = arj , Irl = 1, 

(4.30) 

(4.31) 

where r is the unit eigenvector of ~p corresponding to the 
eigenvalue Po U ~, and recall that, since we are dealing with a 
plane wave front propagating into a uniform region, the 
components ofr are constant. Equation (4.27) may now be 
written 

'" (Qjp - Po U~ojp)bp 

= 2po U 2rj ~ + (ajprp)a + (ajpq rprq)a2. 
8t 
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Ifwe now contract Eq. (4.32) with rj and employ Eqs. (3.35) 
and (3.36), we find that the amplitude a of the acceleration 
wave satisfies the equation 

oa a 2 
-= -tUoa + 1-'0 a , 
Of 

where 

f3 = - iijpqrjrprq 

a 2po U 2 • 

(4.33) 

(4.34) 

(4.35) 

The implications ofEq. (4.33) are examined in detail in the 
next section. 

5. IMPLICATIONS OF THE GROWTH EQUATION 

Equation (4.33), which governs the evolutionary be
havior of plane acceleration waves oriented arbitrarily and 
propagating into a region subject to a time independent state 
of homogeneous strain and uniform electric field in a defor
mable semiconductor, is of the same form as Eq. (5.6) of Ref. 
1. Clearly, we expect the behavior of the amplitude of a plane 
acceleration wave to be, at least qualitatively, similar to that 
of a purely longitudinal wave. This is for the most part the 
case but, as expected, in contrast to the situation prevailing 
in the one-dimensional case discussed in Ref. 1, the coeffi
cients tUo andf3o' defined by Eqs. (4.34) and (4.35), respec
tively, are not absolute constants for a given material and 
state even though '8, F, and,ue are uniform ahead of the wave 
front, but vary with the propagation direction n. Of course, 
once '8, F, and,u e are prescribed ahead of the wave, then for a 
given n, r is determined by n through Eqs. (3.35). After the 
unit vector r has been determined from Eqs. (3.35), the coef
ficients tUo and f30 are fixed. Thus, for a given state ahead of 
the wavefront, i.e., values ofF, '8, and,ue, tUo andf30 are 
constants for a given n. 

When neither of the quantities tUo and f30 vanishes, then 
the solution ofEq. (4.33) is 

a(t) = Ilo/ [(Ilo/ao) - l)e'"ot + 1], (5.1) 

where 

Ilo = tUo/f3o, (5.2) 

and a(O) is the value of the amplitude of the wave at time 
t = O. It is clear that the behavior of the amplitude of a given 
plane wave is determined by the coefficients tUo and f30 as 
well as by the initial amplitude ao. In order to discuss all 
possible cases which may arise we first suppose that 

tUo > 0, f3o=l=O; (5.3) 

then, in view of Eq. (5.2), we have 

sgMo = sgn{3o, (5.4) 

and then from Eq. (5.1) three distinct possibilities arise: 
(i) If sgna(O) = ± sgnf30 and lao \ < \Ilo \, then aCt H 

monotonically as t_ 00. 

(ii) If a(O) = Ilo' then a(t) = a(O). 
(iii) Ifsgna(O) = sgn{3o and \a(O) \ > \Ilo \, thena(t)_oo 

monotonically within a finite time too given by 

too = - (l/tUo) In 11 - [llo/a(O)]}. (5.5) 
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We now suppose that 

tUo < 0, f30 =1=0; 

then we have 

sgMo = - sgn{3o, 

(5.6) 

(5.7) 

and again from Eq. (5.1) three distinct possibilities arise: 
(i)· Ifsgna(O) = - sgn{3o and \Ilo \ > \a(O)\, then 

aCt )-Ilo monotonically as t- 00 • 

(ii)· If a(O) = Ilo, then a(t) = a(O). 
(iii)· If sgna(O) = sgn{3o' then aCt )- 00 within a finite 

time too given by 

(5.8) 

It is clear from the foregoing results that the number Ilu 
plays a fundamental role in determining whether the ampli
tude of an acceleration wave will grow or decay as the wave 
transverses the material. For this reason we follow the usual 
custom and call ..1.0 the critical amplitude for acceleration 
waves encountering a homogeneous steady state. We note 
that if tUo > 0, then the behavior of an acceleration wave 
propagating into a piezoelectric semiconductor which is in a 
uniform steady state is precisely the same as that of an accel
eration wave propagating into a homogeneously deformed 
material with memory.6,7 In particular, if the initial ampli
tude of the wave is less in absolute value than the critical 
initial amplitude, the amplitude decreases to zero as the 
wave propagates. On the other hand, if the initial amplitude 
is greater in absolute value than the critical initial amplitude, 
the amplitude of the wave becomes unbounded in a finite 
time. This, of course, suggests the formation of a shock. As 
noted in Ref. 1, the case tUo < 0, which has no mechanical 
analog, is the case of primary interest and importance. The 
foregoing analytical treatment shows that in this case the 
amplitude of the wave either tends to ..1.0 eventually or else 
becomes unbounded in a finite time. Furthermore, note that 
in this case if a(O) andf30 have the same sign, the amplitude of 
the wave always becomes unbounded in a finite time. More
over, since a(O) arises from the thermal noise, there are al
ways some a(O) with the same sign as f30 . 

Let us now consider the behavior of a wave for whichf30 
vanishes. In our earlier treatment of one-dimensional accel
eration waves,l we noted that the vanishing of f30 corre
sponded to a linear material. Indeed, while f30 also vanishes 
identically here if the response of the material is linear, it 
may also vanish because of a combination of other factors 
even though the response of the material is nonlinear. For 
example, in a given material, once '8 and F are prescribed it 
may be possible to choose n [and hence r through Eq. (3.35)] 
in such a way that f30 vanishes. In particular, it is easily veri
fied in the relatively simple case of a purely transverse accel
eration wave propagating in the direction of the applied elec
tric field and of a principal axis of homogeneous deformation 
in an isotropic material that f30 vanishes even though the 
response of the material is nonlinear. In this simplest but 
extremely important case, Eq. (4.33) has the solution 

a(t) = aoe - lU
ol, (5.9) 

which means that if tUo > 0, a(t) is a monotonically decreas
ing function of time and the amplitude of the wave decreases 
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as the wave traverses the material. On the other hand, if CUo 

< 0, a(t) is a monotonically increasing function of t and the 
amplitude of the wave increases without bound as the wave 
traverses the material. Of course, if CUo = 0, then a(t ) = ao so 
that the wave propagates at constant amplitude. 

Let us recall from Eqs. (3.28), (4.28), and (4.34) that 

(5.10) 

In particular, Eq. (5.10) shows that CUo vanishes whenever r 
is orthogonal to n. Thus, if 130 vanishes, either because the 
response of the material is linear or because ff, F, and n have 
appropriate values, then purely transverse acceleration 
waves will propagate at constant amplitUde and not grow 
and, of course, purely transverse shocks will not form. On 
the other hand, in this very special case of purely transverse 
acceleration waves, suppose that 130 does not vanish for 
plane wave propagation in a prescribed direction n; then, Eq. 
(4.33) reduces to 

~=13oa2, 
Dr 

so that 
a = ao (l - 130 ao t) - I. 

(5.11) 

(5.12) 

Of course, the solution (5.12) has the same form as the corre
sponding solution for acceleration waves in nonheat con
ducting elastic media. Note that if ao and 130 have the same 
sign, then a shock will form after a time 

t:A = 1I/3oao, (5.13) 

and, as already noted, since a(O) arises from the thermal 
noise, a shock will always form for nonzero 130 when CUo is 
zero. 

When 130 vanishes and the acceleration wave is not 
purely transverse, it should be clear from the above discus
sion that the threshold condition, at which the amplitude 
a(t) just begins to grow, may be defined by 

(5.14) 

where 

Wo == -- ;/1 Lirj - v-~iri . 1 (e ape) 
2pU ape 

(5.15) 

A most important limiting form of Eq. (2.16) [or Eq. (2.7)6 
with Eqs. (2.12), (2.8)7' (2.9)3' and (2.7)5] is 

/K = -JpemKLffL -JDiLGL, (5.16) 

where m KL is the mobility tensor and D iL is the diffusivity 
tensor, which may be written in the form 

(5.17) 

and, of course, we can have m KL = m KL (E KL' ff L)' In this 
simple but important limiting case, in which the current is 
given by Eq. (5.16) with the mobility tensor mKL and diffusi
vity tensor D iL constant, from Eqs. (5.15), (4.18), (4.11), 
(4.13), (S.16), (2.21), and (S.17) and the fact that GK vanish
es ahead of the wave front, we obtain 

.A. 1 ape e 
CUo = - --v-pNKJXKJ,[NLmLRffR + UN]' 

2pU ape ' 
(S.18) 
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from which, with Eq. (S.14), we find that the threshold rela
tion is given by 

NLm LR ~ R + UN = O. (S.19) 

When the deformation is infinitesimal, we have 

FrL ;::::J5rL , ~ R ;::::J5RjEj = ER, U,v;::::' U = Uo, (S.20) 

which enables us to write Eq. (5.19) in the form 

NLm LR ~;{ = NLmLRE;{ = - Uo, (S.21) 

where it should be recalled that N (or n) is the normal to the 
plane wave surface. Equation (5.21) is the generalization of 
the well-known relation for the threshold field obtained in 
Eq. (5.13) of Ref. 1 for the one dimensional case to the arbi
trarily anisotropic three-dimensional case treated here for 
the restricted limiting form (5.16) of the current equation 
(2.16). 

6. WEAK WAVES AND INDUCED DISCONTINUITIES 

Following Coleman and Gurtin,24 we define a wave of 
order N as follows: 

A propagating singular surface ~ is a wave of order N if 
the field y(X,t) and its first N - 1 partial derivatives with 
respect to X and t are continuous everywhere, but the Nth 
order partial derivatives suffer jump discontinuities at ~, 
and are continuous functions everywhere else. In particular, 
we note that the case N = 2 represents an acceleration wave. 
If N > 2, the wave is said to be a weak wave. 

Our object here is to study the propagation and growth 
of weak waves in a piezoelectric semiconducting material. It 
suffices to consider waves of order 3. We confine our atten
tion to the study of plane waves and we assume that the 
material ahead of the wave front is in a state of homogeneous 
strain, is subject to a uniform electric field, and that the 
charge density of the free electronic fluid is uniform and 
constant prior to the arrival of the wavefront. 

Since we are dealing with plane waves of order 3, from 
the compatibility conditions across ~ we have 

[FrL,K] = [Vr,LK] = brNLNK, 

[FrL,KM] = - U IV IbrNLNKNM, 

[FrL] = [Vr,L] = - UNbrNL, 

[Vr ] = U~br' 

[FrK,L] = [Vr,KL] = drNKNu dr = [NMNSFrs,M]. 

Db 
[v~] = U~dr + 2U~ 8;' 

(6.1) 

It follows from Eqs. (2.11) and (3.16) in essentially the same 
way that Eq. (3.19) follows from Eq. (3.18) that ff L,K is 
continuous across ~ and since ff L is continuous across ~ 
also, from the kinematic condition of compatibility ~ L is 
continuous across~. From the geometric condition of com
patibility, we have 

[~L,K] =13NLNK' [ff L,K] =iJNLNK, 

(6.2) 

In a similar manner Eqs. (2.13), (3.8)2' and (4.15) imply that 
GK,L is continuous across ~ and since GK is continuous 
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across ~ also, from the kinematic condition of compatibility 
G K is continuous across~, but from the geometric condition 
of compatibility and Eq. (2.17), we have 

[GK] = wNK, w= [NRGR ]. (6.3) 

Since for weak waves aj vanishes, an immediate conse
quence of Eq. (4.27) is that 

(6.4) 

so that the propagation condition for weak waves is precisely 
the same as that which governs the propagation of accelera
tion waves. 

In order to obtain the differential equation which gov
erns the evolutionary behavior of the amplitudes of weak 
waves, we differentiate Eq. (4.1) with respect to t holding X 
fixed, and on taking the jump across ~ in the resulting equa
tion, employing Eqs. (3.34), (4.5), (6.1)2' and (6.3), and re
calling the steady uniform state ahead of the wavefront, we 
obtain 

(AjKpLNKNL - Po U~.o;p)dp + ilL) + wH;KNK 

2 ob) 
-2POU NTt =0. (6.5) 

Similarly, taking the material time derivatives of Eqs. (4.10) 
and (4.19), taking the jumps across ~ in the resulting equa
tions, employing Eqs. (2.21)1' (3.34), (4.5), (4.8), (4.13), 
(4.14), (4.22), (6.1)-(6.3), and the compatibility conditions, 
and recalling the steady uniform state ahead of the wave
front, we find that 

il = ;Lidi - ;UNJp:XK.iNKbi> w= - UNV~ibi' (6.6) 

Substituting from Eq. (6.6) into (6.5) and employing Eqs. 
(3.36) and (4.25), we obtain 

Let us write 

bj = U~Cj' cj = crj , Irl = 1, (6.8) 

where r is the unit eigenvector of Qjp corresponding to the 
eigenvalue Po U~. Ifwe now contract Eq. (6.7) with rj and 
employ Eqs. (3.5), (3.8)6' (3.35), (3.36), (4.28), and (4.34), 
we find that the amplitude C of the third-order wave satisfies 
the equation 

Dc 
-=-%~ ~~ 
t5t 

which admits the solution 

(6.10) 

It is now clear that the evolutionary behavior of the 
amplitude of a weak plane wave is somewhat different from 
that of a plane acceleration wave which propagates in the 
same direction at the same speed. In particular, the evolu
tionary behavior of a weak wave is determined solely by the 
sign of liJo and is independent of the initial value of the ampli
tude of the wave. As we have noted earlier, liJo may be nega
tive in certain important circumstances. When liJo is nega
tive, the amplitude of the weak wave will increase without 
bound and become an acceleration wave as the wave tra-
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verses the material. This behavior should be contrasted with 
the manner in which weak waves behave in other media (see 
for example Ref. 6). However, if the weak wave is purely 
transverse, the amplitude will remain constant as the wave 
traverses the material in accordance with the relevant por
tion of the discussion in Sec. 5. 

Let us now suppose that there exists a particular direc
tion n in which three real plane acceleration waves may 
propagate. Let us denote the amplitudes, unit amplitude vec
tors, and speeds of propagation of these waves by a(l), r(l}, and 
U~, i = 1,2,3, respectively. It follows from Eq. (4.32) that 
the amplitude b(1) of the third-order discontinuity induced by 
the acceleration wave of amplitude a(l) is determined by the 
equations 

/'0. 

(Q . _ P U(I)20 )b (I) = d (I) 
]p ON]pp ]' (6.11) 

with 

+ a(1) I.I)r(1)a(1)2 (6.12) 
]pq p q , 

where a~) and aJ~~ are given by Eqs. (4.28) and (4.29), re
spectively, with U replaced by U(I) = Bn UJ/-

Now suppose that the eigenvectors of Qij(n) are distinct 
so that the vectors r(1} form an orthogonal triad. We may now 
write b(1) in the form 

3 
b(l) = I b ~)r(a). (6.13) 

(;(=1 

Since, as a consequence ofEq. (4.33), dyl is orthogonal to 
ry>, even though U~~)2 is a root ofEq. (3.37), Eqs. (6.11) are 
consistent but do not determine the component ofb(ll in the 
direction ofr(l) uniquely. Nevertheless, when Eqs. (6.11) are 
contracted successively with r;2l and rfl and Eq. (3.37) is 
employed, it follows that 

P ( U(212 _ U(ll2)b (Il = r(2)d(ll 
() IV ,,\, 2 J J' 

PO(U<:,l2_ U\\12)b\ll=rf1djll. (6.14) 

Of course, Eqs. (6.14) determine uniquely the components of 
the induced discontinuity in the two mutually orthogonal 
directions which are also orthogonal to the direction of the 
amplitude vector of the primary acceleration wave. 
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Singular perturbations approach to the limit cycle and global patterns in a 
nonlinear diffusion-reaction problem with autocatalysis and saturation law 
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A two-time scales method (singular perturbations) is used to construct the limit cycle and the 
global nonuniform steady patterns that appear in a diffusion-reaction process with autocatalysis 
and the Langmuir-Hinshelwood (Michaelis-Menten, Holling) saturation law. The stability of 
these nonlinear structures is also established in this paper. 

1. INTRODUCTION 

In two previous papers Ibanez and Velarde!·2 have dis
cussed the existence and the stability properties of the multi
ple nonuniform steady states that arise in a diffusion-reac
tion process of eventual relevance to heterogeneous catalysis 
(with catalytic wires, say) and surface reaction processes, to 
enzyme-controlled reactions in biophysical chemistry and to 
predator-prey competition schemes in ecological context. J

-
l 

The authors restricted their study, however, to the station
ary solutions in the limiting approximation of large scale 
separation between the two relevant diffusion parameters of 
the problem. In the present paper we extend the previous 
work by considering a more general case with two arbitrary 
diffusion constants. We construct and delineate the stability 
properties of global two-component nonuniform patterns 
that are asymptotically expected in an initially homogeneous 
one-dimensional reactor. We also construct the time-period
ic solutions (limit cycle and unstable orbit) that the diffu
sion-reaction process can exhibit. The model consideration 
refers to the following process]: 

A, 

A~Y, 

k, 

X + Y ~ 2Y (autocatalysis), 

S(k •. k.) 

X ---> P (saturation law), 

(l.1a) 

(l.1b) 

(l.1c) 

in which all three steps are taken irreversible, A, P, X, and Y 
denote reactants and the system is considered open to in- and 
out -flow of A and P but the concentration of these two pro
ducts is kept uniform all throughout the reactor. For sim
plicity we shall restrict consideration here to one-dimension
al reactors only. S (k],k,) accounts for the Langmuir
Hinshelwood law in heterogeneous catalysis and adsorption 
at surfaces, the Michaelis-Menten law in enzyme-controlled 
processes, and the Holling law in ecology. 

Disregarding convective phenomena and considering 
isothermal processes only, the scheme (1) can be described 

"Author to whom all correspondence should be addressed. 

by the following set of nonlinear partial differential 
equations: 

a[x] =k2[X][Y]-kJ-[~ +D
IX

) a2a[~] , 
at 1 + k,[X] , 

( 1.2a) 

(1.2b) 

where bracketed quantities denote concentration of reac
tants; D IX J and DI Y J are respectively the two diffusion pa
rameters in the system that we shall take as constants. k; 
(i = 1,2,3) are reaction rate constants and k. accounts for the 
strength of the saturation law. 

For universality of the description that follows we shall 
take convenient "scales" and define the following dimen
sionless quantities: 

r= r 
L 

L denotes the length of the one-dimensional reactor. As no 
confusion is to be expected we shall for convenience drop the 
tilde on rand t. Thus in dimensionless form the system (1.2) 
reduces to the following two-variable problem: 

ax x a2x 
- =XY- -- +Dx -, (l.3a) 
at 1 + qX ar2 

ay =A-XY+D a2

Y, 
at Y ar2 

(l.3b) 

in which A is a constant value. Obviously X and Yought to 
satisfy initial conditions (i.c.) and boundary conditions (b.c.) 
yet to be specified below. 

The system (1.3) possesses a trivial fixed point (i.e., a 
steady homogeneous solution) 

(1.4) 

whose actual existence depends on the b.c. For simplicity we 
shall consider in the following that the concentrations are 
fixed at the boundaries (Dirichlet problem) such that 
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X (r = O,t) = X (r = I ,t) = X 5 , 

Y(r=O,t)= Y(r= I,t)= Y,. 

(1.5a) 

(1.5b) 

This particular choice eliminates the appearence of bound
ary layers at extreme ends of the reactor where the homogen
eous solution (1.4) should adjust to the imposed values. 

In Sec. 2 we study the stability of the uniform steady 
solution (1.4). In Sec. 3 the construction of global two-com
ponent nonuniform patterns is obtained starting with a uni
form distribution of reactants in the vessel. Section 4 deals 
with the construction in the same limit of time-periodic solu
tions (limit cycle and unstable orbit) of(1.3). A discussion is 
also given about the influence of diffusion upon the limit 
cycle operation in the reactor. For general background see 
the recent monographs by Prigogine and collaborators6

,7 and 
the book on synergetics by Haken.' 

2. STABILITY OF THE STEADY UNIFORM 
DISTRIBUTION OF REACTANTS IN THE 
PRESENCE OF DIFFUSION 

Initial conditions will only be formally introduced in 
this section as we shall consider here possible two-compo
nent global nonuniform steady states in the reactor. For con
venience in the analysis that follows, and to be able to com
pare with the results found in Refs. I and 2, we introduce 
D D y , and e = DxIDy. Thus our problem can be recast in 
the compact form 

au 
- = L (y)u + N(y,u), at 

where, u = G), y = [q,A,e,D j, and x = X - X
5

, 

(2.1) 

Y = Y - Y" in which X" Y, correspond to (1.4) and 
X = X (r,t ), Y = Y (r,t )aretheactual values ofthe con centra
tion of the intermediate reactants. We shall consider asymp
totic solutions to (2.1), i.e., for t going to infinity. The finding 
of nontrivial (u:1=O) solutions to (2.1) with b.c. 
u(O,t) = u( 1 ,t) = 0, corresponds to an instability of the 
steady uniform distribution (1.4) of reactants in the vessel, 
and thus to the appearance (bifurcation) of secondary pat
terns in (1.3). The parameter y introduced above accounts 
for either the externally controlled quantities or the diffusion 
constants. The following definitions have also been used: 

a' 

(

qA (1 - qA ) + eD -ar 
L (y) 

- (1 - qA) 

A 

(1 - qA) 

-A 
I-qA 

a' +Dar 

(

xy + IIt2 ( - )"q" ~ 1(1 - qA)" + IXII). 
N(y,u)-

-xy 

), 

(2.2) 

(2.3) 

A sufficient condition for instability of (1.5) is that 
u = ° be unstable to infinitesimal disturbances, and thus that 
the linearized approximation to (2.1), 
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[%t - L (y)]u = 0, (2.4) 

would have a nontrivial solution for the b.c. specified above. 
Formal solutions to (2.4) are 

u(r,t) = B (r)eat, (2.5) 

where B(r) (~~%) corresponds to the vector solution of the 
time-independent part in (2.2). Insertion of (2.5) in (2.4) 
yields the following eigenvalue problem (with parameter 0), 

[L (y) - 01]B(r) = 0, (2.6) 

in which I denotes the identity matrix in dimension two. For 
the time being we assume that all eigenvalues in (2.6) are 
simple. Later on this assumption will be justified. Thus the 
general solution to (2.4) can be expressed as a linear combi
nation of (2. 5) forms 

u(r,t) = f ell e""'BII (r) (2.7) 
n=) 

of which we shall indeed take the real part only. un or uis the 
time constant that determines stability. It suffices for a single 
un to have Reun > ° for the solution u = ° to be unstable. 

With the above specified Dirichlet b.c. and using the 
eigenfunctions of the Laplacian we can write 

Sn(r) = sinmrr, 17n(r) = Mn sinmrr. 

Thus Eq. (2.6) yields the following characteristic equation 

~ - T(y,n)un + D (y,n) = 0, (2.8a) 

if a nontrivial solution is to exist. Here 

T(y,n)-qA(I-qA)- _A_ -n'1T'D(1 +0), 
I-qA 

(2.8b) 

D(y,n)=A(I-qA)-n'1T'D[qA(I-qA)- ~] 
l-qA 

+ (n'1T'D )'0. (2.8c) 

To every n there is associated a couple of roots in (2.8a) that 
may be real or complex conjugates depending on the values 
given to a and A. For later convenience we shall call these 
two eigenvalues un± according to the following convention, 

2un± = qA (1 - qA) - _A_ - n'1T'D(I + 0) 
l-qA 

± {[qA (1 _ qA ) + _A_ 
I-qA 

(2.9) 

It is clear that Reun+ >Reun- though the eigenvalue with 
highest real part is yet to be determined. From the values U n± 

we obtain the eigenfunctions by solving 

u
lI
± - qA (1 - qA) + n'1T'DO _ _ A_M ±. 

I-qA II 

=0. (2.10) 

L,L. Bonilla and M.G. Velarde 2693 



                                                                                                                                    

Given q, (), and D there are two possible modes of instability 
at some critical valueA c (call Yc = [Ac,q,(},D D. We shall 
separately study them. They are: 

(i) At y = Yc an eigenvalue u n± crosses the imaginary 
axis with nonvanishing imaginary part (Hopfbifurcation). 
This case corresponds to 

T(Yc,nc) = 0, 

D(Yc,nJ>O, 

T (Yc,n=i=nc) < 0, 

D (Yc,n=i=nJ > 0, 

(2. 11 a) 

(2.11b) 

(2.11c) 

(2.11d) 

with all other eigenvalues unof=n, having negative real parts 
and thus decaying on the time scale l-oo. From (2.11a) and 
(2.11c) follows that nc = 1. In the plane (q,A ) the locus 

Ac 
qAc(l-qAc)- 1-q

A
c =1T2D(1+(}) (2.12) 

corresponds to neutral stability (Reun~ = 0). 

(ii) At Y = Yc the only eigenvalue nc that crosses the 
imaginary axis, from negative to positive has vanishing 
imaginary part. This corresponds to 

T(Yc,nc) <0, 

D(Yc,nJ = 0, 

T(Yc,n=i=nJ < 0, 

D (Yc,n=i=nJ > 0, 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

From (2.13b) and (2.13d) it follows that the eigenvalue that 
yields instability corresponds to the minimum of D. This 
condition together with (2.8c) gives a nonvanishing nc ' 

nc = 111T- 1D -tl2(} -1/4A !/4(l - qAc)l/411, (2.14) 

where Ilxll denotes the integer part of x. The locus 
Ac(} 

qAc(l - qAc) + --- = 2[(}Ac(l- qAJ]tl2 
1 - qAc 

corresponds to neutrally stable states. 
(2.15) 

It is to be noted that inserting (2.15) in (2.13a) the fol
lowing inequality holds 

(() ~ 1 ) [qAc(l - qAJ - -1 _--=Ac:"'-:A-
c

] <0, 

and from the sufficient condition of minimum to D 

()< 1, i.e., Dx <D y, 

(2.16) 

(2.17) 

which comes with the sufficient condition of instability of 
the trivial solution. Figure 1 depicts for some specific values 
of y the (linear) stability diagram of (2.1) in the neighbor
hood of u = 0. It should be noted that with respect to the 
stirred reactor in the present case of an unstirred vessel, dif
fusion plays either a stabilizing or a destabilizing role, de
pending on the conditions of operation, i.e., on the values 
given to A, D, (), and q. All these results agree well with 
previous results obtained by Velarde et at. 1.2.5.9 

Before closing this section we shall introduce some defi
nitions and remarks and recall a number of properties of the 
linearized operator L (y) to be used in the subsequent 
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sections: 

(i) If un± are complex eigenvalues, then M n- = M + * 
in which the star denotes complex conjugation. n 

(ii) Let Fbe the space of analytic functions u(r) = <;g?) 
such that u(o) = u(l) = 0. Then 

(u I ii) = f Ix*(r)x(r) + y*(r)ji(r) I dr (2.18) 

is a scalar product in F. 

(iii) From (2.9) and (2.10) it follows that 

M + M - = (1 - qA Y 
n n A (2.19) 

(iv) Let i (y) be the adjoint operator to L (y) and 

8 ± (r) = ( sinn1Tr ) 
n N n± sinn1Tr 

the eigenfunctions of i (y) with same Dirichlet b.c. It follows 

N ± = - A M
n
±*. 

n (1 _ qA)2 (2.20) 

It is clear that whenever a n± are real both M n± and N n± are 
also real valued. 

(v) 

(8 ,,~ Is n± ) = +( 1 - A M ±M ±)o 
(1 _ qA )2 n m n,m' 

(2.21 ) 

(=- '+ I=- ± ) = ° - n - n , 
(2.22) 

Thus the set E n± (r) defines an orthogonal complete set (ba
sis) in F, and for an arbitrary function f (r) belonging to F the 
following expansion holds, 

fer) = ! (an+ S n+ (r) + a n- S n- (r», (2.23) 
n=1 

where 

2(8 n± If) 
a! = ------~--~~-----

1 - [A /(1 - qA )2]M n±2 
(2.24) 

(iv) At the critical point, A = Ac if the eigenvalue with 
vanishing real part is real, then 

(2.25) 

3. GLOBAL NONUNIFORM STEADY PATTERNS 

In this section we shall construct for Dirichlet b.c. the 
nonuniform steady solution that branches at A = A c ' in re
gion III of Figure 1. We shall define two time-scales and 
develop a convenient asymptotic expansion approach, 

Let 

x(r,O) = h (r,c); h/r,O) = ( ah ~~c) )" ~ 0' (3.1a) 

y(r,O) = g(r,c); gk,O) = (a
g

) , 
at" ,,~O 

(3.1b) 

h (r,O) = g(r,O) = 0, (3.1c) 

be some given, though rather arbitrary, initial data which are 
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IV 

8A ~--
qA(l-qAI-~-' 2 V8A(1-qAI 

l-qA 

FIG. I. Stability portrait of (1.3) in the 
neighborhood of the homogeneous steady 
state (1.4). Region I isofstability. Region IV 
corresponds to unphysical states of negative 
concentrations (qA > 1). Region II-III con
tains the unstable zone: on the left, along M 
[Eq. (2. 12)] there is bifurcation to limit cycle 
behavior whereas on the right, along N (Eq. 
(2.15}] spatial dissipative structures are 
expected. 

J1S§~=""""",,, _____ .L-.-_~~~ ___ ~-"--~~~_~--,!-c;..:;. q 

o 1 10 15 20 25 

perturbations upon the trivial fixed point, X = Y = O. With 
the new unknown € we denote a smallness parameter and we 
shall seek of bifurcating solutions to (2.1) in an e-neighbor
hood of Ac' The following time-scales will be used: (i) a/ast 
scale i = t which goes along the trajectory of x(r,t ), y(r,! ), 
t;:;'O, and (ii) a slow scale r = [A (e) ~ Aclt, which isanad hoc 
scale to measure the distance from the actual concentration 
profiles to the asymptotic state eventually attained at t-....,. 00 

(and T-- (0). We now define the following expansions, 10 

together with the corresponding expansions for the b.c. 

'" x(r,t,r)~ I €'x;(r,t,T), 
i-.:- I 

y(r,t,r)~ f €iYir,t,r), 
j....:::: I 

(3.2a) 

(3.2b) 

I 

x/O,t,r) = xp,t,r) = y/O,t,r) = Yit,t,r) = 0, (3.2c) 

and i.e. 

( 0 0) = 2. (Jih (r,O) x, r, , . 
j! ae) 

O.2d) 

.(r 0 0) = 2. (Jig(r,O) . 
YJ ' , j! a€j 

(3.2e) 

We shall also assume that A is analytic in e in the neighbor
hood of Ac ' 

A (€) = Ac + A '(O)€ + ~A "(0)€2 + o(e'). (3.3) 

Thus the following formal expansions hold for the linear and nonlinear operators in (2.1): 

and 

2695 

L(y) = 

a2 

qAc(1 - qA,) + en - AcO - qAJ-l 
ar2 

- (l-qAJ 
a2 

-A.(l-qA )-l +D-
, c ar2 

/(l - 2qAC>qA '(0) A '(0)(1 - qAJ- l 
) 

+ \qA '(0) ~ A '(0)(1 - qA,.)'2 

~(l - 2qA,)qA "(0) + 2q2A '2(0) 
(l - qAc)A "(0) + 2qA 'leO) 

2(1 - qAc)' 

~ qA "(0) 

+ a(e). 

~ (1 - qAc)A "(0) + 2qA '2(0) 

2(1 - qAc)l 
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The following formal differentiation applies, 

~ = a_ + [A '(O)E +!A "(OW + O(E)] ~, 
at at ar 

and as in the following no confusion is expected we shall drop the tilde ( ~ ) on the time variable t. 

(3.6) 

Inserting the above expansion in Eq. (2.1) and equating the same powers in E the following hierachy of linear equations is 
generated: 

(

- A '(0) a;; + qA '(0)(1 - 2qAc)Xt + A '(0)(1 - qAct2Yt + XtYt + q(l - qAJ3X~) 
JPu 2 = , 

- A '(0) aYt + qA '(O)x, - A '(0)(1 - qAct2y, - XtY, 
ar 

- A '(0) aX2 -!A "(0) aX t + q(l - 2qAc)A '(0)X2 + [!qA "(0)(1 - 2qAc) + qA '(OY]Xt 
ar ar 

-A '(0) a;; -!A "(0) t, -A '(0)(1- qA c)-2Y2 - [qA '(0)2 +!A "(0)(1 - qAJ] 

The formal solution to (3.7) is 

(3.7a,b) 

(3.8) 

(3.9) 

(3.10) 

in which the dominant eigenvalue is (Tn~ = 0, all other decay exponentially with t. Thus without loss of generality we can 

replace their respective coefficients cn± (r) with their initial values [with the exception indeed of cn~ (r)]. Thus (3.10) reduces to 

u,(r,t,r) = cn~ (r)E' n~ (r) + c n-:- (O)e
a

" 'E' n-:- (r) + Re I [cn± (O)e"'; 'E' n± (r)] 
n=l=n, 

= Cn~ (r)E' n~ (r) + (e.d.t), (3.11) 

where (e.d.t) denotes "exponentially decaying terms." 

The coefficients cn± (0) can be obtained using (2.23) and (3.2). We have 

cn± (0) = 2\2 ± I C: i~:~~)) [1 - Ac (l - qAJ-2(M n± 2) ]-' 
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(3.12) 

Thus all cn± (0) are directly expressed in terms of the i.e., namely the arbitrary perturbation given to the trivial uniform 
solution to (2.1). The coefficient cn: (1') is obtained by means of the E2 equation in the hierarchy (3.8), by using Fredholm's 
alternative. To later take the limit t---+oo it is convenient to introduce now the following average 

«E / II» = lim ~ ( <E n+ I/>dt (3.13) 
, T~oo T)o ' 

for an arbitrary function in F. With the definition (3. 13) all products of E n~ with (e.d. t.) vanish. We have 

lim - dt f dr sin2nc 1rr - A '(0) _n_, 1 - c n, 2 + A '(O)cn~ q(1 - 2qAJ + ---1 lT 1 { [ dc + ( A M + 2 ) [ M n~ 
T~oo T 0 )0 dT (1 - qAJ (1 - qAJ2 

qAc M n~ 

(1 - qAJ2 

we recall that 

L1 sin2nc1rr dr = 4, 

and 

1 { 0 if nc is even L sinlnc1rr dr = _4_ 
- if nc is odd. 
3nc1r 

Thus, from (3.14) it follows 

Ac
M n:'

2 ]}-O 
(1 - qAcY -. 

(3.14) 

(3.15) 

(3.16) 

dc+ 
A '(0)[ 1 - A~ n~ 2(1 - qAc)-2] d~ = A '(O)cn:. [q(1 - 2qA) + M n:' (1 - qAc>-1 + A~ n:' 2(1 - qA)-2] 

8c+ 2 

+ _n,._ [M + +A (1- qA )-2M +2 + q(l- qA )-3] 3n
c
1r n,. c c n,. c , (3.17) 

where in accordance with (3.16) the second term in the r.h.s. of (3.17) is vanishing for nc even. 

Using now (2.24) and (2.14) in (3.17), we obtain 

dc+ 
4A '(0)(1 - () d~ 

A '(0) 
= -4- cn:' [q(1 - 3qA) + (1 + qA)(1- qAc>-2()] 

+c+ 2 ::,+ --N u 
(

A /[1 tJ2 ]) 
n, - n, 2 JE2 (y,) E = 0 ' 

(3.18) 

{

q(1 - qAc)2(! - qAc) + 012 

= inc1r 

o 

for nc odd, 

(3.19) 

for nc even. 

Thus we have two cases: 

(i) When nc is even, or odd but q(1 - qAJ2(! - qAc) 
+ () 12 vanishes, then A '(0) must be vanishing. Forif A '(0) is 

not vanishing it would be exponentially growing on time, 
and thus it would be a fast variable, contrary to hypothesis. 
Thus to obtain cn~ ('I) the study of the El equation of the 
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Ihierarchy (3.9) is needed. This case will be discussed further 
below. 

(ii) When nc is odd and q(1 - qAcYH - qAc) + () /2 
*0, Eq. (3.18) yields 

(3.20a) 

where 

V= 
q(1 - 3qAJ + [(1 + qAJ/(1 - qAJ2]() 

2(1 _ () (3.20b) 

and 

(3.20c) 
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Integration of Eq. (3.20a) gives 

e + (O)e + (00 )eVT 

e+(r)= n. n, 

n, en: (00) - en: (0)(1 - eV
, 

(3.21) 

which upon substitution in Eq. (3.11) yields to first-order in € 

u(r,t) 

(3.22) 

On Fig. 1 we have noted that the trivial solution would be 
asymptotically stable for values of A > Ac' To have such a 
case it must be that en: (r) = 0 for t-+oo. This is obtained by 
settingvr v(A -Ac)t<Oatt>OandA>Ac' Thus it 
follows 

q(1 - 3qAc) + (1 + qAc>e /(1 - qAy 
v = < O. (3.23) 

2(1 - e) 

As e < 1 we then have 

(E n: I [ aL (y) ] E n: ) 
a€ E~O 

1 [ (1 + qAcW ] = -4 q(l- 3qAJ + <0. 
(1 - qAcY 

(3.24) 

For convenience we choose A '(0) = 1. Thus 
A - Ac = € + o(€') and to the first-order approximation, 

x ~cn: (r)(A - AJ sinn c1Tr. (3.25) 

As v < 0, e n+ ( 00 ) has the same sign as the quantity 
q(l - qA c)'(! - qAC> + e /2 or equivalently, as the quantity 

(En: I[ ~ :;2 N(Y'u)L~J 
= _4_ [q(1 - qAY(! - qAC> + ~], 

3n c1T 
(3.26) 

where [J. _ 0 denotes a quantity evaluated at € = O. Thus it is 
clear that if < (0) and < (00 ) have the same sign, with 
A <Ac the following asymptotic state is reached as t-+oo 

q(1 - qAc)2(! - qAJ + e /2 
X -----------------------------

q(l - 3qA c) + (1 + qAJe /(1 - qAJ2 
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x( _ 8 _ q~1 _ qAy}Ac - A) 'innc ffH 0(0, - A )'j. 

(3.27a) 

where 

(3.27b) 

If, however, sgnc n~ (0) =1= sgnc n: (00), the denominator in 
(3.21) vanishes for a time interval of order [ I v I (Ac -A)]-'. 
After this time lapse the solution escapes off the € region in 
which to a first-order is given by Eq. (3.27). 

For A slightly larger than A c ' a similar analysis yields 
(3.27) but the branch is indeed unstable as two initially 
neighboring concentrations diverge as time goes on. Besides 
when sgne,t (0) =1= sgnc n: ( 00) the initial perturbation decays 
to the trivial fixed point which is thus asymptotically stable, 
whereas ifsgnen: (0) = sgnen~ (00) the denominator in en~ (r) 
vanishes after a time interval of order [ I v I (A - Ac )]-!. 
Thus the question arises: Given some initial perturbations 
upon the homogeneous state where does the system go when 
the denominator in en: (r) vanishes? If the possibility of the 
solution going to infinity is disregarded, then the system is 
expected to reach another steady state, say at afinite dis
tance from the homogeneous fixed point as graphically de
picted in Fig. 2. An argument supporting this conjecture 
goes as follows. 

For simplicity we take the case 

(E n: I [~~N(Y,U)] ) <0 
2 a€ E~O 

(3.28) 

which implies en: (00) < O. For compactness we shall write 

N" = [~~N(Y,U)] 
2 a€' E~O 

Then for initial conditions yielding en: (0) positive on the 
zone of the diagram on the left of Ac the quantity x(r,t) does 
not reach a steady state in a neighborhood of Ac of radius 
€ = Ac - A. For time intervals shorter than the necessary 
interval for the vanishing of en: (r) this quantity is negative 
and rises with time in absolute value to eventually cross the 
zero value. After crossing zero the concentration becomes 
negative, which is not allowed here. Thus we may tentatively 
postulate the existence of a secondary steady state at finite 
distance. This can indeed be expected as the operator 
L (y)u + N (y,u) is compact over the domain of interest in the 
Banach space F and it is also completely continuous in A on 
the finite segment 1/5 = [Ac - c5,Ac + 15] for given 15 > O. Let 
fl be the domain ofthe operator, and such that it encloses the 
postulated finite amplitude steady state for all A belonging to 
1/5' Leray-Schauder's theory!!·!2 gives that the topological 
degree is the same for all points in fl no matter what the 
value of A in It; may be. On the other hand, at the bifurcation 
point there is a change in the degree. Then the following 
theorem can be applied 13: Let 5 be a fixed point of a compact 
operator H and let L be its Frechet differential with respect 
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FIG. 2. Bifurcation and stability of spatial dissipative structures showing 
the possibility of at least one subcritical (metastable) branching. + 1 and 
- I are the corresponding Leray-Schauder degrees. (a) corresponds to the 

case of Eq. (3.28) and (b) to the opposite sign in (3.28). 

to S. Assume that A. = 1 is not an eigenvalue of the problem 
¢ = A.L¢. Then S is an isolated fixed point of H with degree 
( - ) 13, where II is the sum of multiplicities of the eigenvalues 
of the equation given above in the unit segment [0,1]. Apply
ing this theorem to the operator L (y)u + N (y,u) with respect 
to the homogeneous fixed point S = 0, the degrees are those 
given in Fig. 2. Stable branches have degree + 1 whereas 
those unstable have - 1. Then as the topological degree in 
region D, which is the sum of all degrees for all branches and 
all values of A belonging to Jfj ,is + 1 for A > A there must 
exist another branch with + 1 degree, and this justifies our 
assumption. 

With ne even to get cn~ (T) we ought to solve the hierar
chy to the third-order equation (3.9). WehaveA '(0) = Oand 
substitution of (3.11) in (3.8) and (3.9) together with 

M n~ = - H8 + q(1 - qAe)2] 

yield 

[:1 - L (Ye) ]U2 

= (q(1 - qAY(l- qAe) - () /2) 
8 + q(1 - qA e)2 

2 

XCn~ 2 sin2ne1Tr + (e.d.t.). (3.29) 

To find a particular solution, ups, of Eq. (3.29), we take ad
vantage of the known eigenfunctions of L (Ye)' We have 

2699 

Ups -
2 - I a n± (r).2 n± (r). 

"""'", 
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(3.30) 

As 

L (yC>.2 ! (r) = CT n±.2 n± (r) 

Eq. (3.29) yields 

I an±(r)CTn±En±(r) 
n"",n,. 

(3.31) 

(

8/2 - q(1 - qAe)2(! - qAC>} 

= n~ 2 sinne1Tr + (e.d.t.). 

-l[q(1 - qAcY + 8] 
(3.32) 

Multiplying (3.32) with E n± with the definition (3.13) it ap
pears that all (e.d.t.) disappear, and we obtain 

{
p ± C + 2(r), for n odd, 

a±(r)= " n, 

n 0, for n even, 
(3,33) 

where 

8 [ A~ n± ]} [ A~ n± ] - 1 

- 2 1 + (l _ qAeY 1 - (1 - qAY . 
(3.34) 

Thus the general solution of (3.29) reduces to 

U2 = b n: (r).2 n: (r) + cn: 2(r)D (r) + (e,d.t,), (3.35) 

where we have introduced the following quantity, 

D( )_(w(r») - " ± =- ± ( ) (3.36) 
r = b (r) - ~ Pn -" r, 

""",n, 

n odd 
Upon substitution of (3.11), (3.35), and (3,36) in Eqs. (3,8) 
and (3.9) we have 

[:t -L(YC>]Ul 

= - ~A "(0) aUl + LII(Yc)u l + Nm(Ye'u"U 2) (3,37) ar 
in which for compactness the following quantities have been 
introduced, 

(3.38) 

and 

Nm(Ye,u "u 2) 

= (XoY2 + XV'I + 2q(l - qAe)lxlX2 - q2(l - qAe)4Xi). 

-XoY2 - XV'I 
(3.39) 
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A 

FIG. 3. Bifurcation picture corresponding to the dissipative structures giv
en by Eq. (3.47) with the corresponding degrees. (a) and (b) denote respec
tively the cases a < 0 and a> O. 

Multiplication of Eq. (3.37) with E,t (r) and use of Fred
holm's alternative yield 

A "(0) dc,,: A "(0) + ----- = --- vc - avc + _I (3.40) 
2 d7 2 ". II, ' 

where 

(2(1 - 8)1-'(1- e) (3.41) 
and 

a ( i q'(1 - qAJ' - f {l2qA c - Ace 2 ]~ (r) 
() (l - qAJ 

+ [q(l - qA c)'(3 - 2qAc) + e ]cu(r)} sin'nc1Tr dr 

( 
q 1+ qAc e] x I - 2qAc - -2 (1 - qA,.) + 

(1- qAy 2 

In the limit 7--->00 we find 

c,,: (00) = ± [A "(0)/2a] 112, 

which upon substitution in Eq. (3.40) yields 

dc,,' [e,,"- 2(7) ] --' = vc,,+ 1 - ' . 
d7 ' e t- 2( 00) 

II, 

Integration of (3.44) is straightforward. We have 

ell~ (7) = I c,t (00) I < (0)e 1
"[ < 2(0)(e21T 

- 1) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

It appears that sgne,~ (7) = sgne,~ (0), With respect to 

de,,~ /d7 in Eq. (3.44) two possible cases arise: 

(i)Iflc,,~(oo)1 <e,/(O) or if -lcn:(oo)1 <e,t(O)<O, 
the slope of e,: (7) starts being negative. 

(ii) lfO<e,~ (0)< Ie,,: (00)1 orif - le/(oo)1 >e,/ (0), 

the slope of e,t (7) starts being positive. 

Thus if e,,: (0) is positive, then c,;: (7) goes monotonical

lyto le,t(oo)1 whereasife,,: (O)isnegative,thene,,: (7) goes 

monotonically to - I en: (00) I. This shows that the dissipa
tive structure found at t--oo depends only on the sign of the 
initial conditions. 
In this case the asymptotic expansion of the solution is 

e,~ (O)le,t(oo)1 exp[v(A -AJt] 
x------------------------

[e,~2(0)!exp[2v(A -AJt] -1) +e/ 2(00)]112 

(3.46) 

which in the limit t--->oo yields depending on the i.c. either one or the other of the following two steady inhomogeneous 
solutions, 

(x(r») ~ (A/O - qAJ) ± (A - A c)l12 
y(r) 1 - qAc a 

(3.47) 

As for A> Ac' the trivial solution is asymptotically stable, then we also have here 

v<O (3.48) 

as it was found in the case of nc odd. 

Notice that if the E expansion is to be valid we must have e,t 2( 00) positive. Thus; 

(i) If a < 0, (3.43) implies A "(0) < 0 and A <Ac, the dissipative structures are asymptotically stable. 

(ii) If a > 0, A "(0) > 0, and A > A c, the inhomogeneous steady states are unstable, In this case exp( v(A - A c)t ]--->0, and 
e,,: (7)--->0, and the inhomogeneous solutions decay to the homogeneous fixed point in a time interval of order [ I v I (A - Ac )]-1. 
The corresponding bifurcation picture is given in Fig. 3. 
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y 

x 

FIG. 4. The limit cycle around (I .4)-the steady state X" Y, -and the two 
time-scales introduced in Eg. (4.4). 1- proceeds with the actual trajectory of 
the initial condition until the system reaches the limit cycle, whereas 'T, the 
slower scale transversally crosses the trajectory from the initial condition 
down to the limit cycle. 

4. LIMIT CYCLE BEHAVIOR 

In this section we shall construct the limit cycle that 
bifurcates from the unstable trivial fixed point in the neigh
borhood of the neutral stability curve (q,A ) next to region II 
(Fig. 1). Again our analysis uses the two time-scales1o whose 
physical interpretation is made transparent in Fig. 4. 

The neutral stability curve to be considered in Eq. 
(2.12), 

Ac 
qAc(l - qAJ - = 1T2D(1 + 8), (4.1) 

1 - qAc 

and the critical eigenvalue is nc = 1. We have 

0"1± Ac = ± iw 

From Eqs. (2.10) we get the constants M I± . They are given 
by 

( 
Ac ± iw - qAc 1 - qAc) + 1T2D8 - M J± = 0. (4.3) 

1 - qAc 

For the concentrations the following solution is 
assumed, 

u1(r,t,'1') = Ret c 1+ ('1')eicU'E t (r) + c1- ('1')e - icU'E 1- (r) ) 

+ (e.d.t.), 
where t and '1' are the two time scales (Fig. 4). 

Defining 

c1('1')-![c l+ ('1') + c 1- *('1')] 

and using M 1- = M t * together with eiwtE 1- (r) 
= [eicutE t (r)] * and (4.4) we get 

uk,t,'1') = c1(r)e icutE t (r) + c.c. + (e.d.t.), 
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(4.4) 

(4.5) 

where c.c. accounts for complex conjugation of the preced
ing term. The following i.c. for cl('1') comes from Eq. (3.12), 

i l { AM + } 
C1 (0) = 2 h,(r,O) - c J 2 g.(r,O) sin1Tr dr 

o (l - qAc) 

(4.6) 

Substituting (4.5) in Eq. (3.8) we have: 

[!!... - qAc(l - qAc) - 8D ~]X2 - Ac Y2 
at a,z 1 - qAc 

= - A '(0) sin1Tr(cjei'U' + c.c.) + q(1 - 2qAc)A '(0) 

. A '(0) 
Xsin1Tr(c e"ut + c.c) + sin1Tr(c I M 1+ eicu' 

1 (l _ qA c)2 

+ c.c) + sin21Tr[ (M t + M t *) I c l 1
2 + ciei2'"' 

+ c.c.] + q(l - qAysin21Tr(21 C1 12 + dei2,u' 

+ c.c.) + (e.d.t.), (4.7a) 

- + c _ D - Y2 + (l - qA c)x2 [a A a2
] 

at 1 - qAc a,z 

= - A '(0) sin1Tr(cjM t ei'"i + c.c.) + qA '(O)sin1Tr(clei'o' 

A '(0) . + c.c.) - sin1Tr(c M + e"u' + c.c.) 
(1 _ qAJ2 1 1 

- sin21Tr[ (M 1+ + M t *) I c1 12 + ciM 1+ ei2«J' 

+ c.c.] + (e.d.t.). (4.7b) 

Defining for later convenience the following average 

«[P t ] If» = lim ..!.. (T <P 1+ If)eicU'dt (4.8) 
T~oo T Jo 

and using Fredholm's alternative with (4.7) we get A '(0) = 0 
if C1 is not to be vanishing. Substitution of this result in Eq. 
(4.7) and integration of the system yields 

u2(r,t,'1') = b1('1')eic<>fE t (r) + c.c. + d('1')ei2,u'n (r) + c.c. 

(4.9) 

in which 

nCr) = (w(r») 
t(r) 

oc p! 
= L. + 

n ~ 3 lZW - 0",; 

x {M t [1 + A~ n± ] + q(1 - qAc)3}E! (r), 
(1 - qAJ2 

(4.10) 

with 

_ 8 { A~ ;e2}-1 p;e = 1 
n(n2 - 4) - 1 - qAc . 

(4.11) 
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a bracket []w = 0 will denote the use of - p;( /0' n± instead of 
P n± /(i2uJ - 0' n± ). 

To obtain el(r) we introduce Eq. (4.9) into the third 
order Eq. (3.9). Multiplication of the result with E t (r) and 
use of (4.8) yields the following differential equation, 

A "(0) dc; A "(0) • 1 1 12 ' 
--- = --vC\+/l. Cl c\ 

2 dr 2 ' 
(4.12) 

where 

v = q(1 - 2qAJ + + c \ { 
Mt* AM+*'} 

1 - qAe (1 - qAel 

X 1- _c __ _ 
{

A M+*' }-l 
(1 - qAJ2 ' 

(4.13) 

+ [w(r) + c.c.L=o + [ 1+ M t * 

+ M 1+ w*(r) + M t ... [w(r) + c.c.L, = 0)] 

From (4.12) we take cl(r) = e(r)e - ia(T), with e(r) and a(r) 
being some functions of r yet to be specified. Then separation 
of real and imaginary parts in (4.12) leads to the following 
two equations: 

A "(0) de A "(0) --- = --cRev+c3 ReA, 
2 dr 2 

(4. 15a) 

A "(0) da = A "(0) Imv + e2 lmA. 
2 dr 2 

(4. 15b) 

Thus from (4.1Sa) at r---->oo we get 

C( 00 ) = [_ A" (0) Rev) 112, 
2 Reti 

which upon substitution in Equation (4. 15a) yields 

de ( C
2

] 
dr = Rev 1 - e(00)2 e. 

From Sec. 2 the solution to (4.17) is known. We have 

c(O)c( 00 )eT Rel' 
e(r) = ---""""'---"--'--~---

! c( 00)2 + C(O)2 [e lT Rel' - 1) l'l2 

The unknown phase follows from (4.1Sb) and (4.18), 

2ImA iT a(r) = a(O) + r Imv + -- c2(s) ds, 
A "(0) 0 
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(4.16) 

(4.17) 

(4.18) 

(4.19) 

which for large values of time yields the following behavior, 

{ 
lmA Rev} a(r)-r Imv - Reti . 

Thus to the first order in £ the following result is 
obtained, 

u(r,t,E) 

(4.20) 

-E2c(0)c( 00) exp[ - (Ae - A) Revt ] 

X[c(00)2+e(0)2(exp[ -2(Ac -A)Revt) _1))-112 

x( 2~~D (t _ qA<l _ 2q(1 - qAJ,) 

Xcos[wt - a(A - AJt] + £ Re f cn~ (0) 
n=2 

(4.21) 

which for large values of time, i.e., asymptotically leads to 
the time periodic solution 

(
X (r,t ») 
Y(r,t) 

[ ( lmAR~~ev)]t X cos w + (Ae - A) Imv - --t:I\,--

(4.22) 

For A >Ac this trivial solution (1.4) is asymptotically stable 
and will occur for Rev < O. Thus as c( 00 ) must be real there is 
the following alternative: Either 

(i) Reti < O. We have A < Ac and the solution (4.22) is 
the expected limit cycle. Or 

(ii) Reti > O. Then A> Ac and the (orbit) time periodic 
solution (4.22) is unstable. 

It is clear that if the diffusion parameters are large 
enough the limit cycle behavior may not be seen. From Eg. 
(4.2) we note that if Dx is so large as to allow only vanishing 
values of w, the eigenvalues O'l± (A = AJ and (2.14) cross 
each other and for A <Ac we have no bifurcation to a limit 
cycle but instead we have branching of at least two nonuni
form steady states. For with w = 0 there is M 1+ = M 1- and 
2e,(r) = C,t (r) and the solution of this Sec. 4 coincides with 
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(3.11) for nc odd (and equal to one). Then as already dis
cussed, in the preceding Sec. 3, of these two expected steady 
solutions one grows with amplitude continuously varying on 
lAc - A I, and the other ought to be located at a finite dis
tance from the critical point (subcritical or metastable 
branching). In conclusion, Hopfbifurcation to a limit cycle 
is expected along the neutral stability curve (4.1) provided 

1 <q < Q [1 + (I + 4A 1/2 - 47T2f)D)' 12 JI2A,. 

5. CONCLUDING REMARKS 

Perhaps the most interesting feature of the method 
used, with the two time-scales defined, is that it not only 
provides the construction of the nonlinear bifurcated 
branches but that it also yields information on their stability, 
and permits us to see in detail the evolution of initial distur
bances upon the trivial steady state of the system. According 
to Fig. I this fixed point is unstable for A <A c ' and at least 
locally asymptotically stable otherwise. Thus the solution 
u,(r,t,r) must go to zero as time goes to infinity, namely 
u,--+O as r = (A -Ac)t--+oo, provided A >Ac. Then we 
have2

: 

(i) with n, odd, Eq. (3.21) belonging to the spatial dissi
pative structure (sds) demands that v be negative, 

(ii) with nc even, Eq. (3.45) again for a sds demands that 
v be negative, 

(iii) Eq. (4.18) for the temporal dissipative structure 
(the limit cycle) demands that Rev be negative. 

The time evolution of initial disturbances is given for the 
three cases by the respective Eqs. (3.22), (3.46), and (4.21), 
from which the following conclusions are inferred: 

(i) with nc odd, the sds is semistable for A <Ac and 
unstable otherwise, and two possibilities exist (see Fig. 2) 
according to the sign of (E,~ I NlI ). The corresponding 
relaxation time is of order [yeA - Ac)r', 
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(ii) with nc even, the sds is asymptotically stable for 
a < 0 and unstable otherwise, 

(iii) the limit cycle is orbitally asymptotically stable for 
ReA, < 0 and unstable otherwise. Its relaxation time is of or
der [Rev(A - Ac )]-'. The method has also permitted us to 
locate a subcritical branch at a finite distance as shown in 
Fig. 2. 
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ERRATA 

Erratum: Higher Euler operators and some of their applications 
[J. Math. Phys. 20, 522 (1979)] 

s. J. Aldersley 
Department oJ Applied Mathematics, UniversityoJWaterloo, Waterloo, Ontario, Canada N2L 3GI 

Reference 19 was omitted from the list of footnotes. It tensor densities in a three-space," to appear in J. Math. Phys. 
is: S.J. Aldersley, "Comments on certain divergence-free 

Erratum: Asymptotic forms of radial wavefunctions and Jost functions for 
cutoff potentials 
[J. Math. Phys. 20,1210 (1979)] 

W.J.Romo 
Physics Department, Carleton University, Ottawa, Ontario K 1 S 5B6 

line of the equation by aN(j) - a j P.1214, Eq. (2.28e): replace~~ + a(k) by ~~, _a(k); 
last line of Eq, (2.29): replace the exponent of k by 
( - /1q - /1r - 4), 

p, 1215, Eq, (2,36): replace the factor ( - iak) -/- 1 on 
the right-hand side of the equation by l:: ~ _ 1 (iak) - /- 1. 

P.1223, nine lines below Eq. (B3): replace a = ± 1 by 
a = + 1; relabel Eqs. (B12a) and (B12b) as Eqs. (Bllc) and 
(Blld), respectively. 

P.12l6, Eq. (2.44b): replace/by t 
P.1218, Eq. (3.10): replace the exponent ofz on the last 
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